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Abstract— The linear quadratic regulator (LQR) algorithms
devised using the Riccati equation possess two key attributes—
they are recursive and have easily met conditions of existence.
Nevertheless, these features only apply for the transformed
structure of the regulated dynamics in singular systems, oth-
erwise their optimal performance will be compromised under
violation of constraints in non-singular versions. This technical
note presents the LQR problem for a time-varying discrete
linear singular system in a direct manner avoiding any transfor-
mations. This approach eliminates the requirement of making
regularity assumptions for the system. To achieve this, first,
we formulate a quadratic cost function for LQR derivation
based on a penalized weighted least-squares method. Then,
by using Bellman’s principle of optimality and performing
variable substitutions, we connect the formulation to a con-
strained and recursive minimization problem. We then proceed
with investigating the existence conditions and using dynamic
programming in a backward strategy at the finite horizon to
derive a recursive regulator algorithm for the original system
in a matrix array framework, without degrading its optimal
performance. The achieved algorithm has more general features
compared to the classical LQR problem for standard systems.
This study concludes with numerical evaluation of the algorithm
and confirmation of the results.

I. INTRODUCTION

Studies on singular systems—also known as descriptor
and semi-state systems—have mainly been conducted in
the realm of mathematics [1], yet recently singular systems
have received significant recognition in various fields of
engineering and industry such as power systems, robotics,
biology, and economics [2]. The complexity of these systems
leads to a number of challenges when attempting to analyze
and synthesize them for control purposes [3]. Nevertheless,
scientists relying on the latest advancements in mathematical
tools have been able to handle the challenges and extend
some of investigations [4], such as existence and solvability
[5], stability [6], observer design [7] and filtering [8] prob-
lems, which have enabled the transition from classical control
to those achieved with singular techniques. To describe
more complex dynamics along with long interconnection
properties and constraint elements [9], nonlinear [10] and
fractional [11] dynamics have been considered in the studies
together with singular systems.

The linear quadratic regulator (LQR) problem with a
singular system is an extension of the classic LQR problem,
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which is a highly significant category of optimal control
problems in theory and practice [12]. This problem involves
finding a control algorithm that minimizes a quadratic objec-
tive function in linear form, while considering either contin-
uous or discrete systems [13]–[16]. A significant amount of
research has been conducted in the field of solving the LQR
problem subject to singular systems. In [17], by performing
singular value decomposition (SVD) on the singular matrix,
the optimization problem was solved by applying the Hamil-
tonian strategy for a standard system. Using a similar strategy
coupled with transforming the original system to a coordinate
system using SVD, the LQR problem and its associated
Riccatti differential equation were investigated in [18] for
a continuous singular system. Relying on the equivalence
transformation technique, studies were conducted where
some developments and analyses related to the existence
[19], uniqueness [20], and stability [21] of solutions, and
extension to rectangular [22] and fractional order [23] cases
with cross product of performance and actuator effort were
considered.

However, most of the results take into account the regular-
ity requirement of the singular system and the requirement
for transformation into a restricted system equivalent using
the SVD technique. This can cause the optimal performance
of the developed LQR algorithms to be compromised un-
der violation of constraints in non-singular versions. For
example, possible faults can cause sudden shifts in structure
or layout of a system (like a power line outage in power
grids), the algebraic conditions become different, thus the
transformed systems associated with the constraints are no
longer able to sync with each other [24]. This posed a major
challenge in convincing researchers to keep the singular
structure intact and utilize it for different control problems.
In the light of this gap, to prevent the efficiency of LQR
algorithm from degrading and make it more practical, we
propose here a recursive algorithm for LQR problem of linear
singular systems by using penalized weighted least-squares
approach [25] and performing the following steps:

• Formulate a quadratic cost function for LQR derivation
based on a penalized weighted least-squares method.

• Connect the formulation to a recursive constrained
minimization problem based on Bellman’s principle;

• Investigate the existence conditions for the constructed
minimization problem;

• Derive a recursive regulator algorithm using backward
dynamic programming at the finite horizon.

