
Reinforcement Learning for Stochastic Max-Plus Linear Systems

Vignesh Subramanian, Farzaneh Farhadi, and Sadegh Soudjani

Abstract— This paper studies the design of control policies
for Discrete Event Systems under uncertainties. We capture
the timing of the events using the framework of max-plus-
linear systems in which the time between consecutive events
depends on random delays with unknown distributions. Our
policy synthesis approach is with respect to a cost function,
and it can be extended directly to satisfy safety specifications
on the timing of events. The main novelty of our approach is
to translate the system evolution to a Markov decision process
(MDP) that has an uncountable state space and develop a
stochastic optimisation problem under the evolution of the
MDP. To tackle the unknown distribution of uncertainties (thus
unknown transition probabilities in the MDP), we employ
model-free reinforcement learning to perform optimisations
and find control policies for the system. Our implementation
results on the 9-dimensional model of a railway network show
superiority of our learning approach in comparison with the
stochastic model predictive control approach.

I. INTRODUCTION

A Discrete Event System (DES) is a dynamical system
where the evolution of the states are triggered by some
events. The state variables change only at definite points
in time through instantaneous state transitions which we
call events. These events could take place asynchronously
over time. The states of the system remain unchanged in
between events and could change only during the events.
DES provides a general framework for many systems whose
dynamics can be controlled by man-made constraints as well
as physical laws. Examples of a DES include logistic sys-
tems, traffic networks, manufacturing systems and scheduling
systems [1]. In all these application domains, we have finite
resources that are shared over several jobs that tend to
contribute towards the culmination of a final goal such as
arrival and departure of trains through multiple stations over
a period of time in a railway network, or manufacturing and
assembling of products in a factory [2]. A DES also tends to
be complex by having large state spaces depending on the
number of resources and jobs the DES relies on to achieve
its final goal.

Max-plus-linear (MPL) systems are a class of DES in
which there is synchronisation (new operation starts once all
the preceding operations have been finished) but no concur-
rency or choice is included in the model description. Analysis
and control of MPL systems are difficult to be performed
using mathematical concepts in conventional algebra due to

Vignesh Subramanian is with Georgia Institute of Technology, USA.
Farzaneh Farhadi is with the School of Engineering, Newcastle Univer-
sity, UK. Sadegh Soudjani is with the School of Computing, Newcastle
University, UK. The research of S.Soudjani is supported by the following
grants: EPSRC EP/V043676/1, EIC 101070802, and ERC 101089047.
Email: vsubramanian64@gatech.edu, F.Farhadi2@ncl.ac.uk,
Sadegh.Soudjani@ncl.ac.uk.

the nonlinear nature of the dynamical equations and their
high dimensionality. To reduce the complexity of the model,
the state equations are interpreted in the max-plus algebra
[2]. MPL systems become linear with respect to max-plus
algebra, thus it is possible to use the features of the max-
plus algebra to analyse MPL systems in a highly efficient
manner and evaluate the characteristics and performance of
the system.

Every MPL system has inherent uncertainties in its oper-
ation. These uncertainties can be caused by uncontrollable
factors such as human errors, system input delays, weather
conditions, or system utility malfunctions. These factors can
cause the state variables of the DES to change. For example,
an equipment malfunction in a production facility can cause
uncertain delays in the manufacturing process. Therefore, it
is desirable to incorporate uncertainties in the MPL model
by including stochastic variables and use the framework of
stochastic MPL systems [3].

A promising approach to tackle uncertainties with un-
known distributions is to use model-free reinforcement learn-
ing for the control and optimisation of the system [4]. In
recent years, reinforcement learning has grown in popularity
due to its capability to deal with dynamic, large complex
problem spaces and to encode safety constraints directly in
its objective function. Reinforcement learning is able to train
systems to respond to unforeseen environments because it
learns through a continuous process of receiving rewards and
punishments for each action taken.

The main contribution of this paper is to provide an
optimisation strategy for switching stochastic MPL systems
(SS-MPL), where the switching in the system models the
control actions. Uncertainties in the system are assumed to
have unknown distributions. To find the switching actions, we
employ Deep Q-learning algorithm [5], which is a model-
free reinforcement learning approach suitable for handling
continuous state spaces and encoding safety constraints in
its reward structure. This is achieved by translating the
state evolution of the SS-MPL system to a Markov decision
process that evolves probabilistically on the event index. We
implement our approach on a 9-dimensional railway network
model adapted from [6] by adding stochastic delays. We
show the superiority of our technique in comparison with
the stochastic model predictive control approach.

Related Work. One of the earliest studies on designing con-
trollers for DES is performed by Ramadge and Wonham [7].
Their approach interprets the traces of the controlled system
as a formal language and finds the controller such that this
language realises the desired specifications. In the past years,

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 5625

many control strategies for DES have been formalised. The
paper [8] proposes a hierarchical control approach for DES
based on the concepts of control structures and observers.
The paper [9] presents a learning approach to synthesise
the largest nonblocking supervisor for DES by extending
the L∗ algorithm [10]. The paper [11] proposes an iterative
control approach for nondeterministic DES that computes
a nonblocking supervisor from a possibly blocking one by
remoning certain states.

