
Optimal Containment Control of Nonlinear MASs: A
Time-Aggregation-based Policy Iteration Algorithm

Xiongtao Shi, Yanjie Li, Member, IEEE, Chenglong Du, Member, IEEE

Abstract— In this paper, the optimal containment control of
a class of unknown nonlinear multi-agent systems (MASs) is
studied via a time-aggregation (TA) based model-free reinforce-
ment learning (RL) algorithm. By proposing TA-based event-
state, event-control, and integration-reward, the model-free TA-
based policy iteration (TA-PI) approach is synthesized such that
the policy evaluation and policy improvement steps are only
executed for finite event-state, and the optimal control protocol
is obtained with fewer computational requirements. Besides, the
control input is intermittently updating only when the event-
set is visited, which greatly reduce the updating frequency
of control. Therefore, the proposed learning algorithm helps
to save computational resources in both learning process and
control updating. Moreover, armed with a finite predefined
event-set, the developed TA-PI algorithm without employing
function approximator and state discretization, resulting a
strict convergence analysis via the mathematical induction.
Finally, simulation results are given to show the feasibility and
effectiveness of the proposed algorithm.

Index Terms— Time-aggregation, policy iteration, model-free
control, optimal containment control.

I. INTRODUCTION

The containment control of multi-agent systems (MASs)
has received great attention in the past two decades due
to its wide applications [1]–[4], including the smart trans-
portation, emergency rescue, and other scenarios. Note that
most existing works only study the stability of containment
control, which is the basic requirement in system design. To
achieve the containment control in a better way, the optimal
containment control is developed such that not only the
followers enter the convex hull spanned by multiple leaders,
but also a predefined performance index is minimized for a
better control performance [5]–[8].

To achieve this optimal containment control, the model-
free reinforcement learning (RL) algorithm, such as policy
iteration (PI) and value iteration (VI), have been taken into
consideration, and enable the synthesis of the control proto-
col in an optimal model-free manner [6]–[8]. Nevertheless,
the majority of existing literature requires a lot of computa-
tional resources, because the learning process is executed for
continuous and uncountable states rather than finite important
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event-state, and the learned optimal control protocol usually
needs persistently updating [9], [10]. Moreover, the practical
implementation of existing model-free RL-based optimal
control protocol requires a function approximator or state
discretization. When a function approximator is employed,
the theoretical convergence of the algorithm can not be
strictly guaranteed due to the appearance of approximation
error [11], and on the contrary, using state discretization can
lead to the curse of dimensionality if the discretization is
particularly accurate [12].

To overcome these drawbacks, a novel time-aggregation
(TA) technique [13]–[15] is introduced in this paper to
synthesize TA-based policy iteration (TA-PI) algorithm, in
which the continuous and uncountable state is replaced by
the finite predefined event-set, and enable a tremendous
reduction of the state space. The contributions of this paper
are as follows.

1. The improved TA-based event-state, event-control, and
integration-reward are developed. Thus, the learning pro-
cesses, such as the policy evaluation and policy improve-
ment, are only executed when the current state belongs to
event-set, enabling a more computationally efficient way
compared with conventional learning algorithms [9], [10].
Besides, the developed TA-based event-control effectively
avoids persistent control updating, which can greatly reduce
more computing consumption in the control updating than
[16], [17].

2. By introducing a finite predefined event-set, the uti-
lization of the function approximator and state discretization
are avoided in the proposed TA-PI algorithm. Meanwhile,
the convergences of the proposed TA-PI algorithm is proved
based on the mathematical induction, and the monotonicity
and boundedness property of the iterative value function are
derived in detail.