Compared with the existing LQR algorithms, our com-
putationally simple algorithm is designed to minimize the
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regularized residual norm in its penalized worst-case scenario
in which no singular problem needs to be solved in the
derivation process. Also, we demonstrate that no regularity
assumption of the system is required in this process, and
the algorithm is directly derived subject to the original
system instead of a restricted equivalent form of the system.
Furthermore, the control law, feedback gain, and Riccati
equation are derived in an array of matrices which can
motivate us to develop an algorithm for the recursive optimal
solution of robust LQRs in future research.

Notations: R denotes the real numbers set, Rn and Rn×m
hold out n-dimensional vector and n×m matrix, respectively,
whose elements are in R, AT is the transpose of the matrix
A, A = AT > 0 denotes symmetric positive definite (PD)
matrix, In is the identity matrix of order n, (x ⊕ y) and
col{x, y} denote a block diagonal matrix and a column
vector, respectively, with entries x and y.

II. PROBLEM STATEMENT

Consider the state-space representation of the time varying
discrete linear singular model as

Ek+1xk+1 = Akxk +Bkuk (1)

for 0 ≤ k ≤ N , where xk ∈ Rn is a state vector, uk ∈ Rm
is an input control vector, Ak ∈ Rn×n and Bk ∈ Rn×m
are assumed nominal parameter known matrices, x0 is the
initial state vector, and {uk}Nk=0 is an unrestricted sequence
of control inputs. Also, Ek ∈ Rn×n is a singular matrix,
i.e., rankEk < n, for 0 ≤ k ≤ N . To formulate the LQR
problem subject to (1), define the auxiliary expression

Li(xi,ui) = xT
i Qixi + uT

i Riui (2)

for 0 ≤ i ≤ N , and the well-known quadratic functional as

J = xT
N+1PN+1xN+1 +

N∑
i=0

Li(xi,ui), (3)

where the weights Qi, Ri, and PN+1 are symmetric PD
matrices. Then, consider the optimization problem

min
xk+1,uk

{xT
N+1PN+1xN+1 +

N∑
i=0

Li(xi,ui)} (4)

subject to (1). The objective is to determine an optimal
sequences {x∗k+1}Nk=0 and {u∗k}Nk=0 in order to minimize
(3). The proposed problem of optimal control differs from
typical formulations as the minimization is not just based on
the uk parameter but also on the xk+1.

III. TECHNICAL RESULTS

Here, some supporting lemmas, which provide useful links
in the solution of the optimization problem and that will
lead us to obtaining the recursive optimal solution of the
LQR problem, will be presented. Consider the following
minimization problem

min
x
{(Fx− g)TV(Fx− g)}, (5)

where x ∈ Rm is the unknown vector, and F ∈ Rn×m,
g ∈ Rn, and V are respectively known information matrix,
measurement vector, and a symmetric PD weighting matrix.
We denote the optimal solution of (5) as x̂.

Lemma 1 ([26]): Let V ∈ Rn×n be a PD matrix and F ∈
Rn×m be a full column rank matrix. Then, if

[
V−1 F

]
has

full row rank, the matrix[
V−1 F
FT 0

]
(6)

is invertible. Also, ξ = FTVF is invertible, and[
ξ−1 ξ−1FTV

]
=

[
0
Im

]T [
V−1 F
FT 0

]−1 [
0 In
−Im 0

]
.

(7)
We observe that the optimization quadratic problem (5)

can admit a more suitable representation with respect to the
optimal solution structure. This alternative representation is
presented in the following lemma which will be a fundamen-
tal approach towards a recursive solution in this study.