Model-based control approaches designed for performing
optimisations on MPL systems have been vastly improved in
the recent years. The paper [12] proposes an internal model
control approach for optimisation on MPL systems using a
model that predicts the future behaviours. The paper [6] has
used model predictive control (MPC) to optimise a switching
MPL system which leads to mixed integer optimisations.
The authors of [13] propose an adaptive MPC approach by
incorporating a parameter identification method to adapt the
MPL to changes of parameters. The paper [14] addresses
the issue of partial synchronisation in MPL systems using
MPC and feedforward control. The authors of [15] have
considered infinite-horizon optimal control of MPL systems
with additive discounted costs. Their approach uses full
knowledge of the model and is based on space discretisations.

MPL systems have also been studied for satisfying log-
ical requirements. The works [16], [17] study verification
approaches to check properties of stochastic MPL systems
using finite probabilistic abstractions. The work [18] studies
reachability of MPL systems using finite abstract models,
i.e., finding event timings that can be reached from an
initial set of event timings. The paper [19] proposes an
approach to perform reachability analysis of MPL systems
using satisfiability modulo theories (SMT) solvers. A similar
technique is used in [20] to study the transient of an MPL
system, i.e., the number of steps leading to its periodic
regime.

Reinforcement learning is an emerging approach capable
of learning optimal actions for systems that have temporal
dynamical changes [4]. This approach has been used re-
cently for DES modelled with finite state machines [21] and
fuzzy automata [22]. To use reinforcement learning for the
computation of control strategies on the MPL systems, the
system needs to be presented as an MDP. The paper [17]
formulates a stochastic MPL system as a Markov chain over
a continuous space and approximates it with a finite one
to verify properties of the system. We extend this idea to
SS-MPL systems and translate them to MDPs (evolving over
an event index) to be fitted into the reinforcement learning
framework.

This paper is organised as follows. In Section II, we give
the preliminaries on max-plus algebra, switching stochastic
MPL systems, and the problem of designing control policies
for such systems to optimise infinite-horizon discounted
objectives. Section III formulates the MDP representation
of the delay dynamics in the system and provides a solution
approach using reinforcement learning. Section IV describes

the details of a 9-dimensional case study for a railway net-
work. Section V illustrates the performance of the proposed
approach on the case study and compares it with the MPC
approach. Finally, Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we introduce some basic definitions of the
max-plus algebra and MPL systems.

A. Max-Plus Algebra

Define ε := −∞ and Rm := R∪{ε} . Max-plus algebra has
two basic operations, i.e., max-plus algebraic addition ⊕ and
max-plus algebraic multiplication ⊗. The max-plus algebraic
addition is denoted by ⊕ and is defined as x⊕y := max(x, y)
for any x, y ∈ Rm. Max-plus algebraic multiplication is
denoted by ⊗ and is defined as x ⊗ y := x + y for any
x, y ∈ Rm. These two operations are naturally extended to
matrices. Denote the entries of any matrix X with xij . Then,
we define

Z = X ⊕ Y with zij = xij ⊕ yij = max(xij , yij),

C = A⊗B with cij =

n⊕
k=1

aik ⊗ bkj = max
k=1,...,n

(aik + bkj) ,

for any matrices X,Y ∈ Rm×n
m , A ∈ Rm×n

m , and B ∈ Rn×p
m

B. Stochastic MPL Systems

An MPL system is a DES in which there is synchroni-
sation (a new operation starts as soon as all the preceding
operations have been finished) but no concurrency or choice
can be described by a state equation designed within the
bounds of max-plus algebra. The state equation of an MPL
system can be formulated as

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k), (1)

with event index k ∈ N := {1, 2, 3, . . .}. The state x(k)
contains the time instants at which the internal events of the
MPL system occur for the kth time and u(k) is the input
which contains the time instants at which the input events
occur for the kth time. Matrices in (1) are A ∈ Rn×n

m and
B ∈ Rn×m

m , where n denotes the number of states and m
denotes the number of inputs. Note that A,B could change
with the event index k.

Stochastic MPL systems are a set of DES designed under
the bounds of max-plus algebra similar to an MPL system.
But unlike in an MPL system, the time intervals between
successive event occurrences could be random quantities.
For instance, in a model for a railway scheduling network,
fixed scheduled delays such as railway track maintenance can
be incorporated directly into the model but uncertain delays
such as mechanical failures, weather conditions, boarding
times of passengers, accidents, and the driver behaviour
should be modelled using uncertain random variables.

A Stochastic MPL system is defined similar to the MPL
system (1) but instead of introducing standard delays into
the system via the inputs, the entry (i, j) of matrices A(k)
and B(k) could depend on random delays eij(k) that take

5626

in each event index k a random value from a certain (known
or unknown) probability distribution.

Example 1: Consider a two-dimensional stochastic MPL
system in the form of (1) that models a railway network of
two trains. The matrices of the system are

A(k) =

[
2 + e11(k) ε

ε 7 + e22(k)

]
, B(k) =

[
0 ε
ε 0

]
,

with initial state x(0) = [ε ε]T . Let us consider a
timetable d(k) for the departure times of the two trains that
requires the kth departures of the trains to be at least d(k)
with

d(k) =

[
60k

32 + 60k

]
, k ∈ N.

