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Abstract— The formation of platoons, where groups of vehi-
cles follow each other at close distances, has the potential to
increase road capacity. In this paper, a decentralized control
approach is presented that extends the well-known constant
headway vehicle following approach to the two-dimensional
case, i.e., lateral control is included in addition to the longi-
tudinal control. The presented control scheme employs a direct
vehicle following approach where each vehicle in the platoon
is responsible for following the directly preceding vehicle
according to a nonlinear spacing policy. The proposed constant
headway spacing policy is motivated by an approximation of
a delay-based spacing policy and results in a generalization of
the constant headway spacing policy to the two-dimensional
case. By input-output linearization, necessary and sufficient
conditions for the tracking of the nonlinear spacing policy
are obtained, which motivate the synthesis of the lateral and
longitudinal controllers of each vehicle in the platoon. By
deriving an internal state representation of the follower vehicle
and showing input-to-state stability, the internal dynamics for
each leader-follower subsystem are shown to be well-behaved in
case the leader drives in steady state conditions (i.e., the leader
vehicle’s trajectory is unexcited). The results are illustrated by
a simulation.

I. INTRODUCTION
Limited highway capacity and the associated congestion

problems have been a key motivation for the research into
vehicle automation and intelligent transportation systems.
The formation of vehicle platoons, which are closely packed
formations of vehicles driving at short inter-vehicle distances,
has shown to be effective to increase the road capacity [1].
Potentially more than a doubling of highway capacity can
be achieved when all vehicles are platooning [2]. In addition
to the increased highway capacity, the small inter-vehicle
distances result in reduced aerodynamic drag that leads to
fuel savings for all vehicles in the platoon [3] [4].

Motivated by these advantages the problem of vehicle
platooning has been studied extensively. In particular lon-
gitudinal control of vehicle platoons has received a lot of
attention. See [5]–[8] for early works and [9]–[12] for more
recent contributions.

Using a cooperative control strategy, where vehicle-to-
vehicle (V2V) communication is used in addition to the
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on-board forward looking sensors, has the benefit that short
following distances can be achieved, while still attenuating
disturbances in the vehicle string [13]. The attenuation of
disturbances through the vehicle string is referred to as
string stability, for which in the one dimensional platooning
application (i.e., only considering the longitudinal behavior
on a straight line) definitions have been proposed in [6] and
[13].

To fully automate the vehicles in a platoon, lateral con-
trol is required in addition to the longitudinal control. To
this end, the lateral control can be treated independently
from the longitudinal control, by using a lane-keeping or
path following algorithm in combination with Cooperative
Adaptive Cruise Control (CACC) as done in [7] and [4].
However, the close distances in a platoon prove to be a
difficulty to obtain accurate readings of the lane markings
[14]. In [8] magnetic markers are used to obtain a reference
for the lateral controller that includes future information
about the road geometry. Although such an approach would
be capable to work in close vehicle following situations, it
requires significant changes to the road infrastructure. Other
(path following) approaches require trajectory information of
the leader vehicle, or a history of the leader vehicle’s path
[15], increasing demands on the memory and computational
power that is required for the control algorithm. Moreover,
the obstructed field of view of the forward looking sensors
can still pose a difficulty for the localization of the ego
vehicle with respect to the path. In such situations, a direct
vehicle following approach is beneficial, as [4] showed by
switching to a direct vehicle following approach as a backup
for the vision based lane keeping algorithm.

The main contributions in this paper are the following.
Firstly, we formulate a constant headway spacing policy in a
two-dimensional setup, which allows for lateral and longitu-
dinal vehicle platoon control, and show that the spacing pol-
icy can be regarded as a first order Taylor approximation of
the delay-based spacing policy in [9]. Secondly, we suggest a
decentralized controller design approach using a predecessor-
follower control structure. Following the idea from [10]–
[12], the follower vehicle is responsible for maintaining the
desired spacing with respect to its predecessor, regardless
of the lateral and longitudinal control of the predecessor. A
definition of string stability that suits within this framework
is suggested, and it is shown that string stability follows
from the choice of spacing policy. Thirdly, we show that the
controller that ensures tracking of the spacing policy can be
regarded as an input-output linearizing feedback controller.
It is shown that the resulting internal dynamics are input-to-
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state stable with respect to the spacing errors and the states
of the predecessor, for an unexcited leader vehicle trajectory.
Furthermore, it is demonstrated that tracking of the spacing
policy does not necessarily imply proper behavior of the
follower vehicle. Accordingly, conditions on the standstill
distances are stated such that proper follower behavior is
guaranteed.

The remainder of the paper is structured as follows. In
Section II the spacing policy is introduced and motivated,
followed by the problem statement. The results on controller
design are formulated in Section III, with an analysis of the
internal dynamics in Section IV. Some illustrative simulation
results are provided in Sections III and IV, and the main
results are summarized in Section V with some recommen-
dations for future research.