Lemma 2 ([26]): Let the matrix (6) be invertible. There-
fore, according to the maximum likelihood linear estimation
approach and Lagrange multipliers, the optimal solution of
(5) can be obtained by solving the equation[

V−1 F
FT 0

] [
λ
x

]
=

[
In
0

]
g, (8)

which can be uniquely given by

x̂ =
[
0 Im

] [V−1 F
FT 0

]−1 [
In
0

]
g. (9)

In what follows and through the use of the penalty function
technique, the optimal solution of the quadratic optimization
problem (5) subject to a constraint will be investigated. In
general, the penalty function technique is a procedure for
approximating the constrained optimization problems. The
approximation is performed by adding a term in objective
function that imposes a high cost for violating the constraints
of the problem. In this regard, a parameter µ plays a pivotal
role in shaping the penalty’s severity, thereby influencing
how closely the unconstrained problem approximates the
original problem. When µ → ∞, the accuracy of the
approximation improves. Details of using this technique are
generally found in the literature dealing with nonlinear theory
with regard to constrained optimization methods [27].

Lemma 3 ([28], [29]): Consider the optimization prob-
lem (5) subject to the constraint ψx = θ, where ψ ∈
Rk×m and θ ∈ Rk×1. Using an auxiliary varying parameter
µ, one can transform this minimization problem into an
unconstrained optimization problem as

x̂µ = argmin
x

(Fx− G)TVµ(Fx− G), (10)

where µ > 0, and

F =

[
F
ψ

]
,Vµ =

[
V 0
0 µI

]
,G =

[
g
θ

]
. (11)

By Lemma 2, the optimum solution can be obtained as

x̂µ =

[
0
Im

]T [V−1µ F
FT 0

]−1 [
In+k
0

]
G,
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where limµ→∞ ‖F x̂µ − G‖2V = ‖x̂∗‖2V with limµ→∞ x̂µ =
x̂∗. Here, x̂∗ is a solution of the optimization problem (5)
subject to ψx = θ given as

x̂∗ =

 0
0
Im

T V−1 0 F
0 0 ψ
FT ψT 0

−1 gθ
0

 . (12)

Lemma 3 is inspired by a result presented in [30] and its
proof is a direct application of the convergence theorem of
the combined penalty function with Lemma 2. The following
key result presents the structure of the optimal solution for
a case of optimization problem subject to a constraint that
fits the form of the problem addressed in the Lemma 3.

Lemma 4: Let P ∈ Rn×n, Q ∈ Rn×n, and R ∈ Rm×m
are known symmetric PD matrices, and A ∈ Rn×n and B ∈
Rn×m are given matrices. Assume x ∈ Rn and u ∈ Rm are
unknown vectors and z ∈ Rn is a given vector. Consider the
minimization problem of the form

U∗ := min
x,u
{xTPx+ zTQz+ uTRu}, (13)

where U∗ = col{x∗,u∗}, subject to Ex = Az+Bu. Then,
the optimal solution U∗ is given by

U∗ = Kz, (14)

where K = col{Lx,Ku}, or equivalently,

K =
[
0 I

] [Q E
ET 0

]−1 [A
0

]
, (15)

where Q = (P ⊕ µ)−1 with µ→∞, P = P⊕R⊕Q, and

A =


0
0
−I
A

 , E =


I 0
0 I
0 0
E −B

 .
Furthermore,

min
x,u
{xTPx+ zTQz+ uTRu}

s.t. Ex = Az+Bu
(16)

is equal to zTSz, where S is a PD matrix defined by S =
LT
xPLx +KT

uRKu +Q.
Proof: It follows from Lemma 2 and rewriting (13) as[

x∗

u∗

]
:= min

x,u

{[
x
u

]T [
P 0
0 R

] [
x
u

]
+

([
0 0
E −B

] [
x
u

]
−
[
−I
A

]
z

)T [
Q 0
0 0

]
×
([

0 0
E −B

] [
x
u

]
−
[
−I
A

]
z

)}
= min

x,u

{(
E
[
x
u

]
−Az

)T [P 0
0 0

](
E
[
x
u

]
−Az

)}
.

(17)

Also, by substituting the optimal solution (14) in (17), the
minimum value can be calculated as

J∗ =

(
E
[
Lx

Ku

]
z−Az

)T [P 0
0 0

](
E
[
Lx

Ku

]
z−Az

)

=



Lx

Ku

I
C

 z


T [
P 0
0 0

]

Lx

Ku

I
C

 z


= zT(LT

xPLx +KT
uRKu +Q)z = zTSz,

(18)
where C = ELx −BKu −A.