Notations: R indicates the set of real numbers; Rn repre-
sents the set of real vectors with n elements; Rn×m stands
for the set of real matrices with n rows and m columns;
Il indicates the l dimensional identity matrix; ⊗ represents
Kronecker product; diag{d1, ..., dn} is a diagonal matrix
whose diagonal entries are d1, ..., dn and all other entries
are zero.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

The considered communication graph G(V, E) is com-
posed of nodes set V = {1, 2, ..., n} and edges set E ⊆
V ×V . The corresponding adjacent matrix is represented by
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A = [aij ] ∈ Rn×n, where aij = 0 if (vj , vi) /∈ E and
aij = 1, (i 6= j) otherwise. Define neighbors set of node
vi as Ni = {j : vj ∈ V, (vj , vi) ∈ E}. The agent with the
empty neighbor set is a leader, and it is a follower otherwise.
A (directed) path from agent 1 to agent l is a sequence of
edges as the form (1, 2), (2, 3), ..., (l − 1, l) with distinct
nodes. A directed spanning forest is a graph G in which
there exists at least one available leader for any follower
[18]. The Laplacian matrix L is calculated as L = D − A,
where D = diag{d1, d2, ..., dn}, di =

∑
j∈Ni

aij .

B. Problem formulation

Consider an unknown nonlinear MAS consisting of m
leaders and n − m (n > m) followers with the following
dynamics: {

ẋi(t) = 0, i ∈ L,
ẋi(t) = fi(xi(t), ui(t)), i ∈ F,

(1)

where xi(t) ∈ R and ui(t) ∈ R represent the state
and control input, respectively; L = {1, ...,m} and F =
{m + 1, ..., n} represent the leader set and follower set,
respectively; fi(·) is an unknown nonlinear function. To
achieve optimal containment control, the performance index
is defined as:

Ji(ei(t), ui(t)) =
∫∞
t
ri(ei(τ), ui(τ))dτ, (2)

where

ri(ei(t), ui(t)) = ei(t)Qiei(t) + ui(t)Piui(t), (3)

ei(t) =
∑
j∈Ni

aij(xj(t)−xi(t)) is a network-induced error;
Qi > 0 and Pi > 0.

With m leaders and n−m followers, the Laplacian matrix
L can be spitted as

L =

[
0m×m 0m×(n−m)

L1 L2

]
, (4)

where L1 ∈ R(n−m)×m and L2 ∈ R(n−m)×(n−m).
To proceed, we give following assumption, lemma, and

definition in advance.
Assumption 2.1: There exists a directed spanning forest in

G.
Lemma 2.1 ( [19]): Under Assumption 2.1, all the real

parts of eigenvalues of L2 are positive. In addition, each
element of −L−12 L1 is non-negative and all row sums of
−L−12 L1 equal to one.

Definition 2.2 ( [18]): If (1 − γ)x + γy ∈ K for γ ∈
[0, 1] and ∀x, y ∈ K, then K ∈ Rl is said to be convex.
Co{x1, ..., xm} represents the minimal convex hull spanned
by a finite set of points x1, ..., xm ∈ Rl. More specifically,
Co{x1, ..., xm} = {

∑m
i=1 αixi|αi ≥ 0, αi ∈ R,

∑m
i=1 αi =

1}.
Let xL(t) = [x1(t), ..., xm(t)]T and xF (t) =

[xm+1(t), ..., xn(t)]
T . Define the containment error as

δ(t) = xF (t) + L−12 L1xL(t), (5)

where δ(t) = [δ1(t), ..., δn−m(t)]T . For each follower i ∈ F ,
we have

δi−m(t) = xi(t) +
m∑
j=1

h(i−m)jxj(t), (6)

where h(i−m)j is ((i−m), j)th element of L−12 L1 satisfying

−h(i−m)j ≥ 0, −
m∑
j=1

h(i−m)j = 1 (7)

from Lemma 2.1. With Definition 2.2, if lim
t→∞

δi(t) = 0, one

has lim
t→∞

xi(t) = − lim
t→∞

m∑
j=1

h(i−m)jxj(t), which implies

follower i reach the convex hull spanned by the leaders
with coefficients −h(i−m)j . Thus, we refer to δ(t) as the
containment error.

