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Abstract— We address the problem of event-triggered net-
worked control of nonlinear systems under simultaneous de-
ception and Denial-of-Service (DoS) attacks. By DoS attacks,
we refer to disruptions in the communication channel that
prevent sensor measurements from reaching the controller.
When the system undergoes a deception attack, the controller
receives a modified output, deviating from the sensor’s original
measurement. We implement the input delay approach and the
Lyapunov–Krasovskii technique to obtain sufficient conditions,
expressed in terms of linear matrix inequalities (LMIs), that
characterize the duration of the DoS interruptions under
which input-to-state stability (ISS) of the closed-loop system
is preserved.

Furthermore, we explore scenarios involving simultaneous
attacks, where the DoS is modeled as a stochastic Bernoulli
process. The closed-loop system is then considered as a stochas-
tic impulsive system. In a similar manner, we derive conditions
to ensure mean-square ISS for this case. A numerical example
illustrates the efficiency of the results.

I. INTRODUCTION

Nowadays, networked-control systems (NCS) have gained
significant attention due to their ability to integrate dis-
tributed sensors, actuators, and controllers over a shared
network infrastructure. This allows for distributed control,
which means that the components can be physically located
in different places and still work together as a unified system.
NCSs can offer several benefits, such as reduced wiring
complexity, increased flexibility, and scalability [1], [2], [3].
However, in recent years, security of NCSs has become a
critical concern due to the increasing prevalence of cyber-
attacks [4], [5], [6]. Malicious attacks such as injection of
malware and theft of encryption keys can compromise the
integrity of data packets and allow unauthorized access to
the remote control center, degrading the performance of the
control loop or, even worse, causing instability or system
failure.

Among the typical examples of these cyber threats are
Denial of Service (DoS) attacks and deception attacks,
both posing significant challenges to the integrity and func-
tionality of NCSs. DoS attacks involve malicious actors
overwhelming the network with an excessive volume of
traffic or requests, rendering it temporarily or, in some cases,
permanently inoperative. In the context of DoS attacks, two
classical strategies are often encountered. The first scenario,
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Fig. 1. A networked control system under DoS and deception attacks

which is more general in nature, involves an adversary whose
underlying strategy remains unknown. In this case, time
intervals of DoS attacks can occur unpredictably at any time
[7]. The second scenario is characterized by a stochastic
nature of the DoS attacks [8], modeling them as random
events with known probabilities. This allows for a more
systematic analysis of their occurrence. This paper considers
both cases. Deception attacks, conversely, are characterized
by their intricate manipulation of sensors’ data, designed to
mislead the controller with inaccurate information [9].

In this paper, we consider sampled-data control of nonlin-
ear systems with multiple sector-bounded nonlinearities. To
improve efficiency and reduce the number of transmissions,
we implement event-based control, a type of control strategy
that involves triggering actions based on specific events or
changes in the system [10], [11], [12]. Additionally, we
employ time-regularization [13], which prevents the Zeno
phenomenon. On the other hand, this complicates the anal-
ysis as it results in a combined framework of periodic
sampling and the event-trigger. We then use a switching
approach [14], where the inter-sampling interval is split
into three intervals. Within each of these intervals, we
use different representations of the closed-loop system and
switch between them. The first representation takes the
form of a time-delay model, accurately capturing periodic
sampling dynamics [15], [16]. The second one includes an
additional input error induced by the event-trigger. The third
representation contains a time-delay term, which appears
if DoS happens. By defining suitable Lyapunov–Krasovskii
functionals for each of these intervals, we derive exponen-
tial stability conditions expressed in terms of linear matrix
inequalities (LMIs). These conditions can be used to design
the appropriate triggering parameters as well as characterize
the duration of the DoS interruptions under which system sta-
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bility remains preserved. If, in addition to the DoS, deception
attacks occur, we obtain conditions guaranteeing input-to-
state stability (ISS). Furthermore, we also consider scenarios,
where the DoS is modeled as a stochastic Bernoulli process.
The closed-loop system is then considered as a stochastic
impulsive system. In a similar manner, we derive conditions
to ensure mean-square ISS for this case. In summary, the
main contribution of the paper is that, compared to other
results, we address simultaneous deception and DoS attacks
within the context of a nonlinear system while implementing
event-triggered control with time regularization.

The paper is structured as follows. The problem formula-
tion is presented in Section II, where we describe the non-
linear control system, deception and DoS attack scenarios,
and the event-triggered transmission strategy. The stability
analysis is discussed in Section III. Section IV addresses
the case of random DoS attacks. A numerical example
demonstrating the efficiency of the approach is illustrated
in Section V. The conclusions are provided in Section VI.
Proofs are included in the Appendix.

II. PROBLEM FORMULATION

We consider the following nonlinear system

¤𝑥(𝑡) = 𝐴𝑥(𝑡) +
𝑁∑︁
𝑖=1

𝑞𝑖𝜉𝑖 (𝑡) + 𝐵𝑢(𝑡), 𝑦(𝑡) = 𝐶𝑥(𝑡),

𝜎𝑖 (𝑡) = 𝑟T
𝑖 𝑥(𝑡), 𝜉𝑖 (𝑡) = 𝜑𝑖 (𝜎𝑖 (𝑡), 𝑡), 𝑖 = 1, . . . , 𝑁,

(1)

where 𝑥(𝑡) ∈ IR𝑛𝑥 is the state vector, 𝑢(𝑡) ∈ IR𝑛𝑢 is
the control input, 𝑦(𝑡) ∈ IR𝑛𝑦 is the output, 𝜎𝑖 (𝑡) ∈ IR
are the inputs to nonlinear blocks 𝜑𝑖 , and 𝐴 ∈ IR𝑛𝑥×𝑛𝑥 ,
𝐵 ∈ IR𝑛𝑥×𝑛𝑢 , 𝐶 ∈ IR𝑛𝑦×𝑛𝑥 are constant matrices, 𝑞𝑖 ∈
IR𝑛𝑥 , 𝑟𝑖 ∈ IR𝑛𝑥 are constant vectors. We assume that 𝜑𝑖 (𝜎𝑖 , 𝑡)
are given nonlinear functions satisfying the following sector-
bound inequalities

𝜇−𝑖 𝜎
2
𝑖 ≤ 𝜎𝑖 𝜑𝑖 (𝜎𝑖 , 𝑡) ≤ 𝜇+𝑖 𝜎

2
𝑖 , (2)

for all 𝜎𝑖 ∈ IR and 𝑡 ≥ 0, where 𝜇−
𝑖
< 𝜇+

𝑖
(𝑖 = 1, . . . , 𝑁)

are real numbers. The considered class of nonlinear systems
can describe a wide range of applications with nonlinear
behavior, including rotational mechanical systems with sinu-
soidal nonlinearities; systems with dead-zones, saturations,
hysteresis; sigmoidal nonlinearities, etc.

We assume that the sensors transmit their measurements
only at discrete time instants {𝑡𝑘} and consider a static output
feedback law implemented using zero-order-hold devices

𝑢(𝑡) = 𝐾𝑦(𝑡𝑘), 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, (3)

where 𝐾 ∈ IR𝑛𝑢×𝑛𝑦 is the control gain. We also assume that
the sampling instants {𝑡𝑘} are generated by a continuous
event-trigger with time-regularization

𝑡𝑘+1 = min
{
𝑡 ≥ 𝑡𝑘 + ℎ |𝜔T (𝑡)Ω1 𝜔(𝑡) ≥ 𝜀 𝑦T (𝑡)Ω2 𝑦(𝑡)

}
,

(4)
where 𝜔(𝑡) = 𝑦(𝑡𝑘)−𝑦(𝑡), 𝜀 is a nonnegative scalar threshold
parameter, Ω1,Ω2 ∈ IR𝑛𝑦×𝑛𝑦 are constant positive semi-
definite matrices used to assign weights to the components

of the vector 𝑦(𝑡) and can be considered as free parameters.
In (4), ℎ > 0 is a guaranteed minimal distance between
two consecutive instants. Thus, the so-called Zeno behavior
is avoided. The conditions guaranteeing the exponential
stability of the closed-loop system (1)–(4) can be found in
the authors’ previous paper [17].