II. MOTIVATION AND PROBLEM FORMULATION

Consider a platoon of N + 1 vehicles modeled by the
unicycle model on a Cartesian coordinate system. That is,
the dynamics of each vehicle is assumed to be given by

ẋi = vi cos θi,

ẏi = vi sin θi,

v̇i = ai,

τiȧi = −ai + ui,1,

θ̇i = ωi,

ω̇i = αi,

α̇i = −αi + ui,2,

(1)

for i ∈ {0, 1, ..., N}. Here xi, yi ∈ R are the lateral and
longitudinal position of the centre of mass of the ith vehicle
and vi and ai (both in R) denote its velocity and acceleration.
The variable θi ∈ [0, 2π) denotes the local orientation of
the vehicle with respect to the x-axis. Furthermore, ωi ∈
R and αi ∈ R are the angular velocity and the angular
acceleration, respectively. The control inputs ui,1, ui,2 ∈ R
can be regarded as the desired acceleration and desired
angular acceleration. The time constant τi > 0 represents
the engine dynamics which is not necessarily identical for
each vehicle. Hence, a heterogeneous platoon is considered.
This is a slight extension of the model used in [16], [17].

Note that the dynamics (1) act on the centre of mass of
the vehicle. To incorporate the length of vehicle i and some
standstill distance in the modeling, let pi :=

[
xi yi

]⊤
and

denote q(φ) :=
[
cos(φ) sin(φ)

]⊤
. The vectors

pi := pi + q(θi)df,i p
i
:= pi − q(θi)dr,i (2)

represent a point of distance df,i in front and distance dr,i
behind vehicle i, respectively, relative to the orientation of
the vehicle. Taking into account df,i and dr,i, the lateral and
longitudinal distance between vehicle i and i−1 is given by

∆i =

[
∆xi

∆yi

]
=

[
p
i−1,1

− pi,1
p
i−1,2

− pi,2

]
= p

i−1
− pi, (3)

respectively.
The main design goal in vehicle platooning is to ensure the

tracking of a desired or reference inter-vehicle distance. This
desired inter-vehicle distance can be defined as a function

∆ref
i : R10 → R2 of (vj , aj , θj , ωj , αj) for j ∈ {i, i− 1}

and is commonly referred to as the spacing policy. Common
examples of spacing policies are the constant spacing policy
∆ref

i = d0 for some standstill distance d0 ∈ R2 and the
delay-based spacing policy [9], which can be written as
∆ref

i = pi(t+ λ)− pi for some time-gap λ > 0.
In this paper we consider the constant headway spacing

policy defined by

∆ref
i := λṗi (4)

for some λ > 0. The choice for (4) is motivated by choosing
∆ref

i as the first order Taylor approximation of the delay-
based spacing policy from [9] as follows. If the delay-based
spacing policy is tracked perfectly, then

p
i−1

(t)− pi(t+ λ) = 0. (5)

By taking a first-order Taylor approximation of (5) we obtain

p
i−1

(t)− pi(t)− λṗi(t) = 0.

By arranging the terms we obtain

∆i −∆ref
i = 0, (6)

where ∆i and ∆ref
i are defined as (3) and (4), respectively.

Hence, if (4) is tracked perfectly, the point in front of vehicle
i approximates the point behind vehicle i − 1 after a time
delay λ > 0.

This work pursues a decentralized approach towards con-
troller design that extends the results in [10]. That is, we
aim to design a controller for vehicle i that ensures the
desired spacing with respect to the directly preceding vehicle
i − 1, using only local measurements, i.e., information
regarding the states of itself and its predecessor. Moreover,
the controller for vehicle i is required to be robust with
respect to the inputs ui−1,1 and ui−1,2 of its predecessor in
the sense that the desired spacing should be achieved for all
possible inputs of the preceding vehicle. As a consequence of
this approach, a platoon consisting of only two consecutive
vehicles needs to be considered. Therefore, we consider a
platoon of two vehicles for the purpose of the analysis of
this problem.

The inputs and states of the points in front of and behind
vehicle i can be captured as ui =

[
ui,1 ui,2

]⊤
, and

ξi =
[
pi,1 pi,2 vi ai θi ωi αi

]⊤
,

ξ
i
=

[
p
i,1

p
i,2

vi ai θi ωi αi

]⊤
,

respectively. The state of the point behind vehicle i− 1 and
the state the point in front of vehicle i can be collected as

ξi =
[
ξ
⊤
i ξ⊤

i−1

]⊤
∈ R14,

such that the dynamics of the platoon yields a nonlinear
differential equation that is affine in the input

ξ̇i =

[
f i(ξi)
f
i−1

(ξi)

]
+

[
gi(ξi)
0

]
ui +

[
0

gi−1(ξi)

]
ui−1, (7)

where f i, f i and gi are defined as in (8). The spacing error
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between vehicles i and i− 1 is naturally defined as

ei(t) := ∆i −∆ref
i ∈ R2. (9)

Observe from (3) and (4) that ei can be expressed as a
function of ξi.

The control objective of tracking an asymptotic stabiliza-
tion of a given spacing policy can now be defined as follows.