Remark 2.3: Note that the containment control problem of
high-dimensional MASs can be solved by simply expanding
the dimension via the Kronecker product. For example,
assume each agent with l > 1 dimensions, (5) can be
extended as δ(t) = xF (t) + (L−12 L1 ⊗ Il)xL(t), where
δ(t) ∈ R(n−m)l, xL(t) = [xT1 (t), ..., x

T
m(t)]T ∈ Rml,

xF (t) = [xTm+1(t), ..., x
T
n (t)]

T ∈ R(n−m)l. Thus, without
loss of generality, in this paper, the one-dimensional MASs
is considered.

In the following, we recall the definition of optimal
containment control of a class of unknown nonlinear MASs

Definition 2.4: Consider a nonlinear MAS (1) with un-
known dynamics over directed graph G satisfying Assump-
tion 2.1. For any bounded xi(0), the optimal contain-
ment control is achieved if the containment error satisfies
lim
t→∞

δ(t) = 0, and the performance index (2) is minimized
meanwhile.

The goal of this paper is to achieve optimal containment
control while avoiding great computing requirement in both
learning process and control updating, and ensuring theoret-
ical convergence strictly.

III. TA-BASED EVENT-SET

In this section, the TA-based event-set is formulated for
the preparation of TA-PI algorithm. Based on this event-set,
the event-triggered control protocol and integration-reward
are developed in the sequel. Different from conventional
definition, the TA-based event-set help to reduce state space
greatly; the event-triggered control protocol makes the con-
trol updating be intermittent; and the integration-reward is
obtained with time-varying integration length.

First, with Lebesgue sampling [13], a finite subset of the
full state space is picked out as a finite predefined event-set:

SDi
i = {sdi : d ∈ Di}, (8)

where sdi is the important state for agent i, Di = {1, ..., Di},
and Di is the size of predefined event-set for agent i.

Follow from (8), the corresponding event-triggered mech-
anism is formulated as

tik+1 = min{t : t > tik, ei(t) ∈ SDi
i , ei(t

−) /∈ SDi
i }, (9)
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where t− is the left limit of t. Obviously, the event is
occurred only when network-induced error ei(t) belongs
to the predefined event-set. Thus, the corresponding event-
triggered control protocol is designed as:

ui(t) = ui(t
i
k), t

i
k ≤ t < tik+1, i ∈ F. (10)

With this event-triggered control protocol, the integration-
reward is given as

Ri(ei(t
i
k), ui(t

i
k)) =

∫ tik+1

tik
ri(ei(τ), ui(τ))dτ. (11)

To minimize (2), a value function is defined as

Vi(ei(t
i
k)) =

∫∞
tik
ri(ei(τ), ui(τ))dτ. (12)

And the optimal value function can be written as

V ∗i (ei(t
i
k)) = min

ui

{
∫∞
tik
ri(ei(τ), ui(τ))dτ}. (13)

Armed with the (12) and the Bellman optimal principle, the
optimal value function can be rewritten as an iterative form:

V ∗i (ei(t
i
k))

= min
ui

{
∫ tik+1

tik

ri(ei(τ), ui(τ))dτ + V ∗i (ei(t
i
k+1))}

= min
ui

{Ri(ei(tik), ui(tik)) + V ∗i (ei(t
i
k+1))}. (14)

The following definition and assumptions are needed for
further analysis.

Definition 3.1 ( [20]): The control protocol ui(t) are said
to be admissible if lim

t→∞
ei(t) = 0 and Ji(ei(t), ui(t)) is

finite.
Assumption 3.2: The initial control protocol is admissible.
Assumption 3.3: By properly picking V 0

i = Vc > 0, 0 <
αi ≤ 1 ≤ βi < ∞, the inequalities, 0 ≤ αiV

∗
i ≤ V 0

i ≤
βiV

∗
i , are hold.

Assumption 3.4: The optimal value function satisfies 0 ≤
V ∗i (ei(t

i
k+1)) ≤ θiRi(ei(tik), ui(tik)), where 0 < θi <∞.

IV. MODEL-FREE TA-PI ALGORITHM

In this section, based on the designed TA-based event-
set, event-triggered control, and integration-reward, a TA-PI
algorithm is developed to obtain the optimal control protocol
in a model-free manner, and its convergence analysis is given
later.