The above required departure time shows that the period of
the timetable is 60 minutes. This timetable can be enforced
by putting the input of the stochastic MPL system in (1) to
be u(k) = d(k). This results in the following state equations
for the system in the usual algebra:

x1(k) = max(2 + e11(k) + x1(k − 1), 60k),

x2(k) = max(7 + e22(k) + x2(k − 1), 32 + 60k).

C. Switching Stochastic MPL Systems

If a stochastic MPL system is capable of switching be-
tween different modes of operation, it is known as Switching
Stochastic MPL (SS-MPL) system. For an SS-MPL system
with nm modes of operation, the state equation at mode
l(k) ∈ {1, 2, . . . , nm} is given by

x(k) = Al(k) ⊗ x(k − 1)⊕Bl(k) ⊗ u(k), (2)

where Al(k) and Bl(k) are the system matrices for mode
l(k). The switching between modes in general depends on
previous state x(k− 1), previous mode l(k− 1), input u(k)
and possibly some additional control input v(k). A switching
variable r(k) ∈ Rnr

m that depends on these aforementioned
variables can be written as

r(k) := Φ(x(k − 1), l(k − 1), u(k), v(k)), (3)

for some function Φ(·). A switching mechanism is con-
structed using a partition of Rnr

m into nm subsets each
associated with a mode l(k). For any r(k) in each partition
set, the associated mode is selected.

Example 2: In a railway network, there are two types of
constraints that determine a timetable: connection constraints
and follow constraints. If a connection constraint is broken,
the two involved trains no longer need to maintain their
connection. If a follow constraint is broken, the two involved
trains no longer need to follow each other as specified
in the schedule and hence can change their order. The
mode of operation for a railway network depends on these
constraints. Consider a railway network with nct constraints.
The control input v(k) in (3) can be selected from the
input set {0, 1}nct . The ith entry vi(k) = 0 corresponds
to keeping the ith constraint and vi(k) = 1 means the ith

constraint is broken. The number of modes in the system
is l(k) ∈ {1, 2, 3, . . . , 2nct}. The function Φ in (3) will

map each control input v(k) to a mode l(k). These several
modes enable us to disrupt railway connections and alter the
sequence of trains providing us with a new timetable which
alters the system matrix A.

Example 3: Consider the railway network of Example 1.
Let us put a constraint on train 2 such that train 2 follows
train 1 arrived in its station. The control input v is such that
we can either allow train 2 leave independently by setting
v(k) = [1] or satisfy the constraint by setting v(k) = [0].
Then we have nct = 1 and l(k) ∈ {1, 2}. This will result in
state matrices

Al(k)=

[
2 + e11(k) ε

c(l(k)) + e21(k) 7 + e22(k)

]
, (4)

Bl(k)=

[
0 ε
ε 0

]
,

where c(1) = ε for breaking the connection and c(2) ̸= ε
takes a non-negative value computed based on the required
follow constraint. The initial state is x(0) = [ε ε]T and
the input is u(k) = d(k).

D. Problem Statement

We raise the following assumption before giving the
problem statement.

Assumption 1: Distributions of delays and other uncer-
tainties in the SS-MPL system are possibly unknown but
sample event timings x(0), x(1), x(2), . . . under different
switching strategies are available.

This is a valid assumption since most realistic railway
networks have simulators that can imitate the behaviour of
the real system. Uncertain delays are generally added to
such simulators to assess the robustness of the system to
such delays. These models are not suitable for model-based
probabilistic analysis due to the scale of the system having
hundreds of states [2].

We define the objective at the event index k as

J(k) := λ1

n∑
j=1

D(k, j) + λ2

nct∑
m=1

W (k,m), (5)

where D(k, j) is the delay of the jth internal event in the
event index k, W (k,m) is the cost involved in breaking an
inherent constraint of the system, nct denotes the number of
constraints, and n denotes the number of internal events in
the system (i.e., the dimension of x(k)). Note that the first
term in (5) gives the total delay and the second term gives
the cost of switching to the mode l(k). The second term is
added since altering the nominal operation of the SS-MPL
system can break the timetable and can lead to unwanted
complications in the real world scenario. The coefficients
λ1, λ2 are weights to create a tradeoff between the delays
and the costs. Additional terms to encode safety constraints
can also be added to the objective function. We consider the
total discounted objective function

J := E

[∞∑
k=0

γkJ(k)

]
, (6)

5627

where E [·] denotes expectation with respect to random
uncertainties and γ ∈ (0, 1) is a discounting factor that
puts more emphasis on delays and costs happening in the
near event indices. This objective function creates a tradeoff
between minimising delays and costs incurred by breaking
the constraints. A switching policy in the form of (3) will
specify the next mode in each time step (i.e., which con-
straints should be broken) to minimise the objective function.

Problem 1: Given an SS-MPL system with unknown
delays under Assumption 1 with state equation (2), and
objective function (6), find a switching policy in the form
of (3) that minimises the objective function.