A. Deception attacks

A deception attack in networked control systems often
involves the manipulation of system measurements. For
instance, an adversary might send a fraudulent data packet
directly to the controller or insert counterfeit data into the
original packet. In this paper, we consider the following
scenario: when the system undergoes a deception attack, the
controller receives the modified signal 𝑦̂(𝑡𝑘) = 𝑦(𝑡𝑘) + 𝑒(𝑡𝑘),
i.e., the controller (3) is replaced by

𝑢(𝑡) = 𝐾𝑦̂(𝑡𝑘) = 𝐾𝑦(𝑡𝑘) + 𝐾𝑒(𝑡𝑘), 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1. (5)

Assumption 1: The function

𝑒(𝑡) = 𝑒(𝑡𝑘), 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, (6)

is supposed to be locally essentially bounded1 meaning that
𝑒(𝑡) ∈ L∞ (𝑡0, 𝑡) for all 𝑡 > 𝑡0.

Definition 1: The closed-loop system (1), (5) will be
called input-to-state stable (ISS) if there exist functions2

𝛾(·) ∈ K∞ and 𝛽(·, ·) ∈ KL such that for all initial values
𝑥(𝑡0) and admissible inputs 𝑒(𝑡) the following inequality
holds

∥𝑥(𝑡)∥2 ≤ 𝛽 (∥𝑥(𝑡0)∥, 𝑡) + 𝛾 (∥𝑒∥∞) , ∀𝑡 ≥ 𝑡0. (7)

B. Denial-of-Service attacks

We assume that in the presence of DoS, the communi-
cation channel is blocked and data cannot be sent to the
controller. Following [7], we consider {ℎ𝑛}, representing the
sequence of DoS positive edge-triggering, and

𝐻𝑛 = [ℎ𝑛, ℎ𝑛 + 𝜏𝑛), (8)

the corresponding DoS 𝑛th time interval, 𝜏𝑛 > 0. If 𝑡𝑘+1 ∈ 𝐻𝑛
for some 𝑛, then the transmission cannot be performed. In
this case, we generate it as 𝑡𝑘+1 = ℎ𝑛 + 𝜏𝑛.

Assumption 2: We assume that 𝐻𝑛 is bounded for all 𝑛 =
0, 1, 2, . . ., i.e., 𝜏𝑛 ≤ Δ, where Δ > 0.
Let {𝑠𝑘} be the sequence of instants when the event-trigger
(4) generates events, i.e.,

𝑠𝑘+1 = min
{
𝑡 ≥ 𝑡𝑘 + ℎ |𝜔T (𝑡)Ω1 𝜔(𝑡) ≥ 𝜀 𝑦T (𝑡)Ω2 𝑦(𝑡)

}
.

(9)
Then the actual transmission instants, {𝑡𝑘}, can be expressed
as follows

𝑡𝑘+1 =

{
𝑠𝑘+1 + Δ𝑘+1, if 𝑠𝑘+1 ∈ 𝐻𝑛 for some 𝑛,
𝑠𝑘+1, otherwise,

(10)

1We denote by L∞ (𝑎, 𝑏) the space of essentially bounded functions 𝜙 :
(𝑎, 𝑏) → R𝑛 with the norm ∥𝜙∥∞ = ess sup

𝜃∈ (𝑎,𝑏)
∥𝜙 (𝜃 ) ∥ .

2A class K∞ function is a function 𝛾 : IR+ → IR+ which is continuous,
strictly increasing, unbounded, and satisfies 𝛾 (0) = 0. A class KL function
is a function 𝛽 : IR+ × IR+ → IR+ such that 𝛽 ( ·, 𝑡∗ ) ∈ K∞ for each fixed
𝑡∗ ≥ 0 and 𝛽 (𝑟∗, 𝑡 ) → 0 as 𝑡 → ∞ for each fixed 𝑟∗ ≥ 0.
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Fig. 2. Switching approach illustration

where Δ𝑘+1 = ℎ𝑛 + 𝜏𝑛 − 𝑠𝑘+1, if 𝑠𝑘+1 ∈ 𝐻𝑛 for some 𝑛 and
Δ𝑘+1 = 0 otherwise. Note that under Assumption 2, 0 ≤ Δ𝑘 ≤
Δ for all 𝑘 > 0.

The problem is to find conditions guaranteeing the ISS of
the closed-loop system (1), (5), (10), see Fig. 1.

III. STABILITY ANALYSIS

Following the switching approach, proposed in [14], [18],
we split the interval [𝑡𝑘 , 𝑡𝑘+1) into several intervals, where we
will use different representations of the closed-loop system
(1), (5), see Fig. 2.

On the intervals [𝑡𝑘 , 𝑡𝑘 + ℎ), we can represent the system
(1), (5), as a continuous time-delay system

¤𝑥(𝑡) = 𝐴𝑥(𝑡) +
𝑁∑︁
𝑖=1

𝑞𝑖𝜉𝑖 (𝑡) + 𝐵𝐾𝐶𝑥(𝑡 − 𝜏(𝑡)) + 𝐵𝐾𝑒(𝑡), (11)

where the delay 𝜏(𝑡) = 𝑡 − 𝑡𝑘 is bounded, i.e., 𝜏(𝑡) ≤ ℎ.
Alternatively, we can rewrite the system (1), (5) as a

system with additional input error 𝜔(𝑡)

¤𝑥(𝑡) = (𝐴+𝐵𝐾𝐶)𝑥(𝑡)+
𝑁∑︁
𝑖=1

𝑞𝑖𝜉𝑖 (𝑡)+𝐵𝐾𝜔(𝑡)+𝐵𝐾𝑒(𝑡), (12)

where we used the following simple relation

𝑦(𝑡𝑘) = 𝑦(𝑡) + 𝑦(𝑡𝑘) − 𝑦(𝑡) = 𝑦(𝑡) + 𝜔(𝑡).

If 𝑠𝑘+1 > 𝑡𝑘 + ℎ, we will use the representation (12) on the
intervals [𝑡𝑘 + ℎ, 𝑠𝑘+1), where we know that the triggering
condition is not satisfied, i.e.,

𝜔T (𝑡)Ω1 𝜔(𝑡) < 𝜀 𝑦T (𝑡)Ω2 𝑦(𝑡), 𝑡 ∈ [𝑡𝑘 + ℎ, 𝑠𝑘+1). (13)

Similarly, if 𝑡𝑘+1 > 𝑠𝑘+1, i.e., Δ𝑘+1 > 0, on the intervals
[𝑠𝑘+1, 𝑡𝑘+1), we can use the representation

¤𝑥(𝑡) = 𝐴𝑥(𝑡) +
𝑁∑︁
𝑖=1

𝑞𝑖𝜉𝑖 (𝑡) + 𝐵𝐾𝐶𝑥(𝑡 − 𝜏2 (𝑡))

+ 𝐵𝐾𝜔2 (𝑡) + 𝐵𝐾𝑒(𝑡)
𝜔2 (𝑡) = 𝑦(𝑡𝑘) − 𝑦(𝑡 − 𝜏2 (𝑡)),

(14)

where 𝜏2 (𝑡) = 𝑡 − 𝑠𝑘+1. Note that for 𝑡 ∈ [𝑠𝑘+1, 𝑡𝑘+1) we have

𝜔T
2 (𝑡)Ω1 𝜔2 (𝑡) = 𝜀 𝑦T (𝑡 − 𝜏2 (𝑡))Ω2 𝑦(𝑡 − 𝜏2 (𝑡)), (15)

since 𝑦(𝑡 − 𝜏2 (𝑡)) = 𝑦(𝑠𝑘+1). Also note that 𝜏2 (𝑡) ≤ Δ.
Therefore, we can represent the closed-loop system (1),

(5) as follows
(11) for 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘 + ℎ),
(12) for 𝑡 ∈ [𝑡𝑘 + ℎ, 𝑠𝑘+1),
(14) for 𝑡 ∈ [𝑠𝑘+1, 𝑡𝑘+1),

(16)

if 𝑠𝑘+1 > 𝑡𝑘+ℎ. In the case 𝑠𝑘+1 = 𝑡𝑘+ℎ, we use the form (11)
for all 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), where the delay 𝜏(𝑡) is then bounded
by ℎ + Δ.