The developed TA-PI algorithm given in Algorithm 1.
Remark 4.1: From the algorithm 1, the proposed TA-PI

algorithm has finite iterations because the calculation is only
for the finite event-state ei(tik) ∈ SDi

i , thus saving a lot of
computing resources. In addition, the designed event-control
protocol (10) can greatly reduce update frequency, and the
calculation consumption can be further decreased.

Theorem 4.2: Consider the unknown nonlinear MAS (1),
satisfying Assumption 2.1, the proposed event-control pro-
tocol is designed as (10) which will learn via algorithm
1, then the optimal containment control of MAS (1) is
achieved. Moreover, the following theoretical properties can
be guaranteed:
(1): ∞ ≥ V s,l+1

i (ei(t
i
k)) ≥ V

s,l
i (ei(t

i
k)), s = 0, l ≥ 0,

Algorithm 1 Model-free TA-PI algorithm.
1: Initialization: Set the initial value function to a constant

value Vc. Given an initial admissible control policy u0i .
Select a small threshold ε > 0. Then, for each ei(tik) ∈
SDi
i perform the following iteration for index l.

2: while |V 0,l+1
i (ei(t

i
k))− V

0,l
i (ei(t

i
k))| ≤ ε do

3: V 0,l+1
i (ei(t

i
k)) = Ri(ei(t

i
k), u

0
i (t

i
k))+V

0,l
i (ei(t

i
k+1)).

4: end while
5: while |V s,0i (ei(t

i
k))− V

s−1,0
i (ei(t

i
k))| ≤ ε do

6: Policy improvement: for each ei(t
i
k) ∈ SDi

i , op-
timize usi under V s,0i , i.e., perform usi (ei(t

i
k)) =

argmin
ui

{Ri(ei(tik), ui(tik)) + V s,0i (ei(t
i
k+1))}.

7: while |V s,l+1
i (ei(t

i
k))− V

s,l
i (ei(t

i
k))| ≤ ε do

8: Policy evaluation: for each ei(tik) ∈ SDi
i , optimize

V s,l+1
i under usi , i.e., perform V s,l+1

i (ei(t
i
k)) =

Ri(ei(t
i
k), u

s
i (t

i
k)) + V s,li (ei(t

i
k+1)).

9: end while
10: end while
11: Return usi (ei(t

i
k)).

(2): V s,l+1
i (ei(t

i
k)) ≤ V

s,l
i (ei(t

i
k)), s ≥ 1, l ≥ 0,

(3): V s+1,0
i (ei(t

i
k)) ≤ V

s,0
i (ei(t

i
k)), s ≥ 1,

(4): V s,1i (ei(t
i
k)) ≤ (1 + βi−1

(1+θ−1
i )s

)V ∗i (ei(t
i
k)), s ≥ 1,

(5): lim
s→∞

V s,li (ei(t
i
k)) = V ∗i (ei(t

i
k)), l ≥ 0,

(6): lim
s→∞

usi (ei(t
i
k)) = u∗i (ei(t

i
k)).

Proof: In the following, we first prove the six theoretical
properties in Theorem 4.2, and further analyzes the conver-
gence of optimal containment control.
Property (1): With the fact that V 0,0

i (ei(t
i
k)) = Vc, one has

V 0,1
i (ei(t

i
k))

=Ri(ei(t
i
k), u

0
i (t

i
k)) + V 0,0

i (ei(t
i
k+1))

=Ri(ei(t
i
k), u

0
i (t

i
k)) + V 0,0

i (ei(t
i
k))

≥ V 0,0
i (ei(t

i
k)). (15)

Assuming (15) holds for iterative index l, i.e., V 0,l
i (ei(t

i
k)) ≥

V 0,l−1
i (ei(t

i
k)) for each ei(tik) ∈ SDi

i , we have

V 0,l+1
i (ei(t

i
k))

=Ri(ei(t
i
k), u

0
i (t

i
k)) + V 0,l

i (ei(t
i
k+1))

≥Ri(ei(tik), u0i (tik)) + V 0,l−1
i (ei(t

i
k+1))

= V 0,l
i (ei(t

i
k)). (16)

Thus, we can obtain that V 0,l+1
i (ei(t

i
k)) ≥ V 0,l

i (ei(t
i
k)).