III. SOLUTION APPROACH

A. Delay Dynamics in SS-MPL Systems

When all the random delays are assumed to be zero (eij =
0), the resulting SS-MPL system induces a periodic nature
if the input is set to be the timetable, u(k) = d(k) for all k.
Then, each event is repeated at regular intervals characterised
by an event period p. Next theorem gives the delay dynamics
of the system.

Theorem 1: Define the difference between the states of the
original SS-MPL system and those of the periodic departure
times in d(k) as z(k) = x(k) − d(k). The delay dynamics
can be written as

z(k) = [Al(k) +Dz]⊗ z(k − 1)⊕ [Bl(k) +Du], (7)

with matrices Dz = [dzij]i,j and Du = [duij]i,j such that
dzij = dj(0)− di(0)− p and duij = dj(0)− di(0).

Proof: We use the fact that u(k) = d(k) and the
following two properties of the timetable d(k):

di(k)− di(k − 1) = p and
di(k)− dj(k) = di(0)− dj(0), ∀i, j, k.

Then we have for all i,

zi(k) = xi(k)− di(k)

= max(A
l(k)
i1 + x1(k − 1)− di(k), . . . ,

B
l(k)
i1 + u1(k)− di(k), . . .)

= max(A
l(k)
i1 + x1(k − 1)− di(k − 1)− p, . . . ,

B
l(k)
i1 + u1(k)− di(k), . . .)

=max(A
l(k)
i1 +x1(k − 1)−d1(k − 1)−di(0)+d1(0)−p,

. . . , B
l(k)
i1 + d1(0)− di(0), . . .)

=max(A
l(k)
i1 +z1(k − 1)+di(0)−d1(0)−p,

. . . , B
l(k)
i1 + d1(0)− di(0), . . .),

which gives the expression in (7) for the delay dynamics.

B. SS-MPL System as a Markov Decision Process

An SS-MPL Σ can be equivalently represented as an MDP
with a continuous state space denoted by the tuple Σ =
(Z,L, Tz), where Z is the state space of the system, L is
the input space of the system and Tz : B(Z) × Z × L →

[0, 1], is the conditional stochastic kernel that assigns to any
z ∈ Z, and l ∈ L, a probability measure Tz(· | z, l) on the
measurable space (Z,B(Z)) so that for any set A ∈ B(Z)

P(z(k + 1) ∈ A | z(k), l(k)) =
∫
A
Tz (dz

′ | z(k), l(k)) .

For given switching input l(·), the stochastic kernel Tz

captures the evolution of the state of SS-MPL system Σ.
Theorem 2: The conditional stochastic kernel Tz of an

SS-MPL system can be defined by the conditional density
function tz(z | z, l), where

tz(z | z, l) =
n∏

i=1

ti (zi | z, l) , with

ti(zi|z, l) = δαi
(zi) ·

n∑
j=1

[
tij(zi−dij−zj , l)

n∏
k=1
k ̸=j

Tik(zi−dik−zk, l)

]
,

where [α1, . . . , αn]
T := max(Bl + Du) with max being

taken in each row, and δαi
is the Dirac delta distribution

located at αi.
Proof: The independence property of A

l(k)
ij (.) ⊗ dij ,

for all i, j ∈ {1, 2, . . . , n} leads to the multiplicative expres-
sion of tz(zi|z, l). In order to show the expression of the
components ti(zi|z, l), first we compute the ith conditional
distribution function Ti(zi|z, l), then we compute the ith con-
ditional density function ti(zi|z, l) by taking the derivative
of Ti(zi|z, l) w.r.t. zi.

Ti(zi|z, l)
= Pr{max{Al

i1+di1+z1, . . . , A
l
in+din+zn, αi}≤zi|z}

= Pr{Al
i1+di1+z1≤zi, . . . , A

l
in+din+zn≤zi, αi≤zi|z}

= 1(αi≤zi)

n∏
j=1

Pr{Al
ij ≤ zi − dij − zj |z}

= 1(αi≤zi)

n∏
j=1

Tij(zi − dij − zj |z).

Taking the derivative of Ti will give the intended result.

C. Reinforcement Learning

Q-learning. For an MDP Σ = (Z,L, Tz), Q-learning finds
a policy π for maximising the expected value of a total
discounted reward function starting from the current state.
In our case, the reward at each state z(k) under input l(k)
will be R(z(k), l(k)) = −J(k) with J(k) defined in (5). At
the heart of Q-learning there is a Q-function Qπ(z, l) that
gives the total discounted reward under a policy π starting
from the state-input pair (z, l)

Qπ(z, l)=Eπ

[∞∑
k=0

γkR(z(k), l(k))|z(0) = z, l(0) = l

]
,

(8)
where Eπ denotes the expectation over the solution of the
system when the switching input l(·) is selected to be l in

5628

the initial state z(0) = z and follows the policy π. The goal
is to find a policy that maximises Qπ(z, l) in any state z.

When the state space Z is finite, Q-learning stores the
values of Q(z, l) in a table, called Q-table, and updates iter-
atively the values in the Q-table according to the following
equation

Q(z, l)←−Q(z, l)+α[R(z, l) + γmax
l′

(Q(z′, l′))−Q(z, l)].

