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Abstract— In this paper, a planar herding problem is ad-
dressed, where a single superior pursuer herds a flock of non-
cooperative, inferior evaders around a predefined target point.
An inverse square law of repulsion is assumed between the
pursuer and each evader. It is demonstrated that a constant-
velocity, circular trajectory of the pursuer, encompassing all
the evaders and centered around the target point, guarantees
the herding of the evaders into an arbitrarily small limit cycle
around the target point. The conditions for the stability of this
limit cycle, as well as the radius of the limiting herd, are derived
as functions of the pursuer’s radius, angular velocity, and the
strength of pursuer-evader repulsion. Estimates of the region
of attraction for this stable limit cycle are computed and are
found to lie within a larger unstable limit cycle, which is itself
contained within the pursuer’s trajectory.

I. INTRODUCTION

Multiple-evader versus single-pursuer differential games
have direct applications across a wide range of scientific do-
mains, including robotics [1], behavioral science [2], wildlife
control [3], search and rescue [4], crowd control [5], and
military applications [6]. In many such scenarios, the evaders
are non-cooperative and resist being herded together, while
they are repelled by the presence of the pursuer. Conversely,
the pursuer is faster than the evaders and aims to gather or
herd all of them into a target set. Although several attempts
have been made in the literature to understand, simulate, and
analyze such games and strategies (e.g. see [7] and the refer-
ences therein),no formal solutions have yet been established.
In this paper, we propose an extremely simple yet effective
strategy for the pursuer that guarantees successful herding
for any number of evaders, assuming an inverse square
law of repulsion. The initial investigation into the herding
problem was inspired by several naturally occurring herding
phenomena, such as sheepdogs herding flocks of sheep [1],
[8], [9], [10] and predator-prey interactions [11], [12], [13].
Most of these early works were based on mathematical
models designed to replicate herding behavior in extensive
simulations, with little or no emphasis on theoretical analysis.
Subsequently, the complexity of analyzing multiple evaders
simultaneously has proven to be a bottleneck in developing
a comprehensive theory for such games. Conversely, the
problem of herding a single evader by a pursuer has been
satisfactorily solved through multiple approaches [14], [15],
[16]. Meanwhile, a body of research focused on modeling
and simulating scenarios involving multiple pursuers herding
a group of evaders has also developed [17], [18], [19]
[20]. The synthesis of controllers with provable convergence
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properties was introduced in [21], where a sliding mode
controller was proposed to herd a single evader using a
group of pursuers along a desired trajectory. An arc-based
approach was employed in [19] to herd multiple evaders with
multiple pursuers. In contrast to the simpler formulations
mentioned earlier, the more complex problem of herding
multiple evaders with a single pursuer was investigated in
[22], [23], and [24], where variants of switched sliding
mode controllers were proposed. However, the solutions
provided rely on the crucial assumption of non-uniform re-
pulsion between the pursuer and the "chased" and "unchased"
evaders. The slower reaction of the unchased evader allows
for the sequential collection of all evaders at the target
through a switched control approach. In both natural and
robotic herding situations, however, it is often difficult for
an individual evader to determine whether and when it is
being specifically "chased." Generally, most researchers have
modeled repulsion based solely on the instantaneous distance
from the pursuer [7]. A key difference in our work, compared
to the majority of naturally inspired herding models reviewed
above, is the absence of attraction between the evaders.
While this makes herding more challenging, we believe it is
justified in most engineering applications. Specifically, our
interaction model is similar to that in [19], although we
demonstrate that herding is possible for such models with
just one (sufficiently capable) pursuer.

In this paper, we propose a simple yet effective strategy for
a single pursuer to herd multiple evaders around a predefined
target point. The proposed strategy assumes that all evaders
are initially enclosed within a circle centered at the target
point, with the pursuer positioned on the circumference (see
Fig. 1). Let the radius of this circle, referred to as the
"pursuer circle" throughout the paper, be denoted as R. The
pursuer’s policy involves moving around the target point
along this circle with a constant angular velocity ω. We show
that

1) If ω and/or R are sufficiently large with respect to
the repulsion between the evader and pursuer, then
two circular equilibria/limit cycles gets created for the
evaders around the target point (see figure 2).

2) The outer limit cycle (denoted by the red circle with
radius r∗1 in figure 2) is unstable, while the inner one
(blue with radius r∗2) is stable.