To analyze the system stability, we consider the following
Lyapunov–Krasovskii functional:

𝑉 (𝑡) =


𝑉1 (𝑡, 𝑥𝑡 (𝜁), ¤𝑥𝑡 (𝜁)), 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘 + ℎ),
𝑉2 (𝑥(𝑡)), 𝑡 ∈ [𝑡𝑘 + ℎ, 𝑠𝑘+1),
𝑉3 (𝑡, 𝑥𝑡 (𝜁), ¤𝑥𝑡 (𝜁)), 𝑡 ∈ [𝑠𝑘+1, 𝑡𝑘+1),

(17)

where 𝑥𝑡 (𝜁) ≜ 𝑥(𝑡 + 𝜁) are absolutely continuous functions
on [−ℎ, 0) with square integrable first-order derivatives,
𝑉2 (𝑥(𝑡)) = 𝑥T (𝑡)𝑃𝑥(𝑡),

𝑉1 (𝑡, 𝑥𝑡 , ¤𝑥𝑡 ) = 𝑉2 (𝑥(𝑡)) + (ℎ − 𝜏(𝑡))
0∫

−𝜏 (𝑡 )

𝑒2𝛼𝑠 ¤𝑥T
𝑡 (𝑠)𝑄 ¤𝑥𝑡 (𝑠)𝑑𝑠,

+ (ℎ − 𝜏(𝑡)) 𝜂T (𝑡, 𝑥𝑡 )𝑅 𝜂(𝑡, 𝑥𝑡 ),

𝑅 =

[
𝑋+𝑋T

2 −𝑋 + 𝑋1

∗ −𝑋1 − 𝑋T
1 + 𝑋+𝑋T

2

]
,

𝜂(𝑡, 𝑥𝑡 ) =
[
𝑥T
𝑡 (0), 𝑥T

𝑡 (−𝜏(𝑡))
]T, and 𝑃 > 0, 𝑄 > 0, 𝑋 , 𝑋1

are 𝑛𝑥 × 𝑛𝑥 matrices, see [16]. Note that the system (14) is
a time-delay system with variable delay. Thus, we introduce
𝑉3 similarly to 𝑉1 as follows:

𝑉3 (𝑡, 𝑥𝑡 , ¤𝑥𝑡 ) = 𝑉2 (𝑥(𝑡)) + (𝑡𝑘+1 − 𝑡)
0∫

𝑠𝑘+1−𝑡

𝑒2𝛼𝑠 ¤𝑥T
𝑡 (𝑠) 𝑄̃ ¤𝑥𝑡 (𝑠)𝑑𝑠,

+ (𝑡𝑘+1 − 𝑡) 𝜂T (𝑡, 𝑥𝑡 ) 𝑅̃ 𝜂(𝑡, 𝑥𝑡 ),

where 𝑄̃ > 0, 𝑋̃ , 𝑋̃1 are 𝑛𝑥×𝑛𝑥 matrices, 𝑅̃ is obtained from
𝑅 by replacing 𝑋 and 𝑋1 to 𝑋̃ and 𝑋̃1 respectively, 𝜂(𝑡, 𝑥𝑡 ) =[
𝑥T
𝑡 (0), 𝑥T

𝑡 (𝑠𝑘+1 − 𝑡)
]T, and the functions 𝑥𝑡 (𝜁) ≜ 𝑥(𝑡+𝜁) are

defined on [−Δ, 0]. Also note that due to the structure of the
second and third terms in 𝑉1 and 𝑉3, the function 𝑉 (𝑡) does
not have gaps at the instants 𝑡𝑘 , 𝑡𝑘 + ℎ, and 𝑠𝑘+1, and, hence,
is continuous for all 𝑡 ≥ 0.

Thus, we use the functional (17) to derive conditions
guaranteeing the ISS of (16). The main result of this section
is formulated in the following theorem.

Theorem 1: Given ℎ > 0, Δ > 0, 𝛼 > 0, 𝜀 > 0, and 𝑛𝑦×𝑛𝑦
matrices Ω1 ≥ 0, Ω2 ≥ 0. Let there exist 𝑛𝑥 × 𝑛𝑥 matrices
𝑃 > 0, 𝑄 > 0, 𝑄̃ > 0, 𝑃2, 𝑃3, 𝑅2, 𝑅3, 𝑋 , 𝑋1, 𝑍 , 𝑌1, 𝑌2,
𝑌
(𝑖)

3 , 𝑌4, 𝑃̃2, 𝑃̃3, 𝑅̃2, 𝑅̃3, 𝑋̃ , 𝑋̃1, 𝑍̃ , 𝑌1, 𝑌2, 𝑌 (𝑖)
3 , 𝑌4, 𝑌5 and

positive real scalars 𝑑, 𝜈𝑖 , 𝜅−𝑖 , 𝜅+
𝑖
, 𝜅−
𝑖

, and 𝜅+
𝑖

(𝑖 = 1, . . . , 𝑁)
such that the following LMIs

Θ > 0, Θ̃ > 0, Ψ0 + Ψ1 ≤ 0,
Φ′

0 +Φ′′
0 ≤ 0, Φ′

1 +Φ′′
1 ≤ 0,

Φ̃′
0 + Φ̃′′

0 ≤ 0, Φ̃′
1 + Φ̃′′

1 ≤ 0,
(18)

are feasible, where Θ =

[
𝑃 0
0 0

]
+ (ℎ + Δ)𝑅,

Θ̃ =

[
𝑃 0
0 0

]
+ Δ𝑅̃, and

• Φ′
1 = Φ(𝜏) |𝜏=ℎ+Δ, Φ′

0 = Φ(𝜏) |𝜏=0,
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TABLE I
MATRICES IN THEOREM 1

Ψ0 =



Ψ11 Ψ12 𝑅T
2 𝑞1 . . . 𝑅T

2 𝑞𝑁 𝑅T
2 𝐵𝐾 Ψ16

∗ −𝑅3 − 𝑅T
3 𝑅T

3 𝑞1 . . . 𝑅T
3 𝑞𝑁 𝑅T

3 𝐵𝐾 Ψ26
∗ ∗ 0 . . . 0 0 0
.
.
.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