Furthermore, based on Assumption 3.2, one has ∞ ≥
V 1,0
i (ei(t

i
k)) = V 0,∞

i (ei(t
i
k)) ≥ V

0,l+1
i (ei(t

i
k)).

Property (2): From the policy improvement step of TA-PI
algorithm, one has that Ri(ei(tik), ui(t

i
k)) + V s,0i (ei(t

i
k+1))

will be minimized under policy usi (t
i
k). Therefore, it yields

that

V s,1i (ei(t
i
k))

=Ri(ei(t
i
k), u

s
i (t

i
k)) + V s,0i (ei(t

i
k+1))
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= min
ui

{Ri(ei(tik), ui(tik)) + V s,0i (ei(t
i
k+1))}

= min
ui

{Ri(ei(tik), ui(tik)) + V s−1,∞i (ei(t
i
k+1))}

≤Ri(ei(tik), us−1i (tik)) + V s−1,∞i (ei(t
i
k+1))

= V s−1,∞i (ei(t
i
k))

= V s,0i (ei(t
i
k)). (17)

Assuming (17) holds for iterative index l, i.e., V s,li (ei(t
i
k)) ≤

V s,l−1i (ei(t
i
k)) for each ei(tik) ∈ SDi

i , it follows that

V s,l+1
i (ei(t

i
k))

=Ri(ei(t
i
k), u

s
i (t

i
k)) + V s,li (ei(t

i
k+1))

≤Ri(ei(tik), usi (tik)) + V s,l−1i (ei(t
i
k+1))

= V s,li (ei(t
i
k)). (18)

Therefore, one can derive that for any iteration index s ≥
1 and iterative index l ≥ 0, the inequality V s,li (ei(t

i
k)) ≤

V s,l−1i (ei(t
i
k)) holds.

Property (3): According to V s+1,0
i (ei(t

i
k)) = V s,∞i (ei(t

i
k))

and V s,∞i (ei(t
i
k)) ≤ V s,0i (ei(t

i
k)), it is concluded that

V s+1,0
i (ei(t

i
k)) ≤ V

s,0
i (ei(t

i
k)).

Property (4): The initial condition is need to be proven when
the iterative index s = 1, l = 0. By the policy improvement
step, the following value Ri(ei(tik), u

1
i (t

i
k))+V

1,0
i (ei(t

i
k+1))

will be minimized under policy u1i (ei(t
i
k)). Therefore, we

have

V 1,1
i (ei(t

i
k))

=Ri(ei(t
i
k), u

1
i (t

i
k)) + V 1,0

i (ei(t
i
k+1))

= min
ui

{Ri(ei(tik), ui(tik)) + V 1,0
i (ei(t

i
k+1))}. (19)

Due to ∞ ≥ V 1,0
i (ei(t

i
k)) = V 0,∞

i (ei(t
i
k)) ≥

V 0,l+1
i (ei(t

i
k)), one can find a large enough parameter βi

such that V 1,0
i ≤ βiV ∗i . Furthermore, from Assumptions 3.3

and 3.4, one can obtain

V 1,1
i (ei(t

i
k))

=Ri(ei(t
i
k), u

1
i (t

i
k)) + V 1,0

i (ei(t
i
k+1))

≤Ri(ei(tik), u1i (tik)) + βiV
∗
i (ei(t

i
k+1))

≤ min
ui

{Ri(ei(tik), ui(tik)) + βiV
∗
i (ei(t

i
k+1))

+
βi − 1

1 + θi
[θiRi(ei(t

i
k), ui(t

i
k))− V ∗i (ei(tik+1))]}

= min
ui

{(1 + βi − 1

1 + θ−1i
)Ri(ei(t

i
k), ui(t

i
k))

+ (1 +
βi − 1

1 + θ−1i
)V ∗i (ei(t

i
k+1))}

= (1 +
βi − 1

1 + θ−1i
)min
ui

{Ri(ei(tik), ui(tik)) + V ∗i (ei(t
i
k+1))}

= (1 +
βi − 1

1 + θ−1i
)V ∗i (ei(t

i
k)). (20)