3) By increasing the pursuer’s angular velocity, the radius
of the inner stable limit cycle can be made arbitrarily
small, while the outer unstable limit cycle approaches
the pursuer circle.

4) The evaders’ rate of convergence to the stable limit
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cycle is inversely related to the radius R of the pursuer
circle. While a smaller R results in faster convergence, it
requires a higher ω for the existence of the equilibrium
set, and thus for convergence to occur at all.

5) With respect to the rotating pursuer, all evaders (when
stabilized) converge to a fixed equilibrium position
((r∗2 , ψ

∗
2) in figure 2), which corresponds to a blue

circular trajectory of constant angular velocity in the
static coordinate frame.

Furthermore, we numerically estimate the region of attraction
(ROA) for the stable limit cycle in several representative
cases.As expected, the estimated ROAs are contained within
the outer (unstable) limit cycle (Figure 2). In essence, we
demonstrate that the simple strategy of the pursuer circling
the target while encompassing the evaders forces them into
a circular "herd" around the target, with the size of the herd
being controllable by the pursuer’s speed.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider n evaders ei where i = {1, 2, 3, . . . , n}, and
a single pursuer P . Let z denote the target point around
which the group of evaders are to be herded by the pursuer.
As shown in Fig. 1, consider a static {x, y} coordinate
frame with its origin is at z. Denote the position of the ith

evader in this frame by (xei(t), yei(t)) ∈ R2, where i =
{1, 2, 3, . . . , n}, and that of the pursuer P by (xp(t), yp(t)) ∈
R2. Let deip(t) =

√
(xp(t)− xei(t))

2 + (yp(t)− yei(t))
2

represent the distance between the ith evader and the pursuer,
and d̂eip(t) denote the unit vector pointing from P to ei. The
distance between the initial pursuer position (xp(0), yp(0))
and the target point z (the origin in the {x, y} frame) is
assumed to be R. Let the disc centered at z with radius R
as DR

z := {x ∈ R2 : ∥x∥2 ≤ R}. For our initial discussion,
assume (xp(0) = R, yp(0) = 0); this assumption will be
relaxed later in section III-D. The following assumptions are
further made.

Assumption 1. 1) All the evaders {e1(0), ..., en(0)} ∈
DR

z .
2) There is no mutual attraction or repulsion between the

evaders.
3) Each evader is repelled identically by the pursuer ac-

cording to an inverse square law (see below).

A. Evader kinematics

We assume that the evader’s instantaneous velocity is pro-
portional to the inverse of the square of the distance between
the pursuer and the evader and is pointed directly away from
the pursuer at each instant. The following equations capture
the aforementioned behavior:[

ẋei(t)
ẏei(t)

]
=

k

d2eip(t)
d̂eip(t) ∀ i = {1, 2, . . . , n}. (1)

Here, k is a constant representing the (identical) strength of
repulsion between each evader and the pursuer.
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Fig. 1: Evader and pursuer position in Cartesian coordinate
system
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Fig. 2: Green-pursuer circle, red-unstable limit cycle, blue-
stable limit cycle, dotted-estimation of ROA

B. Problem formulation

Problem 1. Under Assumption 1, if the evaders follow
(1), find a strategy for the pursuer to herd the evaders to
arbitrarily small neighborhoods around the origin (i.e. target
z). In other words, the pursuer strategy should ensure for any
ϵ > 0, limt→∞ ∥ei(t)∥2 ≤ ϵ ∀ i = {1, 2, . . . , n}.

Proposed Strategy: As discussed in the introduction, we
propose the following pursuer strategy

ẋp(t) = −Rωsin (ωt) , ẏp(t) = Rωcos (ωt) . (2)

Initially we assume xp(0) = R, yp(0) = 0, but this as-
sumptions released later. We require the following additional
coordinate frames to study the effect of (2) on (1).

C. Coordinate Frames

Apart from the static coordinate frame x, y we require
the following additional frames to describe and simplify the
motions of the pursuer and the evading herd:

1) Polar Coordinates for {x, y} denoted by {r, ϕ}: x(t) =
r(t)cos (ϕ(t)) , y(t) = r(t)sin (ϕ(t)).

2) A rotating frame {u, v} with its origin coincident on
the target position z, with its u-axis passing through
the pursuer position. Hence this frame rotates counter-
clockwise with a constant angular velocity of ω.