∗ ∗ 0 . . . 0 0 0
∗ ∗ ∗ . . . ∗ −Ω1 0
∗ ∗ ∗ . . . ∗ ∗ −𝛼 𝑑 𝐼


,

Ψ11 = 𝐴T
cl𝑅2 + 𝑅T

2 𝐴cl + 2𝛼𝑃 + 𝜀 𝐶TΩ2𝐶, Ψ12 = 𝑃 − 𝑅T
2 + 𝐴T

cl𝑅3 ,

Ψ1 =



Ψ̄11 0 Ψ̄
(1)
13 . . . Ψ̄

(𝑁 )
13 0 0

∗ 0 0 . . . 0 0 0
∗ ∗ Ψ̄

(1)
33 . . . 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

∗ ∗ 0 . . . Ψ̄
(𝑁 )
33 0 0

∗ ∗ ∗ . . . ∗ 0 0
∗ ∗ ∗ . . . ∗ ∗ 0


,

𝐴cl = 𝐴 + 𝐵𝐾𝐶,
Ψ16 = 𝑅T

2 𝐵𝐾,
Ψ26 = 𝑅T

3 𝐵𝐾,

Ψ̄11 = −∑𝑁
𝑖=1 𝜈𝑖𝜇

−
𝑖
𝜇+
𝑖
𝑟𝑖𝑟

T
𝑖
,

Ψ̄
(𝑖)
13 = 1

2 𝜈𝑖 (𝜇
−
𝑖
+ 𝜇+

𝑖
)𝑟𝑖 ,

Ψ̄
(𝑖)
33 = −𝜈𝑖 ,

Φ(𝜏 )=



Φ11 Φ12 Φ13 Φ
(1)
14 . . . Φ

(𝑁 )
14 Φ15 𝜏𝑌T

1
∗ Φ22 Φ23 Φ

(1)
24 . . . Φ

(𝑁 )
24 Φ25 𝜏𝑌T

2
∗ ∗ Φ33 Φ

(1)
34 . . . Φ

(𝑁 )
34 Φ35 𝜏𝑍T

∗ ∗ ∗ 0 . . . 0 0 𝜏𝑞T
1𝑌

(1)T
3

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

∗ ∗ ∗ ∗ . . . 0 0 𝜏𝑞T
𝑁
𝑌

(𝑁 )T
3

∗ ∗ ∗ ∗ . . . ∗ −𝛼 𝑑 𝐼 𝜏ΦT
35

∗ ∗ ∗ ∗ . . . ∗ ∗ −𝜏𝑄𝑒−2𝛼𝜏



,

Φ̃(𝜏 )=



Φ̃11 Φ̃12 Φ̃13 Φ̃
(1)
14 . . . Φ̃

(𝑁 )
14 Φ̃15 𝜏𝑌̃T

1 Φ̃17

∗ Φ̃22 Φ̃23 Φ̃
(1)
24 . . . Φ̃

(𝑁 )
24 Φ̃25 𝜏𝑌̃T

2 Φ̃27

∗ ∗ Φ̃33 Φ̃
(1)
34 . . . Φ̃

(𝑁 )
34 Φ̃35 𝜏𝑍̃T Φ̃37

∗ ∗ ∗ 0 . . . 0 0 𝜏𝑞T
1 𝑌̃

(1)T
3 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

∗ ∗ ∗ ∗ . . . 0 0 𝜏𝑞T
𝑁
𝑌̃

(𝑁 )T
3 0

∗ ∗ ∗ ∗ . . . ∗ −𝛼 𝑑 𝐼 𝜏Φ̃T
35 0

∗ ∗ ∗ ∗ . . . ∗ ∗ −𝜏𝑄𝑒−2𝛼𝜏 Φ̃67
∗ ∗ ∗ ∗ . . . ∗ ∗ ∗ −Ω1



,

Φ11 (𝜏 ) = 𝐴T𝑃2 + 𝑃T
2 𝐴 + 2𝛼𝑃−𝑌1−𝑌T

1 − (1−2𝛼(ℎ + Δ− 𝜏 ) ) 𝑋 + 𝑋T

2
,

Φ12 (𝜏 ) = 𝑃 − 𝑃T
2 + 𝐴T𝑃3 − 𝑌2 + (ℎ + Δ − 𝜏 ) 𝑋 + 𝑋T

2
,

Φ13 (𝜏 ) = 𝑌T
1 +𝑃T

2 𝐵𝐾𝐶−𝑍+ (1−2𝛼(ℎ + Δ− 𝜏 ) ) (𝑋−𝑋1 ) ,
Φ22 (𝜏 ) = −𝑃3 − 𝑃T

3 + (ℎ + Δ − 𝜏 )𝑄,
Φ23 (𝜏 ) = 𝑌T

2 + 𝑃T
3 𝐵𝐾𝐶 − (ℎ + Δ − 𝜏 ) (𝑋 − 𝑋1 ) ,

Φ33 (𝜏 ) = 𝑍+𝑍T− (1−2𝛼(ℎ + Δ− 𝜏 ) )
𝑋+𝑋T−2𝑋1−2𝑋T

1
2

,

Φ
(𝑖)
14 = 𝑃T

2 𝑞𝑖 − 𝑌
(𝑖)

3 𝑞𝑖 , Φ
(𝑖)
24 = 𝑃T

3 𝑞𝑖 , Φ
(𝑖)
34 = 𝑌

(𝑖)
3 𝑞𝑖 ,

Φ15 = 𝑃T
2 𝐵𝐾 − 𝑌4𝐵𝐾, Φ25 = 𝑃T

3 𝐵𝐾, Φ35 = 𝑌4𝐵𝐾,

Φ̃11 (𝜏 ) = 𝐴T 𝑃̃2 + 𝑃̃T
2 𝐴 + 2𝛼𝑃 − 𝑌̃1 − 𝑌T

1 − (1 − 2𝛼(Δ − 𝜏 ) ) 𝑋̃ + 𝑋̃T

2
,

Φ̃12 (𝜏 ) = 𝑃 − 𝑃̃T
2 + 𝐴T 𝑃̃3 − 𝑌2 + (Δ − 𝜏 ) 𝑋̃ + 𝑋̃T

2
,

Φ̃13 (𝜏 ) = 𝑌̃T
1 + 𝑃̃T

2 𝐵𝐾𝐶− 𝑍̃+ (1−2𝛼(Δ− 𝜏 ) ) (𝑋̃− 𝑋̃1 ) ,
Φ̃22 (𝜏 ) = −𝑃̃3 − 𝑃̃T

3 + (Δ − 𝜏 )𝑄̃,
Φ̃23 (𝜏 ) = 𝑌̃T

2 + 𝑃̃T
3 𝐵𝐾𝐶 − (Δ − 𝜏 ) (𝑋̃ − 𝑋̃1 ) ,

Φ̃33 (𝜏 ) = 𝑍̃+ 𝑍̃T− (1−2𝛼(Δ− 𝜏 ) )
𝑋̃+𝑋̃T−2𝑋̃1−2𝑋̃T

1
2

+ 𝜀𝐶TΩ2𝐶,

Φ̃
(𝑖)
14 = 𝑃̃T

2 𝑞𝑖 − 𝑌̃
(𝑖)

3 𝑞𝑖 , Φ̃
(𝑖)
24 = 𝑃̃T

3 𝑞𝑖 , Φ̃
(𝑖)
34 = 𝑌̃

(𝑖)
3 𝑞𝑖 ,

Φ̃15 = 𝑃̃T
2 𝐵𝐾 − 𝑌̃4𝐵𝐾, Φ̃25 = 𝑃̃T

3 𝐵𝐾, Φ̃35 = 𝑌̃4𝐵𝐾,

Φ̃17 = 𝑃̃T
2 𝐵𝐾 − 𝑌̃5𝐵𝐾, Φ̃27 = 𝑃̃T

3 𝐵𝐾, Φ̃37 = 𝑌̃5𝐵𝐾, Φ̃67 = 𝜏Φ̃37

Φ′′
1 =



Φ̄11 0 0 Φ̄
(1)
14 . . . Φ̄

(𝑁 )
14 0 0

∗ 0 0 0 . . . 0 0 0
∗ ∗ 0 0 . . . 0 0 0
∗ ∗ ∗ Φ̄

(1)
44 . . . 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

. 0
∗ ∗ ∗ 0 . . . Φ̄

(𝑁 )
44 0 0

∗ ∗ ∗ ∗ . . . ∗ 0 0
∗ ∗ ∗ ∗ . . . ∗ ∗ 0


,

Φ̄11 = −
𝑁∑︁
𝑖=1
𝜅+𝑖 𝜇

−
𝑖 𝜇

+
𝑖 𝑟𝑖𝑟

𝑇
𝑖 , Φ̄

(𝑖)
14 =

1
2
𝜅+𝑖 (𝜇−𝑖 + 𝜇+𝑖 )𝑟𝑖 , Φ̄

(𝑖)
44 = −𝜅+𝑖 ,

• Φ̃′
1 = Φ̃(𝜏) |𝜏=Δ, Φ̃′

0 = Φ̃(𝜏) |𝜏=0,
• Φ′′

0 is obtained from Φ′′
1 by replacing 𝜅+

𝑖
to 𝜅−

𝑖
,

• Φ̃′′
1 is obtained from Φ′′

1 by replacing 𝜅+
𝑖

to 𝜅+
𝑖
,

• Φ̃′′
0 is obtained from Φ′′

1 by replacing 𝜅+
𝑖

to 𝜅−
𝑖

,
• the matrices Ψ0, Ψ1, Φ(𝜏), Φ̃(𝜏) and Φ′′

1 are defined in
Table I.