(9)
In the right-hand side of (9), the term Q(z, l) indicates the
current values in the Q-table and maxl′(Q(z′, l′)) shows the
maximum expected future rewards. During the learning, the
agent will search through all the inputs l′ for a particular state
z′ and chooses the state-input which the highest Q-value.

In (9), γ is the discount factor and α is a learning rate.
Rearranging the above equation, we get

Q(z, l)←− (1− α)Q(z, l) + α [R(z, l) + γmax
l′

(Q(z′, l′))]︸ ︷︷ ︸
TD

,

where TD is the temporal difference target which gives an
updated policy to choose the optimal l′ in each state z′, and
the learning rate α creates a weighted sum of current Q-
values and the TD to update the Q-table.

The major disadvantage of Q-learning is that it is only
applicable to finite state spaces and the Q-table does not
scale very well when there is a large set of state-input pairs.
Therefore, Q-learning is not directly applicable to the model
of SS-MPL systems that have continuous uncountable state
spaces of the form Rn. Deep Q-learning solves this issue by
replacing the Q-table with neural networks [5].
Reward Function. Suppose J(k, i) is the objective in (5) at
epoch number i. To encourage the learning to minimise the
objective across epochs, we define the reward function

R(k, i) = J(k, i− 1)− J(k, i).

This gives a positive reward to the learning agent if J(k, i) <
J(k, i − 1) and a negative reward if J(k, i) > J(k, i − 1).
We take λ1 = 0.01 and λ2 = 0.001 in (5).

Deep Q-learning. The implementation of the Q-table is a
key distinction between Deep Q-learning and the traditional
Q-learning. Deep Q-learning substitutes the Q-table with
a neural network known as the Deep Q-Network (DQN).
Instead of mapping a state-action pair to a Q-value as it is
done in Q-tables, A DQN maps states to (action, Q-value)
pairs. For an n-dimensional state space and an action space
consisting of m actions, the neural network is a function
from Rn to Rm (the DQN will have m outputs and the
value inside each output node shows the Q-value). This is
also shown in Fig. 1.

In order to find the parameters θ of the DQN, the network
is trained with an appropriate loss function, which is the
squared error of the target Q-value and predicted Q-value.
Deep Q-learning utilises a prediction network Q(z, l; θpred)
as well as a target network Q̂(z, l; θtarget) to estimate the
prediction and the target Q-values for the stability of the
algorithm.

Fig. 1. Deep Q-learning framework where the Q-table is replaced by
a deep neural network with appropriate number of inputs and outputs.
The Environment block is the SS-MPL system that generates the state
observation z and reward R under action l.

During learning, experience replay plays an important
role: the learning agent builds up an experience dataset
D = {e1, e2, . . . , et} consisting of experiences ek =
(z(k), l(k), z(k + 1), R(k)) from many iterations. When
training the DQN, instead of merely using the present ex-
perience, as required by conventional TD learning, the Deep
Q-network is trained by evenly sampling mini-batches of ex-
periences from dataset D. By allowing samples to be reused,
experience replay increases sample efficiency. Additionally,
experience replay in the context of neural networks permits
mini-batch updates, which improves computing efficiency.
Uniform sampling from the replay buffer reduces variance
by minimising correlation between the samples used in the
update. Using the above information, the loss function now
can be formulated as

Li(θi) = E(z,l,z′,R)∼U(D)

[(
yi −Q(z, l; θpred

i)
)2

]
, (10)

where i is the epoch number, U(D) is the uniform distribu-
tion over the emulation dataset D, and yi is the update target
values given by the target network Q̂:

yi = R(z, l) + γ max
l′

Q̂(z′, l′; θtarget
i−1).

When optimising the loss function Li(θi) the parameters of
θtarget from iteration i − 1 are frozen for a fixed number of
iterations while updating the parameters of the prediction
network θpred to improve the stability of the network. We
then get the following gradient by differentiating the loss
function (10) with respect to the weights:

∇θiLi(θi)=E(z,l,z′,R)

[(
yi−Q(z, l;θpred

i)
)
∇θiQ(z, l;θpred

i)

]
.

Remark 1: It is shown that Q-learning converges to the
optimal policy and the optimal Q-values with probability
1 whenever all the actions are repeatedly sampled in all
states under appropriate selection of the learning rate [23].
In contrast, Deep Q-learning will only converge to a sub-
optimal solution due to a fixed structure for the DQN that
may not be sufficient for representing the optimal Q-function
on a continuous state space.

5629

TABLE I
PERIODIC TIMETABLE OF THE RAILWAY NETWORK USED AS A CASE

STUDY SECTION IV. ALL THE TIMES ARE MENTIONED IN MINUTES.

Train From-To Departure-Arrival Constraints
1 D-A 00-12 same train as 3−, connects to 9−,

and follows 7−

2 A-B 15-27 same train as 1, connects to 6−,
and follows 4−

3 B-D 30-50 same train as 2
4 A-B 19-31 same train as 6−, follows 2,

and connects to 7
5 B-C 34-44 same train as 4
6 C-A 47-12 same train as 5
7 D-A 04-16 same train as 9−, follows 1
8 A-C 19-44 same train as 7
9 C-D 47-57 same train as 8, connects to 5

Fig. 2. The railway network used in Section IV.