3) A polar version of the {u, v} frame denoted by {r, ψ}:
u(t) = r(t)cos (ψ(t)), v(t) = r(t)sin (ψ(t)). Clearly
ψ(t) = ϕ(t)− ωt.
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1) Evader Kinematics in {r, ϕ}-frame: We temporarily
drop the subscript i, denoting the evader number, to simplify
notation. Using (2) in (1) and converting it into polar coor-
dinates, the (i-th) evader coordinates {r =

√
x2ei + y2ei , ϕ =

tan−1 yei

xei
} satisfies:

ṙ(t) =
k (r(t)−Rcos (ϕ(t)− ωt))

(r2(t) +R2 − 2r(t)Rcos (ϕ(t)− ωt))
3
2

ϕ̇(t) =
kRsin (ϕ(t)− ωt)

r(t) (r2(t) +R2 − 2r(t)Rcos (ϕ(t)− ωt))
3
2

(3)

Clearly these equations represent a time-varying system. To
simplify analysis, we change coordinates again to obtain the
following.

2) Evader Kinematics in {r, ψ}-frame: Define ψ(t) :=
ϕ(t) − ωt and replace in (3), thereby simplifying it to a
time-invariant form:

ṙ(t) =
k (r(t)−Rcos (ψ(t)))

(r2(t) +R2 − 2r(t)Rcos (ψ(t)))
3
2

ψ̇(t) =
kRsin (ψ(t))

r(t) (r2(t) +R2 − 2r(t)Rcos (ψ(t)))
3
2

− ω.

(4)

3) Evader Kinematics in {u, v}-frame: Though (4) will
prove to be convenient enough for analysis purposes, polar
frames are inconvenient for visualization. Hence we compute
the equivalent system of (4) in the Cartesian {u, v}-frame:

u̇(t) =
k(u(t)−R)

((u(t)−R)2 + v2(t))
3
2

+ ωv(t)

v̇(t) =
k(v(t))

((u(t)−R)2 + v2(t))
3
2

− ωu(t)

(5)

III. HERDING OF SINGLE EVADER

In this section we will analyze the behaviour of (3), (4)
or (5). Specifically, we will evaluate whether the proposed
pursuer strategy given by (2) is effective for a single evader.
The case of multiple evaders will be considered in the
following section.

A. Equilibrium points

The equilibrium point of (4) is most convenient to calcu-
late. Indeed setting ṙ(t) = 0 and ψ̇(t) = 0, we get (denoting
(r∗, ψ∗) as the equilibrium point):

r∗ = Rcos (ψ∗) (6)

ω =
kRsin (ψ∗)

r∗ [(r∗)2 +R2 − 2r∗Rcos (ψ∗)]
3
2

Eliminating r∗ from the above equations, we get

cos (ψ∗) sin2 (ψ∗) =
k

ωR3
. (7)

1) Existence of Equilibrium Points: We know that
−0.385 < cos (ψ∗) sin2 (ψ∗) < 0.385 and k, ω and R are
all positive, which implies 0 < k

ωR3 < 0.385. Hence if and
only if, this inequality is satisfied by k, ω and R, there exists
equilibrium points (r∗, ψ∗) for (4). The next lemma follows
immediately.

Lemma 2. System (4) has equilibrium points if and only
if 0 < k

ωR3 < 0.385. Equivalently, system (3) has limit
sets/cycles if and only if 0 < k

ωR3 < 0.385.

2) Computation of Equilibrium Points: Eliminating ψ∗

from (6) and (7), we get

r∗3 −R2r∗ +
k

ω
= 0 (8)

Denote the three roots of (8) by r∗1 , r∗2 and r∗3 . Note that
k

ωR3 < 0.385 =⇒ −R6

27 + k2

4ω2 < 0. From the theory of
general cubic equation [25], this implies that all the roots

are real. If we denote σ1 =

(
−
√

k2

4ω2 − R6

27 − k
2ω

) 1
3

and

σ2 =

(√
k2

4ω2 − R6

27 − k
2ω

) 1
3

then

r∗1 = σ2 + σ1

r∗2 =
−σ2
2

+

√
3σ1
2

j − σ1
2

−
√
3σ2
2

j

r∗3 =
−σ2
2

−
√
3σ1
2

j − σ1
2

+

√
3σ2
2

j

(9)

Lemma 3. For k
ωR3 < 0.385 and for finite k, ω and R, the

three roots (9) satisfy R > r∗1 >
R√
3
> r∗2 > 0 > r∗3 .