Then the closed-loop system (1), (2), (5), (9), (10) is ISS.
Proof: See Appendix.

Remark 1: Note that the LMIs Θ > 0 and Θ̃ > 0 in
(18) guarantee the positivity of 𝑉 for all 𝑡 ≥ 0, while the
remaining LMIs in (18) ensure its decreasing behavior. Also
note, that the introduced slack variables 𝑃2, 𝑃3, . . . , 𝑌5 sig-
nificantly reduce the conservativity of the obtained stability
conditions.

Corollary 1: For 𝑡 → ∞, the trajectories exponentially
approach the attractive ball

{
𝑥 ∈ 𝑅𝑛𝑥 : ∥𝑥∥2 ≤ 𝑑

2𝛽1
∥𝑒∥2

∞

}
,

where 𝛽1 = min{𝜆min (𝑃), 𝜆min (Θ), 𝜆min (Θ̃)}.

IV. STOCHASTIC MODELS OF DOS ATTACKS

Now we consider the case, when the DoS attacks are
characterized by a stochastic process. We assume that 𝜋(𝑘) ∈
{0, 1} indicates the success or failure due to DoS of the

transmission and consider it as an i.i.d. Bernoulli process
with the probability of success 𝛽, such that{

Pr {𝑦𝑐 (𝑡𝑘) = 𝑦(𝑡𝑘)} = Pr {𝜋(𝑘) = 1} = 𝛽,
Pr {𝑦𝑐 (𝑡𝑘) = 𝑦𝑐 (𝑡𝑘−1)} = Pr {𝜋(𝑘) = 0} = 1 − 𝛽,

(19)

where 𝑦𝑐 is the recent information sent to the controller and
𝑦𝑐 (𝑡−1) ≡ 0. In the presence of deception attacks, the signal
received at the controller side is then 𝑦̂(𝑡𝑘) = 𝑦𝑐 (𝑡𝑘) + 𝑒(𝑡𝑘),
where

𝑒(𝑡𝑘) =
{
𝑒(𝑡𝑘) if 𝜋(𝑘) = 1,
𝑒(𝑡𝑘−1) if 𝜋(𝑘) = 0.

We consider the following sampled-time control law

𝑢(𝑡) = 𝐾𝑦̂(𝑡𝑘), 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), (20)

and assume that the execution instants, {𝑡𝑘}, are generated by
the following event-trigger proposed in the authors’ previous
paper [19]:

𝑡𝑘+1 = min
{
𝑡 ≥ 𝑡𝑘 + ℎ

��� 𝜔T (𝑡)Ω1 𝜔(𝑡) ≥ 𝜀 𝑦T (𝑡)Ω2 𝑦(𝑡)

or (𝑦(𝑡) − 𝑦(𝑡𝑘))T𝐺 (𝑦(𝑡) − 𝑦(𝑡𝑘)) ≥ 𝜖𝑐𝑘 (𝑦)
}
, (21)
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TABLE II
MATRICES IN THEOREM 2

Ψ0 =



Ψ11 Ψ12 𝑅T
2 𝑞1 . . . 𝑅T

2 𝑞𝑁 𝑅T
2 𝐵𝐾

∗ −𝑅3 − 𝑅T
3 𝑅T

3 𝑞1 . . . 𝑅T
3 𝑞𝑁 𝑅T

3 𝐵𝐾
∗ ∗ 0 . . . 0 0
.
.
.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

∗ ∗ 0 . . . 0 0
∗ ∗ ∗ . . . ∗ −Ω


,

Ψ11 = 𝐴T
cl𝑅2 + 𝑅T

2 𝐴cl + 2𝛼𝑃 + 𝜀 𝐶TΩ𝐶,

Ψ1 =



Ψ̄11 0 Ψ̄
(1)
13 . . . Ψ̄

(𝑁 )
13 0

∗ 0 0 . . . 0 0
∗ ∗ Ψ̄

(1)
33 . . . 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

∗ ∗ 0 . . . Ψ̄
(𝑁 )
33 0

∗ ∗ ∗ . . . ∗ 0


,

Ψ12 = 𝑃 − 𝑅T
2 + 𝐴T

cl𝑅3 ,
𝐴cl = 𝐴 + 𝐵𝐾𝐶,

Ψ̄11 = −
𝑁∑
𝑖=1
𝜈𝑖𝜇

−
𝑖
𝜇+
𝑖
𝑟𝑖𝑟

𝑇
𝑖
,

Ψ̄
(𝑖)
13 = 1

2 𝜈𝑖 (𝜇
−
𝑖
+ 𝜇+

𝑖
)𝑟𝑖 ,

Ψ̄
(𝑖)
33 = −𝜈𝑖 ,

Φ(𝜏 ) =



Φ11 Φ12 Φ13 Φ
(1)
14 . . . Φ

(𝑁 )
14 Φ

(1)
15 Φ16

∗ Φ22 Φ23 Φ
(1)
24 . . . Φ

(𝑁 )
24 Φ

(1)
25 Φ26

∗ ∗ Φ33 Φ
(1)
34 . . . Φ

(𝑁 )
34 0 Φ36

∗ ∗ ∗ 0 . . . 0 0 Φ
(1)
46

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

∗ ∗ ∗ ∗ . . . 0 0 Φ
(𝑁 )
46

∗ ∗ ∗ ∗ . . . ∗ Φ
(1)
55 0

∗ ∗ ∗ ∗ . . . ∗ ∗ Φ66


,

Φ11 (𝜏 ) = 𝐴T𝑃2 + 𝑃T
2 𝐴 + 2𝛼𝑃 − 𝑌1 − 𝑌T

1 − (1 − 2𝛼(ℎ − 𝜏 ) ) 𝑋 + 𝑋T

2
,

Φ12 (𝜏 ) = 𝑃 − 𝑃T
2 + 𝐴T𝑃3 − 𝑌2 + (ℎ − 𝜏 ) 𝑋 + 𝑋T

2
,

Φ13 (𝜏 ) = 𝑌T
1 + 𝑃T

2 𝐵𝐾𝐶 − 𝑍 + (1 − 2𝛼(ℎ − 𝜏 ) ) (𝑋 − 𝑋1 ) ,
Φ22 (𝜏 ) = −𝑃3 − 𝑃T

3 + (ℎ − 𝜏 )𝑄 + ℎ𝐶T𝐺𝐶,

Φ23 (𝜏 ) = 𝑌T
2 + 𝑃T

3 𝐵𝐾𝐶 − (ℎ − 𝜏 ) (𝑋 − 𝑋1 ) ,

Φ33 (𝜏 ) = 𝑍 + 𝑍T − (1 − 2𝛼(ℎ − 𝜏 ) )
𝑋 + 𝑋T − 2𝑋1 − 2𝑋T

1
2

,

Φ
(𝑖)
14 = 𝑃T

2 𝑞𝑖 − 𝑌
(𝑖)