IV. CASE STUDY

We consider a railway network and model its departure
times with a 9-dimensional SS-MPL system. This case
study is adapted from [6] by including stochastic delays
in the model. The goal is to minimise delays using only
data gathered from the railway network and find a policy
for breaking the constraints in the network with the least
disruption to the expected normal operation.

A. Railway Network

The railway network is shown in Fig. 2 and has four
stations A, B, C, and D. There are three physical trains
that follow respectively the routes (D,A,B,D), (A,B,C,A),
and (D,A,C,D). The network has five single tracks (1/7, 2/4,
3, 5, and 9) and one double-track (6 and 8). The periodic
timetable for scheduling the trains is presented in Table I.
The nominal departure and arrival stations and times of the
trains are included in the table with having period of 60
minutes. Although the network has three physical trains, we
want to show the departure time of a specific train from
a particular station. Therefore, we define 9 virtual trains
to specify physical trains on specific tracks and show the
information of these virtual trains in the timetable I. There
are also three types of constraints that must be respected in
the network (e.g., to dictate the arrival and departure times):

• Continuity constraints relate virtual trains to physical
trains. For example, trains on tracks 1, 2, and 3 are
physically the same train.

• Connection constraints allow the passengers to change
trains. For example, train 1 has to wait for train 9 in
the previous cycle with minimum connection time of 3
minutes.

• Follow constraints guarantee sufficient separation time
between two trains on the same track. For example, train
4 follows train 2 with a minimum separation time of 4
minutes.

All the constraints are included in Table I, where the minus
superscript indicates train from the previous cycle. The
minimum stopping time of train j at station j is also fixed
to 1 minute.

B. SS-MPL Model of the Railway Network

The state equations of the SS-MPL model of the train
network when all the constraints are respected are as follows:

x1(k)=max(x3(k − 1) + 21 + e13(k), x7(k − 1) + 4

+ e17(k), x9(k − 1) + 13 + e19(k), 60k)

x2(k)=max(x1(k) + 13, x4(k − 1) + 4 + e24(k),

x6(k − 1) + 28 + e26(k), 15 + 60k)

x3(k)=max(x2(k) + 13 + e32(k), 30 + 60k)

x4(k)=max(x2(k) + 4 + e42(k), x6(k − 1) + 26

+e46(k − 1), x7(k)+15+e47(k), 19+60k)

x5(k)=max(x4(k) + 13 + e54(k), 34 + 60k)

x6(k)=max(x5(k) + 11 + e65(k), 47 + 60k)

x7(k)=max(x9(k − 1) + 11 + e79(k − 1), x1(k) + 4

+ e71(k), 4 + 60k)

x8(k)=max(x7(k) + 13 + e87(k), 19 + 60k)

x9(k)=max(x8(k) + 26 + e98(k), x5(k) + 13 + e95(k),

47 + 60k).

The timetable is u(k) = d(k) = d(0) + 60k with
d(0) = [0, 15, 30, 19, 34, 47, 4, 19, 47]T . The state equations
are modified appropriately for each constraint being broken.
Note that our learning algorithm does not need to know
the state equations nor the mathematical distributions of the
uncertainties. It just requires knowing the state and actions
spaces, initial state, and sampled trajectories under different
control policies.
State Space. Let xj(k), j ∈ {1, 2, . . . , 9}, be the time instant
at which train j departs from its station for the kth time. We
also denote by dj(k) the nominal departure time for this train
according to the timetable and use aj(k) for the travel time
of this train. The state space of this 9-dimensional SS-MPL
system is R9

ε.
Initial State. The first period starts at time t = 0. At
the beginning of the first period the physical trains are
respectively in stations D, A, and D. The initial state of the
SS-MPL system is set to x(0) = [ε, ε, ε, ε, ε, ε, ε, ε, ε]T , and
the timetable is encoded in the input u(k).
Action Space. The number of possible switching inputs
of the SS-MPL system is determined by the number of
constraints. The railway network has nct = 8 constraints

5630

Fig. 3. Reward of the Deep Q-learning as
a function of epoch number for the SS-MPL
railway network with uncertainties having Ex-
ponential (top plot) and Gamma (bottom plot)
distributions.

Fig. 4. Loss function of the Deep Q-learning
as a function of epoch number for the SS-MPL
railway network with uncertainties having Ex-
ponential (top plot) and Gamma (bottom plot)
distributions.

Fig. 5. Sum of delays for the SS-MPL railway
network with uncertainties having Exponential
(top plot) and Gamma (bottom plot) distribu-
tions under the policies computed with different
approaches.

that can be broken (4 follow constraints and 4 connection
constraints) giving an input space of size 28. The control
input is a binary decision vector v(k) ∈ {0, 1}nct that
specifies whether any constraint is followed or broken.