Clearly, the negative root r∗3 is not relevant to our analysis
since radius must be positive. The other roots r∗1 , r

∗
2 each

correspond to an equilibrium point for (4) . The correspond-
ing angles are ψ∗

1 = cos−1 r∗1
R and ψ∗

2 = cos−1 r∗2
R . In Fig. 2,

these two equilibrium points are depicted in the {u, v}-frame
with the red and blue dots respectively. In the next result,
we analyze the effect of increasing ω on the location of the
equilibrium points.

Lemma 4. For system (4), and the equilibrium radii defined
as in (9), r∗2 → 0 and r∗1 → R as ω → ∞.

B. Stability of equilibrium points

Theorem 5. For the system described in (4), let 0 <
k

ωR3 < 0.385, and (r∗1 , ψ
∗
1), (r∗2 , ψ

∗
2) be the equilibrium

points defined in (9) and Lemma 3. Then
1) (r∗2 , ψ

∗
2) is asymptotically stable

2) (r∗1 , ψ
∗
1) is a saddle point

C. Estimation of the Region of Attraction of (r∗2 , ψ
∗
2)

Since the asymptotic stability of (r∗2 , ψ
∗
2) has already

been established, we aim to estimate a maximal region of
attraction. A good estimate will also test the effectiveness
of the proposed strategy. For this purpose, we first denote
(r∗2 , ψ

∗
2) in the cartesian {u, v}-frame as u⋆ = r∗2 cosψ

∗
2

and v⋆ = r∗2 sinψ
∗
2 . The equations of motion in this frame

were already derived in (5). For computational purposes,
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we further shift the origin of the {u, v}-frame to {u∗, v∗}.
Denote this new frame as {ū = u − u∗, v̄ = v − v∗}, and
the equations are modified to:

˙̄u =
k(ū−R+ u∗)

((ū−R+ u∗)2 + (v̄ + v∗)2)
3
2

+ ω(v̄ + v∗),

˙̄v =
k(v̄ + v∗)

((ū−R+ u∗)2 + (v̄ + v∗)2)
3
2

− ω(ū+ u∗).

(10)

Definition 1. [26] Define w = [ū, v̄]T, denote (10) as ẇ =
f(w) and ψ(t;w0) as the solution starting at t = 0 from
w(0) = w0. For the asymptotically stable equilibrium point
w∗ = 0, the associated region of attraction is defined as:

RA = {w0 ∈ R2|ψ(t;w0) → 0 as t→ ∞} (11)

We use a computational method proposed in [27] to find a
quadratic estimate of the region of attraction (ROA) for this
system. The method is restricted to identifying an ellipsoidal
region, where the area is maximized to create the best inner
approximation for RA. We briefly review this method below.

The method consists of creating a Lyapunov function
V (w) = wT Âw, Â = ÂT > 0 and approximating RA

by the set Ω̄ = {w ∈ R2 : V (w) ≤ c}. The functional
V must satisfy the standard Lyapunov function properties
V (w) > 0, ∀w ∈ Ω̄, V (0) = 0, V̇ (w) < 0, ∀w ∈ Ω̄,
V̇ (0) = 0. We aim to find the ellipse with the largest area,
which can then used as the proposed approximation of RA.
Therefore, the goal is to determine Â and c so that area
contained in closed surface wT Âw = c is maximized. We
can normalize this equation and write as follows:

wTAx = 1 (12)

where A = Â
c . Clearly, the area contained in the closed curve

(12).

Area ∝ 1

λ1(A)λ2(A)

where λ1(A) and λ2(A) are the eigenvalues of A. Also
V̇ (w) = 2ẇAw. Hence the requirement of V̇ (w) < 0, ∀ w ∈
Ω̄ translates to fT (w)Aw < 0 ∀ w ∈ Ω̄. Hence the following
optimization problem can be formulated:

Problem 6. min
A∈R2×2

2∏
i=1

λi(A) such that

1) λi(A) > 0, ∀i = 1, 2

2) fT (w)Aw < 0, ∀w ∈ Ω̄ := {w|wTAw ≤ 1, w ̸= 0}

Unlike in [26], we use a modern constrained optimization
routine (e.g. fmincon in MATLAB [28]) to obtain solutions
of problem 1. The initial guess for the A matrix is taken to
be the normalized solution of the Lyapunov equation AJ +
JTA = −I, where J is the Jacobian of (10) evaluated at the
stable equilibrium point (ū = 0, v̄ = 0).
For notational convenience, let the set Ω̄ shifted back to the
{u, v} frame, be denoted by Ω. Two instances of Ω are shown
in Fig. 3 in a two separate {u, v} frame.