3 𝑞𝑖 , Φ
(𝑖)
24 = 𝑃T

3 𝑞𝑖 , Φ
(𝑖)
34 = 𝑌

(𝑖)
3 𝑞𝑖 ,

Φ
(1)
15 = (1 − 𝛽)𝑃T

2 𝐵𝐾, Φ
(1)
25 = (1 − 𝛽)𝑃T

3 𝐵𝐾,

Φ
(1)
55 = 2𝛼𝑄1 − 1

ℎ
𝑈, Φ16 (𝜏 ) = 𝜏𝑌T

1 , Φ26 (𝜏 ) = 𝜏𝑌T
2 ,

Φ36 (𝜏 ) = 𝜏𝑍T , Φ
(𝑖)
46 (𝜏 ) = 𝜏𝑞T

𝑖 𝑌
(𝑖)T

3 , Φ66 (𝜏 ) = −𝜏𝑄𝑒−2𝛼ℎ ,

Φ′′
1 =



Φ̄11 0 0 Φ̄
(1)
14 . . . Φ̄

(𝑁 )
14 0 0

∗ 0 0 0 . . . 0 0 0
∗ ∗ 0 0 . . . 0 0 0
∗ ∗ ∗ Φ̄

(1)
44 . . . 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

. 0
∗ ∗ ∗ 0 . . . Φ̄

(𝑁 )
44 0 0

∗ ∗ ∗ ∗ . . . ∗ 0 0
∗ ∗ ∗ ∗ . . . ∗ ∗ 0


,

Φ̄11 = −
𝑁∑︁
𝑖=1
𝜅+𝑖 𝜇

−
𝑖 𝜇

+
𝑖 𝑟𝑖𝑟

𝑇
𝑖 , Φ̄

(𝑖)
14 =

1
2
𝜅+𝑖 (𝜇−𝑖 + 𝜇+𝑖 )𝑟𝑖 , Φ̄

(𝑖)
44 = −𝜅+𝑖 .

where 𝜔(𝑡) = 𝑦𝑐 (𝑡𝑘) − 𝑦(𝑡), 𝜖 ≥ 1 is the second threshold
parameter, 𝐺 ∈ IR𝑛𝑦×𝑛𝑦 is a constant positive semi-definite
weighting matrix, and

𝑐𝑘 (𝑦) = (𝑦(𝑡𝑘 + ℎ) − 𝑦(𝑡𝑘))T𝐺 (𝑦(𝑡𝑘 + ℎ) − 𝑦(𝑡𝑘)).

As before, we use the switching approach. On the intervals
𝑡 ∈ [𝑡𝑘 , 𝑡𝑘 + ℎ), we rewrite the control law (20) as follows,
see also [20],

𝑢(𝑡) = 𝐾𝑦̂(𝑡𝑘) = 𝐾 [𝜋(𝑘)𝑦(𝑡𝑘) + (1−𝜋(𝑘))𝑦𝑐 (𝑡𝑘−1) +𝑒(𝑡𝑘)]
= 𝐾 [𝑦(𝑡𝑘) + (1 − 𝜋(𝑘))𝜈(𝑡) + 𝑒(𝑡𝑘)] = 𝐾 [𝑦(𝑡 − 𝜏(𝑡))

+(1 − 𝜋(𝑘))𝜈(𝑡) + 𝑒(𝑡𝑘)] , 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), (22)

where 𝜈(𝑡) is the following piecewise-constant functions:

𝜈(𝑡) = 𝑦𝑐 (𝑡𝑘−1) − 𝑦(𝑡𝑘), 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1). (23)

On [𝑡𝑘 + ℎ, 𝑡𝑘+1), we use the following representation

𝑢(𝑡) = 𝐾𝑦̂(𝑡𝑘) = 𝐾 [𝑦(𝑡) + 𝜔(𝑡) + 𝑒(𝑡𝑘)] .

Since the function 𝜈(𝑡) has a discontinuity at 𝑡𝑘+1, i.e.,

𝜈(𝑡𝑘+1) = 𝑦𝑐 (𝑡𝑘) − 𝑦(𝑡𝑘+1)
= 𝜋(𝑘)𝑦(𝑡𝑘) + (1 − 𝜋(𝑘))𝑦𝑐 (𝑡𝑘−1) − 𝑦(𝑡𝑘+1)

= (1 − 𝜋(𝑘)) (𝑦𝑐 (𝑡𝑘−1) − 𝑦(𝑡𝑘)) + 𝑦(𝑡𝑘) − 𝑦(𝑡𝑘+1)
= (1 − 𝜋(𝑘))𝜈(𝑡𝑘) + 𝐶 (𝑥(𝑡𝑘) − 𝑥(𝑡𝑘+1)),

the original closed-loop system should be considered as a
stochastic impulsive system. The continuous dynamics is

described by the following switching system



¤𝑥(𝑡) = 𝐴𝑥(𝑡) +
𝑁∑︁
𝑖=1

𝑞𝑖𝜉𝑖 (𝑡) + 𝐵𝐾𝐶𝑥(𝑡 − 𝜏(𝑡))

+ (1 − 𝜋(𝑘))𝐵𝐾𝜈(𝑡) + 𝐵𝐾𝑒(𝑡𝑘), 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘 + ℎ),

¤𝑥(𝑡) = (𝐴 + 𝐵𝐾𝐶)𝑥(𝑡) +
𝑁∑︁
𝑖=1

𝑞𝑖𝜉𝑖 (𝑡)

+ 𝐵𝐾𝜔(𝑡) + 𝐵𝐾𝑒(𝑡𝑘), 𝑡 ∈ [𝑡𝑘 + ℎ, 𝑡𝑘+1),
¤𝜈(𝑡) = 0, 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1),

(24)
where 𝜏(𝑡) = 𝑡 − 𝑡𝑘 . The impulsive part is given by

{
𝑥(𝑡𝑘+1) = 𝑥(𝑡−𝑘+1),
𝜈(𝑡𝑘+1) = (1 − 𝜋(𝑘))𝜈(𝑡−

𝑘+1) + 𝐶 (𝑥(𝑡𝑘) − 𝑥(𝑡𝑘+1)).
(25)

In a case without deception attacks, i.e., 𝑒(𝑡𝑘) ≡ 0, the
closed-loop system (24), (25) is equivalent to the one in [19],
where the conditions guaranteeing the ℎ-exponential mean-
square stability were derived. In the presence of external
input 𝑒(𝑡𝑘), similarly to the previous section, we analyze the
closed-loop system in terms of ISS, where the trajectories
are bounded by a function of the size of the input.

Definition 2: The closed-loop system (24), (25) will
be called ℎ-exponentially mean-square input-to-state stable
(ISS) if there exist scalars 𝛾 > 0 and 𝛾̃ > 0 such that for
any initial condition 𝑥(𝑡0) and admissible inputs 𝑒(𝑡), the
corresponding solution of (24), (25) satisfies the following

944



inequalities for all 𝑡 ≥ 𝑡0

E
{
∥𝑥(𝑡)∥2} ≤𝛾e−2𝛼(𝑡−(𝑡𝑘−ℎ𝑘 ) )E

{
∥𝑥(𝑡0)∥2+∥𝜈(𝑡0)∥2}+ 𝛾̃

2
∥𝑒∥2

∞,

(26)

𝐸
{
∥𝜈(𝑡)∥2} ≤𝛾e−2𝛼ℎ (𝑘+1)E

{
∥𝑥(𝑡0)∥2+∥𝜈(𝑡0)∥2}+ 𝛾̃

2
∥𝑒∥2

∞,

(27)

where the index 𝑘 is defined from 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1.
For stability analysis, we use the same Lyapunov–Krasovskii
functional as in [19]. Note that it requires a more delicate
analysis since it is discontinuous and can grow in jumps
at time instants 𝑡𝑘 , see [19] for details. The conditions
guaranteeing input-to-state stability are obtained in the same
manner as it was done in the previous section and formulated
in the following theorem.