IV. LQR DERIVATION

The approach to solve the constrained problem (3) subject
to (1) and derive LQR algorithm becomes quite simplified
if one assumes that every optimal solution must satisfy the
Bellman’s principle of optimality [31]. By this principle, the
optimization problem can be dealt recursively by minimizing
the form enunciated in the following lemma.

Lemma 5: Optimization problem (4) subject to the linear
singular model (1) can be solved recursively thorough the
minimization of the form

min
x1,u0

{L0(x0,u0) + min
x2,u1

{L1(x1,u1) + · · ·

+ min
xj ,uj−1

{Lj−1(xj−1,uj−1) + · · ·

+ min
xN+1,uN

{LN (xN ,uN )

+ xT
N+1PN+1xN+1}} · · · }}

(19)

subject to (1).
Proof: The proof follows directly from the principle of

optimality.
According to Lemmas 4 and 5 and with the help of dy-

namic programming, we obtain the optimal recursive solution
of LQR problem as stated in the following theorem.

Theorem 1: The optimal recursive solution (LQR algo-
rithm) for the constrained optimization problem (4) subject
to the linear singular model (1) is given by

U∗k+1 = Kkxk, k = 0, · · · , N, (20)

where U∗k+1 = col{x∗k+1,u
∗
k} and Kk = col{Lxk

,Kuk
}, or

equivalently,

Kk =
[
0 I

] [ Qk Ek+1

ETk+1 0

]−1 [Ak
0

]
, (21)

where Qk = P−1k ⊕ 0 with Pk = Pk ⊕Rk ⊕Qk, and

Ak =


0
0
−I
Ak

 , Ek+1 =


I 0
0 I
0 0

Ek+1 −Bk

 ,
and

Pk = LT
xk
Pk+1Lxk

+KT
uk
RkKuk

+Qk. (22)
Proof: The recursive solution can be obtained through

the steps indicated below and evolved backward at finite
horizon N :
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Step i = N : In this step, the minimization problem

min
xN+1,uN

{xT
N+1PN+1xN+1 + xT

NQxN + uT
NRNuN}

s.t. EN+1xN+1 = ANxN +BNuN
(23)

will be solved. By hypothesis, we have QN , RN , and
PN+1 are symmetric PD matrices. Then, by considering the
following substitutions

x← xN+1, u← uN , z← xN ,

P← PN+1, R← RN , Q← QN ,

E← EN+1, A← AN , B← BN ,

(24)

we can connect the problem in this step to the optimization
problem in Lemma 4. Therefore,

U∗N+1 = KNxN , (25)

where U∗N+1 = col{x∗N+1,u
∗
N} and KN = col{LxN

,KuN
},

or equivalently,

KN =
[
0 I

] [ QN EN+1

ETN+1 0

]−1 [AN
0

]
, (26)

where QN = P−1N ⊕ 0 with PN = PN ⊕RN ⊕QN , and

AN =


0
0
−I
AN

 , EN+1 =


I 0
0 I
0 0

EN+1 −BN

 .
Also, by substituting the optimal solution (25) in (23), the
minimum value can be calculated as xT

NSNxN , where

SN = LT
xN

PN+1LxN
+KT

uN
RNKuN

+QN . (27)

Now, it is enough to consider PN = SN .
Step i = N − 1: According to Lemma 5, the problem

min
xN ,uN−1

{LN−1(xN−1,uN−1) + xT
NSNxN}

s.t. ENxN = AN−1xN−1 +BN−1uN−1
(28)

will be solved, where the term xT
NSNxN provides minimum

solution carried out in the previous step. Again and by
considering the following substitutions

x← xN , u← uN−1, z← xN−1,

P← PN , R← RN−1, Q← QN−1,

E← EN , A← AN−1, B← BN−1,

(29)

we can connect the problem in this step to the optimization
problem in Lemma 4. Hence,