Objective Function. We consider the objective in (5)
for minimising delays while assigning the following cost
to breaking the constraints

∑nct

m=1 W (k,m) = Cv(k),
where v(k) is the binary vector indicating which con-
straints are broken, and C is a row vector containing
the costs of breaking any particular constraint: C =
[wc1 , wc2 , wc3 , wc4 , wf1 , wf2 , wf3 , wf4].

V. IMPLEMENTATION RESULTS

To model the stochastic delays in the railway system,
we consider Exponential and Gamma distributions. These
two types of distributions are widely used in real-time
systems and can provide an accurate representation of the
uncertainties [3]. We consider the random delays eij in the
train travelling times following either Exponential distribu-
tions with parameter β = 30 or Gamma distributions with
parameters θ = 40 and k = 3. We select the DQN as a neural
network with 6 layers and 10 nodes in each hidden layer.
The input layer has 9 nodes corresponding to states of the
system and the output layer has 8 nodes corresponding to the
actions. Activation functions of the hidden layers are selected
to be Rectified Linear Unit (ReLU). This neural network
architecture has been effective in our experiments since the
dynamics of the SS-MPL case study can also be considered
as a neural network with ReLU activation functions.

We run our experiment for 10000 epochs each with the
maximum event index k of 100 and 300 respectively for
Exponential and Gamma distributions. We set the discount
factor γ = 0.99 and learning rate α = 10−5. We use Adam
optimiser which is an extension of stochastic gradient decent

algorithm [24] to minimise the loss function L(θ) in (10).
The learning also has another hyper-parameter ϵ that creates
a trade-off between utilising newly acquired information and
environment exploration. It is the probability of choosing to
explore: ϵ = 1 means exploring any policy randomly and
ϵ = 0 means selecting the input with the highest Q-value. In
our experiment, ϵ is reduced linearly from 1 to 0.05.

Fig. 3 shows the average reward per epoch in the Deep
Q-learning on the SS-MPL railway network with uncertain-
ties having Exponential distribution (top plot) or Gamma
distribution (bottom plot). The average reward curve is
noisy due to the combination of exploration and exploitation
employed by the learner to find the policy. Since the system
is stochastic, we perform our experiment on the system 50
times and provide the average of quantities with a cloud
around the average showing the min and the max. The plots
in Fig. 4 show the loss function of the Deep Q-learning,
which demonstrate the convergence of the learning to a (sub-
optimal) policy for both types of distributions.

Performance Comparison. To assess the performance of the
computed sub-optimal policy, we show the sum of delays as
a function of event index k in Fig. 5 under three different
policies: (a) the policy computed via our Deep Q-learning
approach; (b) the policy computed via stochastic MPC
adapted from [6] by using empirical mean in the optimisation
objective; and (c) no-switching policy (the uncontrolled case
when all the constraints are respected).

The comparison is also reported in Table V for both Expo-
nential and Gamma distributions by running the algorithms
50 times and reporting the average and standard deviation of
quantities. In the SS-MPL system with Exponential uncer-
tainties, our Deep Q-learning approach reduces the delays in
the network to zero and brings the network to its nominal
timetable in average after 19 events (departures), while

5631

TABLE II
COMPARING THE PERFORMANCE OF OUR DEEP Q-LEARNING APPROACH WITH STOCHASTIC MPC AND NO SWITCHING BY REPORTING AVERAGE AND

STANDARD DEVIATION OF RUNNING THE ALGORITHMS 50 TIMES.

Distribution Approach Sum of delays over event periods First event index k0 with zero delay maxj xj(k0)

Average Standard Deviation Average Standard Deviation Average Standard Deviation

Deep Q-learning 17129.08 1096.43 (6.4%) 18.42 1.73 (9.39%) 1264.24 95.63 (7.56%)
Exponential Stochastic MPC 44385.28 4211.71 (9.48%) 52.36 8.28 (15.81%) 3115.28 329.95 (10.59%)

(β = 30) No switching 81593.84 6100.51 (7.47%) 95.06 10.24 (10.77%) 5912.18 580.16 (9.81%)

Gamma Deep Q-learning 138572.96 3712.08 (2.67%) 60.24 3.04 (5.05%) 6699.08 436.71 (6.51%)
(θ = 40, Stochastic MPC 353018.04 22891.23 (6.48%) 149.28 12.52 (8.38%) 17149.41 1620.43 (9.44%)
k = 3) No switching 687263.33 32486.32 (4.72%) 278.06 17.24 (6.20%) 32936.94 2669.67 (8.10%)

stochastic MPC and no-switching policies take respectively
53 and 96 events in average. The sum of all the delays and
the time when delays become zero in the whole network are
also reported in the table. When compared with no switching,
our approach reduces the total delays in the network by 79%
and the stochastic MPC approach reduces the total delays
by 46%. Our approach is 2.84 times faster than stochastic
MPC in clearing the delays. Similarly in the SS-MPL system
with Gamma uncertainties, our approach brings the network
to its nominal schedule within 61 events in average, while
stochastic MPC and no-switching policies take respectively
150 and 279 events. When compared with no switching, our
approach reduces the total delays in the network by 80%,
and the stochastic MPC approach reduces the total delays
by 49%. Our approach is 2.47 times faster than stochastic
MPC in clearing the delays. Over 50 experiments on a laptop
with Intel Core i5-8300H processor, 2.30GHz, and 4GB GTX
GPU, the computation time for our RL policy is in average
5 min and maximum 13 min, while MPC policy takes 6 min
in average and maximum 9 min.