Theorem 2: Given ℎ, 𝛼 > 0, 0 < 𝛽 ≤ 1, 𝜀 ≥ 0, 𝜖 ≥ 1, and
𝑛𝑦 × 𝑛𝑦 matrices Ω1 ≥ 0, Ω2 ≥ 0. Let there exist 𝑛𝑥 × 𝑛𝑥
matrices 𝑃 > 0, 𝑄 > 0, 𝑃2, 𝑃3, 𝑅2, 𝑅3, 𝑋 , 𝑋1, 𝑍 , 𝑌1, 𝑌2,
𝑌
(𝑖)

3 , 𝑛𝑦 × 𝑛𝑦 matrices 𝑄1 > 0, 𝑈 > 0, 𝐺 > 0, and positive
real scalars 𝑑, 𝜈𝑖 , 𝜅−𝑖 and 𝜅+

𝑖
, 𝑖 = 1, . . . , 𝑁 , such that the

following LMIs

Θ =

[
𝑃 0
0 0

]
+ ℎ𝑅 > 0[

−𝛽𝑄1 +𝑈 (1 − 𝛽)𝑄1
∗ 𝑄1 − 1

𝜖
e−2𝛼ℎ𝐺

]
≤ 0,

Ψ̃0 + Ψ̃1 ≤ 0, Φ̃′
0 + Φ̃′′

0 ≤ 0, Φ̃′
1 + Φ̃′′

1 ≤ 0,

(28)

are feasible, where

Ψ̃0 =



| Ψ16
| Ψ26

Ψ0 | 0

|
.
.
.

| 0
− − −
∗ | −𝛼 𝑑 𝐼


,

Ψ̃1 =

[
Ψ1 0
∗ 0

]
,

Φ̃′′
0 =

[
Φ′′

0 0
∗ 0

]
,

Φ̃′′
1 =

[
Φ′′

1 0
∗ 0

]
,

Φ̃′
0 =



| Φ15
| Φ25

Φ′
0 | Φ35

| 0

|
.
.
.

| 0
− − −
∗ | −𝛼 𝑑 𝐼


, Φ̃′

1 =



| Φ15
| Φ25

Φ′
1 | Φ35

| 0

|
.
.
.

| 0
− − −
∗ | −𝛼 𝑑 𝐼


,

Φ′
1 = Φ(𝜏) |𝜏=ℎ, Φ′

0 = Φ(𝜏) |𝜏=0, Φ′′
0 is obtained from Φ′′

1 by
replacing 𝜅+

𝑖
to 𝜅−

𝑖
, the matrices Ψ0,Φ(𝜏),Φ′′

1 are defined in
Table II, and the matrices Ψ16,Ψ26,Φ15,Φ25,Φ35 are defined
in Table I. Then the closed-loop system (24), (25) is ℎ-
exponentially mean-square ISS.

Proof: Omitted for brevity.

V. NUMERICAL EXAMPLE

To illustrate the efficiency of the proposed approach, we
consider the following nonlinear system:

¤𝑥1 (𝑡) = −2𝑥1 (𝑡) + sin 𝑥2 (𝑡),
¤𝑥2 (𝑡) = (𝑥1 (𝑡) − 𝑥2 (𝑡)) + 2 sin 𝑥2 (𝑡) + 𝑢(𝑡),
𝑦(𝑡) = 𝑥2 (𝑡), 𝑢(𝑡) = 𝐾𝑦(𝑡𝑘) + 𝐾𝑒(𝑡𝑘),

(29)

Fig. 3. The dependence of the maximum allowable value of ℎ on Δ for
different values of the threshold parameter 𝜀.

which can be rewritten in the matrix form (1) with 𝑛𝑥 =

2, , 𝑛𝑦 = 𝑛𝑢 = 1, 𝑁 = 1 and

𝑥 =

[
𝑥1
𝑥2

]
, 𝐴 =

[
−2 1
1 1

]
, 𝐵 =

[
0
1

]
, 𝐶T =

[
0
1

]
,

𝑞1 =

[
1
2

]
, 𝑟1 =

[
0
1

]
, 𝜉1 (𝑡) = sin𝜎1 (𝑡) − 𝜎1 (𝑡).

Since −0.2173𝜎2
1 ≤ 𝜎1 sin𝜎1 ≤ 𝜎2

1 for all 𝜎1, the nonlinear
function 𝜉1 (𝑡) satisfies the sector-bound inequality (2) for
all 𝑡 ≥ 0 with 𝜇+1 = 0, 𝜇−1 = −1.2173. The detailed
investigation of how the control gain 𝐾 influences the event-
trigger parameters was performed in [17], [19] and is not
a part of this paper. We choose 𝐾 = −3 and start with the
even-trigger (9), (10).

Fig. 3 illustrates the dependence of the maximum allow-
able value of the sampling period ℎ guaranteeing the ISS on
Δ (see Assumption 2) for different values of the threshold
parameter 𝜀. We see that without the event-trigger (𝜀 = 0),
the dependence is linear, i.e., ℎ + Δ = const. Indeed, if
𝑠𝑘+1 = 𝑡𝑘 + ℎ, we have the time-delay representation (11)
for all 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1) with the delay bounded by ℎ + Δ.
Thus, using the LMIs we can find the maximum allowable
values of ℎ + Δ. If we increase 𝜀, for each fixed Δ the
dependence of ℎ on 𝜀 is flat up to a certain value and then
ℎ rapidly decreases. Therefore, it is reasonable to to first
choose ℎ, taking it slightly below the maximum value, and
then increase 𝜀 until ℎ drops down. Assuming that Δ = 0.25,
we then take ℎ = 0.27 and 𝜀 = 0.24.

Let 𝑥(0) = [0.2, 1]T and the final simulation time 𝑡 𝑓 = 20.
We start with the case 𝜀 = 0 (periodic sampling) and 𝑒(𝑡) ≡ 0
(no deception attacks), see Fig. 4. If the sampling instant
𝑠𝑘+1 (red vertical lines in Fig. 4) occurs inside a DoS time
interval 𝐻𝑛 (red areas), we send the measurement when the
attack is ended, i.e., 𝑡𝑘+1 = ℎ𝑛 + 𝜏𝑛 (green vertical lines).
We can see that the system is asymptotically stable. If we
assume deception attacks with, e.g., ∥𝑒(𝑡)∥∞ = 0.15, we can
observe input-to-state stability, see Fig. 5. The number of
sent measurements (SM) is 58 in this case.

Now we consider the event-trigger (9), (10) with 𝜀 = 0.24,
see Fig. 6. We can see that the performance is the same as
in Fig. 5, but the number of SM is reduced to 43. Thus,
the even-trigger resulted in the avoidance of unnecessary
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Fig. 4. The solutions of (29) with the initial condition 𝑥0 = [0.2, 1]T for
periodic sampling and no deception attacks, 𝐾 = −3, ℎ = 0.27, Δ = 0.25.
The red areas denote the intervals of DoS attacks. The vertical dashed lines
indicate sampling instants when the measurements should be transmitted to
the controller. They are marked in red if it happens during a DoS attack, and
no transmission is performed. When the information is sent successfully, the
line is green. Since there are no deception attacks, we observe asymptotic
convergence.

Fig. 5. The solutions in the presence of deception attacks for periodic
sampling. The red stars denote the actual values of the output received by
the controller, i.e., 𝑦̂ (𝑡𝑘 ) = 𝑦 (𝑡𝑘 ) + 𝑒 (𝑡𝑘 ) . The system is ISS. The number
of SM is 58.

transmissions with a SM decrease of 26%. The control signal
corresponding to all three cases is illustrated in Fig. 7.

Finally, we consider the case when the DoS is modeled
as a stochastic Bernoulli process with the parameter 𝛽. For
𝛽 = 0.7, i.e., the probability that the DoS happens at 𝑡𝑘 is
30%, and 𝜀 = 0.24, 𝜖 = 2 (see (20)), we obtain ℎ = 0.25.
The corresponding solution is illustrated in Fig. 8. We can
see that with the event-trigger, the number of SM is 48, while
for periodic sampling the average number of SM is 57.