U∗N = KN−1xN−1, (30)

where U∗N = col{x∗N ,u∗N−1} and KN−1 =
col{LxN−1

,KuN−1
}, or equivalently,

KN−1 =
[
0 I

] [QN−1 EN
ETN 0

]−1 [AN−1
0

]
, (31)

where QN−1 = P−1N−1 ⊕ 0 with PN−1 = PN−1 ⊕RN−1 ⊕
QN−1, and

AN−1 =


0
0
−I

AN−1

 , EN =


I 0
0 I
0 0
EN −BN−1

 .
Also, by substituting the optimal solution (30) in (28), the
minimum value can be obtained as xT

N−1SN−1xN−1, where

SN−1 = LT
xN−1

PNLxN−1
+KT

uN−1
RN−1KuN−1

+QN−1.
(32)

Again and in this step, we consider PN−1 = SN−1.
Step i = j, (j = N − 2, . . . , 0): By continuing the same

procedure, decreasing step i, and applying the optimality
principle on the minimization problem

min
xj+1,uj

{Lj(xj ,uj) + xT
j+1Sj+1xj+1}

s.t. Ej+1xj+1 = Ajxj +Bjuj ,
(33)

the result will be
U∗j+1 = Kjxj , (34)

where U∗j+1 = col{x∗j+1,u
∗
j} and Kj = col{Lxj

,Kuj
}, or

equivalently,

Kj =
[
0 I

] [ Qj Ej+1

ETj+1 0

]−1 [Aj
0

]
, (35)

where Qj = P−1j ⊕ 0 with Pj = Pj ⊕Rj ⊕Qj , and

Aj =


0
0
−I
Aj

 , Ej+1 =


I 0
0 I
0 0

Ej+1 −Bj

 .
Also, by substituting the optimal solution (34) in (33), the
minimum value can be calculated as xT

j Sjxj , where

Sj = LT
xj
Pj+1Lxj +KT

uj
RjKuj +Qj . (36)

By considering Pj = Sj , the proof is completed.
Now, reconsider the solution in (20). According to

Lemma 2, U∗k must satisfy the following system of equations[
Qk Ek+1

ETk+1 0

] [
λ
U∗k

]
=

[
Ak
0

]
xk, (37)

where λ = col{λi}, i = 1, · · · , 4. This matrix equation
provides the following system of equations

P−1k+1λ1 + Ix∗k+1 = 0, (38)

R−1k λ2 + Iu∗k = 0, (39)

Q−1k λ3 = −Ixk, (40)

Ek+1x
∗
k+1 −Bku

∗
k = Akxk, (41)

Iλ1 +ET
k+1λ4 = 0, (42)

Iλ2 −BT
kλ4 = 0. (43)

From (38), (41), and (42), we have

Ek+1P
−1
k+1E

T
k+1λ4 −Bku

∗
k = Akxk. (44)
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Also, from (39) and (43), we have

u∗k = −R−1k BT
kλ4. (45)

Therefore, to derive the control law u∗k, it is enough to
substitute (45) in (44), to get λ4 as

λ4 = (Ek+1P
−1
k+1E

T
k+1 +BkR

−1
k BT

k )
−1Akxk

= −
[
0 0 I

] Pk+1 0 ET
k+1

0 Rk −BT
k

Ek+1 −Bk 0

−1  0
0
Ak

xk.

(46)
So, the final control law can be rewritten as

u∗k = −R−1k BT
k (Ek+1P

−1
k+1E

T
k+1 +BkR

−1
k BT

k )
−1Akxk.

(47)
Also, from (38), (42), and (46), one has

x∗k+1 = P−1k+1E
T
k+1(Ek+1P

−1
k+1E

T
k+1 +BkR

−1
k BT

k )
−1

×Akxk.
(48)

According to (20), the Riccati equation can be expressed
as (22) with the following feedback gain, which is the
coefficient of xk in (47) and (48):

Kk =

[
Lxk

Kuk

]
=

[
0 0 −P−1k+1E

T
k+1

0 0 R−1k BT
k

]

×

Pk+1 0 ET
k+1

0 Rk −BT
k

Ek+1 −Bk 0

−1  0
0
Ak

 . (49)