VI. CONCLUSION
We studied the problem of learning policies for optimis-

ing objective functions on switching stochastic max-plus-
linear systems. Our approach translates the system to a
Markov decision process and utilises the model-free Deep
Q-learning using sampled trajectories of the system. Our
implementations on a 9-dimensional model of a railway net-
work showed superior performance in comparison with the
stochastic model predictive control approach for two types
of uncertainties. Future work includes enforcing temporal
logic properties on the system that requires keeping track
of probabilistic dependencies in different event indices.

REFERENCES

[1] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems. Springer, 2008.

[2] B. Heidergott, G. J. Olsder, J. Van Der Woude, and J. van der Woude,
Max Plus at work: modeling and analysis of synchronized systems:
a course on Max-Plus algebra and its applications. Princeton
University Press, 2006, vol. 13.

[3] B. Heidergott, Max-plus linear stochastic systems and perturbation
analysis. Springer, 2007.

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[6] T. J. van den Boom and B. De Schutter, “Modelling and control
of discrete event systems using switching max-plus-linear systems,”
Control engineering practice, vol. 14, no. 10, pp. 1199–1211, 2006.

[7] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM journal on control and optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[8] K. C. Wong and W. M. Wonham, “Hierarchical control of discrete-
event systems,” Discrete Event Dynamic Systems, vol. 6, no. 3, pp.
241–273, 1996.

[9] H. Zhang, L. Feng, and Z. Li, “A learning-based synthesis approach to
the supremal nonblocking supervisor of discrete-event systems,” IEEE
Trans. on Automatic Control, vol. 63, no. 10, pp. 3345–3360, 2018.

[10] C. De la Higuera, Grammatical inference: learning automata and
grammars. Cambridge University Press, 2010.

[11] J. Li and S. Takai, “Maximally permissive supervisors for nonblocking
similarity control of nondeterministic discrete event systems,” IEEE
Transactions on Automatic Control, pp. 1–16, 2022.

[12] J.-L. Boimond and J.-L. Ferrier, “Internal model control and max-
algebra: Controller design,” IEEE Transactions on Automatic Control,
vol. 41, no. 3, pp. 457–461, 1996.

[13] Y. Shinada, S. Masuda, and H. Goto, “Adaptive model predictive
control for the max-plus linear system,” IFAC Proceedings Volumes,
vol. 37, no. 12, pp. 481–486, 2004.

[14] X. David-Henriet, J. Raisch, L. Hardouin, and B. Cottenceau, “Mod-
eling and control for max-plus systems with partial synchronization,”
IFAC Proceedings Volumes, vol. 47, no. 2, pp. 105–110, 2014.

[15] J. Xu, L. Buşoniu, T. van den Boom, and B. De Schutter, “Receding-
horizon control for max-plus linear systems with discrete actions using
optimistic planning,” in 2016 13th International Workshop on Discrete
Event Systems (WODES). IEEE, 2016, pp. 398–403.

[16] D. Adzkiya, S. Soudjani, and A. Abate, “Finite abstractions of
stochastic max-plus-linear systems,” in Proceedings of the Interna-
tional Conference on Quantitative Evaluation of Systems, ser. LNCS.
Springer Verlag, 2014, vol. 8657, pp. 74–89.

[17] S. Soudjani, D. Adzkiya, and A. Abate, “Formal verification of
stochastic max-plus-linear systems,” IEEE Transactions on Automatic
Control, vol. 61, no. 10, pp. 2861–2876, Oct 2016.

[18] D. Adzkiya, B. De Schutter, and A. Abate, “Computational techniques
for reachability analysis of max-plus-linear systems,” Automatica,
vol. 53, pp. 293–302, 2015.

[19] M. S. Mufid, D. Adzkiya, and A. Abate, “Symbolic reachability analy-
sis of high dimensional max-plus linear systems,” IFAC-PapersOnLine,
vol. 53, no. 4, pp. 459–465, 2020.

[20] A. Abate, A. Cimatti, A. Micheli, and M. S. Mufid, “Computation
of the transient in max-plus linear systems via SMT-solving,” in
International Conference on Formal Modeling and Analysis of Timed
Systems. Springer, 2020, pp. 161–177.

[21] K. M. Zielinski, L. V. Hendges, J. B. Florindo, Y. K. Lopes, R. Ribeiro,
M. Teixeira, and D. Casanova, “Flexible control of discrete event
systems using environment simulation and reinforcement learning,”
Applied Soft Computing, vol. 111, p. 107714, 2021.

[22] H. Ying, F. Lin, and R. Sherwin, “Fuzzy discrete event systems with
gradient-based online learning,” in 2019 IEEE international conference
on fuzzy systems (FUZZ-IEEE). IEEE, 2019, pp. 1–6.

[23] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3, pp. 279–292, 1992.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2015.

5632