Thus, the event-triggered based transmission strategy can
reduce the number of transmissions compared to periodic
sampling resulting in a lower network workload while still
maintaining good control performance.

VI. CONCLUSIONS

In this paper, we considered event-triggered control of
a class of nonlinear systems under simultaneous deception
and DoS attacks. We adopted the input delay method and
the switching approach followed by a suitable Lyapunov
technique. As a result, we obtained the input-to-state stability
conditions formulated as linear matrix inequalities. Addition-
ally, we investigated scenarios where the DoS is modeled as a
stochastic Bernoulli process. The closed-loop system is then
considered as a stochastic impulsive system. Future research

Fig. 6. The solutions for the event-triggered transmission policy with
𝜀 = 0.24. We observe similar performance, but the number of SM is reduced
to 43, a decrease of 26%.

Fig. 7. The sampled-data control signals related to the trajectories in
Figs. 4, 5, and 6.

directions may include investigating other types of cyber-
attacks as well as considering additional time delays in the
system.
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APPENDIX

Proof of Theorem 1.
Consider the Lyapunov–Krasovskii functional (17). Note

that due to the structure of the second and third terms in 𝑉1
and 𝑉3, the function 𝑉 (𝑡) is continuous for all 𝑡 ≥ 0.

We start the analysis with the time-derivative of 𝑉2:

¤𝑉2 (𝑡) + 2𝛼𝑉2 (𝑡) = 2𝑥T (𝑡)𝑃 ¤𝑥(𝑡) + 2𝛼𝑥T (𝑡)𝑃𝑥(𝑡). (30)

From (12), (2), and (13) we can conclude that

2
[
𝑥T (𝑡)𝑅T

2 + ¤𝑥T (𝑡)𝑅T
3
]

×
[
𝐴𝑐𝑙𝑥(𝑡) +

𝑁∑︁
𝑖=1

𝑞𝑖𝜉𝑖 (𝑡) + 𝐵𝐾𝑒(𝑡) + 𝐵𝐾𝜔(𝑡) − ¤𝑥(𝑡)
]
= 0,

(31)(
𝜉𝑖 (𝑡) − 𝜇−𝑖 𝑟T

𝑖 𝑥(𝑡)
) (
𝜇𝑖

+𝑟T
𝑖 𝑥(𝑡) − 𝜉𝑖 (𝑡)

)
≥ 0, (32)

−𝜔T (𝑡)Ω1 𝜔(𝑡) + 𝜀𝑦T (𝑡)Ω2 𝑦(𝑡) ≥ 0, ∀𝑡 ∈ [𝑡𝑘 + ℎ, 𝑠𝑘+1)
(33)

respectively. By adding the left-hand sides of (31)–(33) to
the right-hand side of (30), we finally obtain

¤𝑉2 (𝑡) + 2𝛼𝑉2 (𝑡) ≤ 𝜂T (𝑡) (Ψ0 + Ψ1) 𝜂(𝑡) + 𝛼𝑑∥𝑒(𝑡)∥2,

where 𝜂(𝑡) =
[
𝑥T (𝑡), ¤𝑥T (𝑡), 𝜉1 (𝑡), . . . , 𝜉𝑁 (𝑡), 𝜔T (𝑡), 𝑒T (𝑡)

]T.
Therefore, since the matrix Ψ0 + Ψ1 ≤ 0, we obtain

¤𝑉2 (𝑡) + 2𝛼𝑉2 (𝑡) ≤ 𝛼𝑑∥𝑒(𝑡)∥2, 𝑡 ∈ (𝑡𝑘 + ℎ, 𝑠𝑘+1).

The time-derivative of 𝑉1 can be estimated similarly (see
[17] for details), and we finally obtain

¤𝑉1 (𝑡) + 2𝛼𝑉1 (𝑡) ≤
ℎ − 𝜏(𝑡)

ℎ
𝜂0 (𝑡)𝑇 (Φ′

0 +Φ′′
0 )𝜂0 (𝑡)

+ 𝜏(𝑡)
ℎ

𝜂1 (𝑡)𝑇 (Φ′
1 +Φ′′

1 )𝜂1 (𝑡) + 𝛼𝑑∥𝑒(𝑡)∥2,

where 𝜂1 (𝑡) =

[
𝜂T

2 (𝑡),
1
𝜏 (𝑡 )

∫ 0
−𝜏 (𝑡 ) ¤𝑥

T (𝑡) (𝑡 + 𝑠)𝑑𝑠, 𝑒T (𝑡)
]T

,

𝜂0 (𝑡) =
[
𝜂T

2 (𝑡), 𝑒
T (𝑡)

]T, and
𝜂2 (𝑡) =

[
𝑥T (𝑡), ¤𝑥T (𝑡), 𝑥T (𝑡 − 𝜏(𝑡)), 𝜉1 (𝑡), . . . , 𝜉𝑁 (𝑡), 𝜔T (𝑡)

]T.
Therefore,

¤𝑉1 (𝑡) + 2𝛼𝑉1 (𝑡) ≤ 𝛼𝑑∥𝑒(𝑡)∥2, 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘 + ℎ). (34)

Note that the LMIs (18) imply (34) for all 0 < 𝜏 ≤ ℎ + Δ.
Thus, (34) is satisfied for both cases 𝑠𝑘+1 > 𝑡𝑘 +ℎ and 𝑠𝑘+1 =

𝑡𝑘 + ℎ.
The functional 𝑉3 can be estimated similarly.
Thus, we have shown that

¤𝑉 (𝑡) + 2𝛼𝑉 (𝑡) ≤ 𝛼𝑑∥𝑒(𝑡)∥2, 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1). (35)

By direct calculations we can conclude that the inequalities
Θ > 0 and Θ̃ > 0 imply

𝛽1 | |𝑥(𝑡) | |22 ≤ 𝑉 (𝑡) ≤ 𝛽2 | |𝑥(𝑡) | |22 (36)

for some 0 < 𝛽1 < 𝛽2. From (35), (36), and Lemma 4.1 in
[21] we finally get

𝑉 (𝑡) ≤ e−2𝛼(𝑡−𝑡𝑘 )𝑉 (𝑡𝑘) + 𝛼𝑑∥𝑒∥2
∞

∫ 𝑡

𝑡𝑘

e−2𝛼(𝑡−𝑠)𝑑𝑠

= e−2𝛼(𝑡−𝑡𝑘 )𝑉 (𝑡−𝑘 ) +
1
2
𝑑∥𝑒∥2

∞

(
1 − e−2𝛼(𝑡−𝑡𝑘 )

)
≤ e−2𝛼(𝑡−𝑡𝑘−1 )𝑉 (𝑡−𝑘−1) +

1
2
𝑑∥𝑒∥2

∞

(
1 − e−2𝛼(𝑡−𝑡𝑘−1 )

)
≤ . . . ≤ e−2𝛼(𝑡−𝑡0 )𝑉 (𝑡0) +

1
2
𝑑∥𝑒∥2

∞

(
1 − e−2𝛼(𝑡−𝑡0 )

)
≤ 𝛽2e−2𝛼(𝑡−𝑡0 ) | |𝑥(𝑡0) | |22 +

1
2
𝑑∥𝑒∥2

∞.

Then
| |𝑥(𝑡) | |2 ≤ 𝛽 (∥𝑥(𝑡0)∥, 𝑡) + 𝛾 (∥𝑒∥∞) , (37)

where 𝛽(∥𝑥(𝑡0)∥, 𝑡) =
𝛽2
𝛽1

e−𝛼(𝑡−𝑡0 ) ∥𝑥(𝑡0)∥2 and 𝛾(∥𝑒∥∞) =
𝑑

2𝛽1
∥𝑒∥2

∞. Hence, the closed-loop system (1), (2), (5), (9),
(10) is ISS.

Proof of Corollary 1. The result follows immediately
from (37) since 𝛽(·, 𝑡) → 0 as 𝑡 → ∞.
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