Remark 7. Note that the ROA is plotted in the {u, v}/{r, ψ}
frame. However, In the {x, y}/{r, ϕ} frame, the ROA de-
pends on the initial position of the pursuer. This will be
discussed in the next section.

D. Translation of Results to {x, y}/{r, ϕ}-frame

Sections III-A, III-B, and III-C dealt almost entirely in
the {u, v}/{r, ψ} frame, mainly due to the time-invariance
of the system equations in this frame. However we need to
interpret all the results in the {x, y}/{r, ϕ} frame for physical
understanding of the solution. In all the results below we
simply use the fact that the solutions r(t) remains the same
in both {u, v} and {x, y} frame. On the other hand, any ψ(t)
in the {u, v} frame translates to ϕ(t) = ψ(t) + ω(t) in the
{x, y} frame.

1) Equilibrium sets/limit cycles:

Theorem 8. Consider system (3). If k
ωR3 < 0.385, then (3)

has two limit cycles inside DR
z .

1) The first limit cycle is described by the trajectory L2 :=
{r⋆2(t) = r∗2 , ϕ

∗
2(t) = ψ∗

2 + ωt, ∀t ≥ 0}.
2) L2 is asymptotically stable.
3) The second limit cycle is described by the trajectory

L1 := {r∗1(t) = r∗1 , ψ
∗
1(t) = ψ∗

1 + ωt, ∀t ≥ 0}.
4) L1 is unstable.

Proof: The proof follows directly from lemma 2, 3 and
theorem 5.

The next result shows that the evader can be driven
arbitrarily close to the target by choosing a sufficiently large
pursuer velocity.

Corollary 9. For any ϵ > 0,∃W > 0 such that if ω > W ,
then the radius of L2 i.e. r⋆2 < ϵ

Proof: The proof follows from lemma 4.
2) ROA in {x, y} frame: Clearly, (4) is a time-varying

system, and thus, the region of attraction muat be re-defined.
Note, however, that the set of points converging to the
stable limit cycle changes with time in the {x, y} frame,
while this set is invariant in the {u, v} frame. A moment’s
reflection reveals that both the actual ROA, RA, and our
ellipsoidal approximation, Ω, are actually rotating around
the origin in the {x, y} frame at a constant angular velocity
ω. Two snapshots of this rotation of Ω are shown in Fig.
3. It is evident that the ROA depends on the instantaneous
orientation of the {u, v} frame (denoted by θ in Fig. 3),
which in turn depends on the relative position of the pursuer.
To address this {u, v} dependence, we refine the notation of
ROA in section III-C to RA(θ), and Ω(θ), to denote the ROA
and its approximation in the particular {u, v} frame rotated
by angle θ from the {x, y} frame (see Fig. 3).

Based on the above discussion, an appropriate notion
of ROA in this case can be defined as follows. Let the
position of the pursuer in the {x, y} frame be denoted by
P , and let the boundary of DR

z be represented as ∂DR
z .

Denote the solution of system (1) (dropping the subscript i)
corresponding to initial evader position {x0, y0} and initial
pursuer position {P0}, as ϕ(t;x0, y0, P0). Note that the
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ϕ(t;x0, y0, P0) is expected to converge onto the stable limit
cycle L2.

Definition 2. The ROA of the limit set L2 is defined as:
R

{x,y}
A = {{x0, y0} ∈ R2|ϕ(t;x0, y0, P0) → L2 as t →

∞, ∀P0 ∈ ∂DR
z }

Clearly, R{x,y}
A = ∩

θ∈{0,2π}
RA(θ) and a simple approx-

imation (though possibly conservative) of R
{x,y}
A can be

computed by the intersection:

Ω{x,y} = ∩
θ∈{0,2π}

Ω(θ)

An example of this intersection for R = 2, k = 1 and ω = 1
is plotted in Fig.4, where the pink circle encompasses Ω{x,y}.
Evidently, any evader with initial position within Ω{x,y}

converges to L2 as t → ∞ regardless of the initial position
of the pursuer within DR

z .