Assume (20) holds for iterative index s, i.e., V s,1i (ei(t
i
k)) ≤

(1 + βi−1
(1+θ−1

i )s
)V ∗i (ei(t

i
k)) for each ei(tik) ∈ SDi

i , then, with

V s+1,0
i (ei(t

i
k+1))=V

s,∞
i (ei(t

i
k+1))≤V

s,1
i (ei(t

i
k+1)), (21)

it is concluded that

V s+1,1
i (ei(t

i
k))

=Ri(ei(t
i
k), u

s+1
i (tik), t

i
k+1) + V s+1,0

i (ei(t
i
k+1))

≤ min
ui

{Ri(ei(tik), ui(tik)) + V s,1i (ei(t
i
k+1))}. (22)

Then, armed with Assumption 3.4, it yields that

V s+1,1
i (ei(t

i
k))

≤ min
ui

{Ri(ei(tik), ui(tik))

+ (1 +
βi − 1

(1 + θ−1i )s
)V ∗i (ei(t

i
k+1)) +

(βi − 1)θsi
(1 + θi)s+1

× [θiRi(ei(t
i
k), ui(t

i
k))− V ∗i (ei(tik+1))]}

= min
ui

{(1 + βi − 1

(1 + θ−1i )s+1
)Ri(ei(t

i
k), ui(t

i
k))

+ (1 +
βi − 1

(1 + θ−1i )s+1
)V ∗i (ei(t

i
k+1))}

= (1+
βi−1

(1+θ−1i )s+1
)min
ui

{Ri(ei(tik), ui(tik))+V ∗i (ei(tik+1))}

= (1 +
βi − 1

(1 + θ−1i )s+1
)V ∗i (ei(t

i
k)). (23)

Therefore, it is concluded that for any iterative index s ≥ 1,
one has V s,1i (ei(t

i
k)) ≤ (1 + βi−1

(1+θ−1
i )s

)V ∗i (ei(t
i
k)), s ≥ 1.

Property (5): Since the optimal value is the minimum value,
one has V ∗i (ei(t

i
k)) ≤ V s,li (ei(t

i
k)). Furthermore, with the

conditions V s,1i (ei(t
i
k)) ≤ (1 + βi−1

(1+θ−1
i )s

)V ∗i (ei(t
i
k)), s ≥ 1

and V s,l+1
i (ei(t

i
k)) ≤ V s,li (ei(t

i
k)), s ≥ 1, l ≥ 0, we have

V ∗i (ei(t
i
k)) ≤ V

∞,l
i (ei(t

i
k)) ≤ V ∗i (ei(tik)).

Property (6): Follow from lim
s→∞

V s,li (ei(t
i
k)) = V ∗i (ei(t

i
k)),

one can get the optimized policy with the policy im-
provement step of TA-PI algorithm, which means that
lim
s→∞

usi (ei(t
i
k)) = u∗i (ei(t

i
k)).

Finally, with the fact that lim
s→∞

V s,li (ei(t
i
k)) = V ∗i (ei(t

i
k))

and (12), it is concluded that lim
t→∞

ri(ei(t), ui(t)) = 0, i.e.,
lim
t→∞

δi(t) = 0. As a result, the optimal containment control
is achieved as expected. �

Remark 4.3: It can be observed from proof of TA-PI
algorithm, without using the function approximator or state
discretization, the theoretical convergence is analyzed exactly
via the mathematical induction, and the monotonicity and
boundedness property of the iterative value function are
derived.

V. SIMULATION

Consider following nonlinear continuous dynamic system{
ẋi(t) = 0, i ∈ L,
ẋi(t) = −x3i (t) + x2i (t) + ui(t), i ∈ F.

It is noted that, the system model in (V) is only used to do
simulation. The proposed TA-PI will not use the information
of model structure and parameter. Thus, the proposed TA-PI
is model-free algorithm. In other words, the proposed TA-PI
algorithm can be adapted to any other controllable nonlinear
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continuous dynamic system without modifying the learning
algorithm. This is a big advantage of the model-free learning
algorithm.