Remark 1: To ensure the existence of optimal recursive
solution for the constrained optimization problem (4) subject
to the linear singular model (1), the following matrix

Ek+1P
−1
k+1E

T
k+1 +BkR

−1
k BT

k (50)

will be invertible. Matrix (50), can be rewritten as[
Ek+1 −Bk

] [Pk+1 0
0 Rk

]−1 [
Ek+1 −Bk

]T
. (51)

Therefore, because Pk+1 and Rk are PD matrices, and the
matrix inverse of a PD matrix is also PD, to ensure the
existence of LQR algorithm, the matrix

[
Ek+1 −Bk

]
will

be of full row rank.

V. SIMULATION RESULTS

Case 1: Consider a time-invariant version of the system
described by (1) with parameter matrices given as

E =

[
1 0
0 0

]
,A =

[
1.5 1
5.3 5.2

]
,B =

[
0
1

]
, (52)

and the respective weighting matrices as

Q =

[
5 −4.5
−4.5 4.5

]
, R = 1.1. (53)

The matrix [
E −B

]
=

[
1 0 0
0 0 −1

]
(54)

is of full row rank, and according to Remark 1, the LQR
algorithm exists. Hence, according to the derived LQR

Fig. 1: Regulated states and optimal control signal (case 1).

algorithm in Theorem 1, the control u∗k must be optimal
to the LQR problem (4) subject to the singular system (1)
with the given parameters (52). Trajectories of the states x∗1,k,
x∗2,k, and the control u∗k are illustrated in Fig. 1. In this case,
the solution of Riccati equation (22) converges to

Pk =

[
91.0218 62.6617
62.6617 58.9031

]
. (55)

Case 2: Let’s repeat the simulation with a time varying
version of (1) with same parameters (52) and (53) except

Ek+1 =

[
k 0
0 0

]
, Ak =

[
1.5 1

− sin(k) 5.2

]
. (56)

Again, the matrix[
Ek+1 −Bk

]
=

[
k 0 0
0 0 −1

]
, 0 < k ≤ N (57)

is of full row rank, and according to Remark 1, the LQR
algorithm exists. Hence, the control u∗k must be optimal to
the LQR problem (4) for the time varying system (1) with
the given parameters. Trajectories of the states x∗1,k, x∗2,k,
and the control u∗k are depicted in Fig. 2. In this case, the
solution of Riccati equation (22) converges to

Pk =

[
5.7817 −9.3308
−9.3308 34.5432

]
. (58)

Fig. 2: Regulated states and optimal control signal (case 2).
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Case 3: To verify the result in non-singular case, lets
consider our time-invariant system again and consider E = I.
We try to test the result in non-singular case and compare it
with the function dlqr in MATLAB, which design the LQR
model for standard discrete-time systems. According to the
simulation results, the solution of Riccati equation and the
state-feedback law are completely identical given as

Pk =

[
112.4657 79.8327
79.8327 72.2204

]
, Kuk

=

[
6.8527
6.2099

]T
, (59)

which shows that the LQR algorithm designed in this study
reduces to the classical LQR algorithm for standard systems
if E = I in Theorem 1. The regulated states and optimal
control are depicted in Fig. 3.

Fig. 3: Regulated states and optimal control signal (case 3).

VI. CONCLUSIONS
This technical note presents a novel approach for the

derivation of a LQR algorithm for a time varying discrete
linear singular model. The proposed solution eliminates the
need for regularity assumptions of the system and is based
on a penalized weighted least-squares formulation. By using
Bellman’s principle of optimality and dynamic programming,
we have derived a recursive regulator algorithm associated
with the existence conditions. Due to the derivation of the
algorithm in a direct way and without transformation, its
optimal performance will not be compromised under viola-
tion of constraints in the transformed non-singular version—
a technique which was exploited in the literature. In future
work, we plan to address the convergence and stability
analysis of the developed algorithm. Also, the matrix array
frameworks of the control law, feedback gain, and Riccati
equation motivate us to develop an algorithm for the robust
LQR problems in future research.
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