Fig. 3: Rotated ROA in static frame

Fig. 4: Intersection of all ROA respresnts a circle in static
frame

IV. HERDING OF MULTIPLE EVADER

In this section, we demonstrate that problem 1 can be
solved using the strategy proposed in section II-B. While
herding multiple evaders around a target with a single pursuer
may initially seem more challenging than guiding a single
evader to the target, we observe that the entire stability anal-
ysis from section III is independent of the specific position
of each evader ei as long as {xei(0), yei(0)} ∈ Ω{x,y}. In
fact in the {r, ψ} frame, the following result is self-evident.

Theorem 10. Consider the representation of the motion of
the ith evader (i = 1, . . . , n) in the {r, ψ} frame (i.e. (4) with

{r, ψ} replaced with {ri, ψi}). Then, if 0 < k
ωR3 < 0.385,

the following results hold:

1) Each evader has two equilibrium points (r⋆1 , ψ
⋆
1) and

(r⋆2 , ψ
⋆
2) satisfying R > r⋆1 > R√

3
> r⋆2 > 0.

Corresponding ψ⋆
1 = cos−1(

r⋆1
R ) and ψ⋆

2 = cos−1(
r⋆2
R ).

2) The equilibrium point {r⋆2 , ψ⋆
2} is asymptotically stable

for each evader.
3) The equilibrium point {r⋆1 , ψ⋆

1} is a saddle point for
each evader.

4) For any ϵ > 0,∃W > 0 such that if ω > W then
r⋆2 < ϵ.

Clearly the computation of the ROA is independent
of the evader index and hence it is guaranteed that if
{ui(0), vi(0)} ∈ RA ∀i = 1, . . . , n then each ui(t) → u⋆2 =
r⋆2 sin(ψ

⋆
2) and vi(t) → v∗2 = r∗2 cos(ψ

∗
2) as t → ∞. In the

{x, y} frame, equivalently theorem 8 holds for each evader,
as does the computation of the interested ROA, Ω{x,y}.
Ultimately, the insensitivity to the evader index ′i′ for all
these results imply:

Theorem 11. If 0 < k
ωR3 < 0.385, and if {xei , yei} ∈

Ω{x,y} ∀i = 1, . . . , n then under the pursuer strategy (2),
each evader converges asymptotically onto the limit cycle
L2 (as defined in theorem 8). Moreover, ω can be chosen to
arbitrarily reduce the radius of L2.

The following section illustrate the above result with
typical convergent trajectory in various reference frames.

V. SIMULATION RESULTS

Simulation results are shown for both single and multiple
evader situations.

A. For single evader

Figs. 5a and 5b depict the behavior of an evader when
R = 2, k = 1 with ω = 1 and ω = 0.5, respectively. We
observe that the path of the evader’s trajectory forms a spiral
as it approaches the limit set, which is a circle with radius r∗2 .
Comparing these two figures, it is clear that ω is inversely
related to the radius r⋆2 of the limit set L2 as expected from
lemma 4.

(a)
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Fig. 5: Evader and pursuer trajectory in {x, y} coordinate
frame for (a):R=2, ω=1, k=1, r∗2 =0.25, (b): R = 2, ω =
0.5, k = 1, r∗2 = 0.53
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Figs. 6a and 6b show the corresponding evader trajectories
in the {r, ψ}/{u, v} frame, where the evader converges to
the equilibrium point (r⋆2 , ψ

⋆
2). The effect of decreasing ω is

evident from the reduced frequency of the spiral in Fig. 6b.
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Fig. 6: Evader trajectory in {r, ψ} frame

B. Multiple evaders

In the case of multiple (three) evaders, shown in Fig. 7a,
all three evaders asymptotically converge onto the limit set
L2 in the {x, y}/{r, ϕ} frame.
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Fig. 7: Evader and pursuer trajectory in (a): {x, y} coordinate
frame, (b): rotating frame for R = 2, ω = 2, k = 1

Fig. 7b shows the corresponding evader trajectories in
the {u, v}/{r, ψ} coordinate frame, where all evaders
converge to the common equilibrium point (r∗2 , ψ

∗
2) =

(0.2541, 1.4434), regardless of the initial positions.

VI. CONCLUSION

This paper proposes a simple strategy for herding a group
of evaders using a single pursuer. The resulting motion is
analyzed and the stability and the region of attraction of
the limiting herd are studied. It is shown that the pursuer’s
angular velocity and distance from the target can be adjusted
to achieve an arbitrarily small herd radius and faster conver-
gence. Future research could explore theoretical estimates of
the ROA and investigate alternative pursuer strategies based
on the concepts developed here.
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