1

7

6

8

5

34

2

Fig. 1. Directed communication network G.

The communication network is directed and shown in Fig.
1, where the agents {1, 2, 3, 4} are leader agent, the agents
{5, 6, 7, 8} are follower agent.

Choosing the parameters in (3) Qi = Ri = 1. And the
finite predefined event-set SDi

i in (8) is

SDi
i = {−1.0,−0.8,−0.6,−0.4,−0.2,

0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.
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Fig. 2. The iterative value function of each state based on the TA-PI
algorithm.

It is noted that, based on the TA approach, the continuous
and uncountable state is divided into several segments, which
means the state space is finite. Thus, the value function of
each state in event-set can be stored in a finite table, which
means that there is no need to use the function approximator
and state discretization. Therefore, the value of each state
in event-set can be calculated exactly. The iterative value
function based TA-PI algorithm is given in Fig. 2. It is
noted that each agent has the same Qi and Pi. Thus, all
the agents have the same iterative value function curve.
Therefore, we only consider one of them. Furthermore, the
red rectangle box in Fig. 2 represents the Initialization step,
in which the value function is monotonically increasing. In

Fig. 3. The trajectory of each agent.

the following iteration, the value function is monotonically
decreasing. Thus, from Fig. 2, the correctness of Theorem
4.2 is validated.

Later, to show that the learned policy via TA-PI could
solve the optimal containment control, we would like to
verify on three-dimensional space. More specifically, the
dynamic is represented as{

ẋi,k(t) = 0, i ∈ L,
ẋi,k(t) = −x3i,k(t) + x2i,k(t) + ui,k(t), i ∈ F,

with k ∈ {1, 2, 3}, where xi,k(t) ∈ R, ui,k(t) ∈ R.
Then, based on the proposed TA-PI algorithm, the learned

event-control strategy is given as

ui,k(t) = −



1.0 ∗ sgn(ei,k(t)), 1.0 < |ei,k(t)|,
1.0 ∗ sgn(ei,k(t)), |ei,k(t)| = 1.0,
1.0 ∗ sgn(ei,k(t)), |ei,k(t)| = 0.8,
0.9 ∗ sgn(ei,k(t)), |ei,k(t)| = 0.6,
0.5 ∗ sgn(ei,k(t)), |ei,k(t)| = 0.4,
0.2 ∗ sgn(ei,k(t)), |ei,k(t)| = 0.2,
0.0, 0.0 = |ei,k(t)|,

where ei,k(t) =
∑
j∈Ni

aij(xj,k(t) − xi,k(t)). The initial

configuration of each agent is x1 = [0.87, 0.70,−0.50]T ,
x2 = [−0.87, 0.70,−0.50]T , x3 = [0.00,−0.80,−0.50]T ,
x4 = [0.00, 0.20, 1.12]T , x5 = [1, 1, 0]T , x6 = [1,−1, 0]T ,
x7 = [−1,−1, 0]T , x8 = [−1, 1, 0]T , where xi =
[xi,1, xi,2, xi,3]

T ∈ R3.
The simulation results are given in Fig. 3. It is eas-

ily observed that the followers are driven into the three-
dimensional convex hull spanned by the leaders by the
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learned control strategy without knowing any model infor-
mation of each agent.

VI. CONCLUSIONS

In this paper, the optimal containment control of unknown
nonlinear MASs has been investigated via the developed
model-free TA-PI algorithm. To reduce the computational
burden of traditional PI algorithm, the TA technique is em-
ployed, in which the steps of policy improvement and policy
evaluation is need to be executed for a finite event-state.
Moreover, with the introduced event-set, the control updating
can be reduced greatly, enabling a further computational re-
sources saving. Furthermore, without employing the function
approximator and state discretization, the convergence of the
proposed TA-PI algorithm can be proved exactly. Finally, the
feasibility and effectiveness of the proposed algorithm have
been verified by numerical simulations.
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