Definition 1: Consider the platoon (1) and the spacing
error (9). A (nonlinear) state feedback ui = ki(ξi)+ li(ξi)νi
is said to

i) track the spacing policies if, for any ui−1(·) and ξi(0)
such that ei(0) = ėi(0) = 0, it holds that ei(t) = 0 for
all t ⩾ 0,

ii) asymptotically stabilize the spacing policies if for all
ξi(0) ∈ R14 it holds that limt→∞ ei(t) = 0,

iii) achieve string stability if, for any ui−1(·) and ξi(0) such
that ei(0) = ėi(0) = 0, for all T > 0 the following
inequalities hold:∫ T

0

|pi,1 − pi,1(0)|2 dt ⩽
∫ T

0

|p
i−1,1

− pi,1(0)|2 dt,∫ T

0

|pi,2 − pi,2(0)|2 dt ⩽
∫ T

0

|p
i−1,2

− pi,2(0)|2 dt.

(10)

The definition of string stability in (10) ensures the at-
tenuation of disturbances that propagate through the platoon
in both the lateral and longitudinal direction. In particular,
unstable swinging of the platoon when a lane shift occurs
is mitigated if (10) is satisfied. Furthermore, if the platoon
is driving along a straight line, (10) can equivalently be
expressed in terms of the velocity. Hence, this definition is
in line with the classical literature on string stability [5], [6],
[18] and similar to the definitions adopted in [10], [12]. An
alternative definition that is independent of the initial value of
ξi, such as used in [13] and [9] could also have been adopted.
However, the definition as in (10) is more suitable for the
design approach taken in this paper. To make this explicit,
we show at the end of this section, that if a controller ensures
i) and ii) in Definition 1, that iii) follows from the choice
of spacing policy by design. As such, Definition 1 leads to
the following problem.

Problem 1: Given (7) and the spacing error (9) with
spacing policy ∆ref

i as in (4), find a (nonlinear) feedback
controller ui = ki(ξi) + li(ξi)νi such that the closed loop
system satisfies the following properties for any ui−1(·):

i) ei(0) = ėi(0) = 0 implies ei(t) = 0 for all t ⩾ 0,
ii) for all ξi(0) ∈ R14, it holds that limt→∞ ei(t) = 0.

Remark 1: Note that the system (7) can be interpreted as
an affine nonlinear system with output (9). Consequently,
Problem 1 can be interpreted as a disturbance decoupling
problem (DDP) with output stabilization. For affine non-
linear single-input-single-output systems, a controller that
solves the DDP can straightforwardly be designed. This is
in contrast to multi-input multi-output systems, for which
there does not exists a straightforward method to verify the
existence of a controller that solves the DDP, let alone a
design method. However, for the multi-input multi-output
system (7) it will be shown that there exists a controller
that solves Problem 1 and a design method is presented.

Properties i) and ii) in Problem 1 clearly correspond to
the objective of tracking and asymptotic stabilization of the
spacing policy as in items i) and ii) in Definition 1. We
conclude this section by showing that if properties i) and
ii) in Definition 1 are satisfied, property iii) of Definition 1
follows from the choice of spacing policy by design.

Lemma 2: Consider the spacing policy (4). Any controller
that solves part i) of Problem 1 achieves string stability.

Proof: If ξi(0) such that ei(0) = ėi(0) = 0, we have
that ei(t) = 0 for all t ⩾ 0 by virtue of i). Without loss
of generality we translate p

i−1
and pi such that pi(0) = 0.

Consequently,

ei,j(t) = p
i−1,j

− pi,j − λṗi,j = 0,

for j = 1, 2. Considering for j = 1, 2 the storage functions
Vj(pi,j) = λ(pi,j)

2, then

V̇j(pi,j) = 2λpi,j ṗi,j = 2pi,jpi−1,j
− 2p2i,j

= p2
i−1,j

− (pi−1,j − pi,j)
2 − p2i,j ⩽ p2

i−1,j
− p2i,j .

Therefore, we obtain

Vj(pi,j(T ))− Vj(pi,j(0)) ⩽
∫ T

0

p2
i−1,j

(t)dt−
∫ T

0

p2i,j(t)dt.

Since pi(0) = 0, we have Vj(pi,j(0)) = 0. The result follows
after rearranging terms and noting that Vj(pi,j(T )) ⩾ 0 for
j = 1, 2.

III. CONTROLLER DESIGN

In this section we show that part i) of Problem 1 is
solvable. To that extent we present the following result.

Theorem 1: Consider the system (1) with the constant
headway spacing policies for λ. A feedback controller solves
part i) in Problem 1 if and only if

ui = k(ξi) + ūi, (11)

f i(ξi) =
[
vi cos θi − df,iωi sin θi vi sin θi + df,iωi cos θi ai − 1

τi
ai ωi αi −αi

]⊤
,

f
i
(ξi) =

[
vi cos θi + dr,iωi sin θi vi sin θi − dr,iωi cos θi ai − 1

τi
ai ωi αi −αi

]⊤
,

gi(ξi) =

[
0 0 0 1

τi
0 0 0

0 0 0 0 0 0 1

]⊤
,

(8)
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where

k1(ξi) = ai + 3τidf,iωiαi + τiviω
2
i +

τi
λ

(
− ai

+ df,iω
2
i + cos(θi−1 − θi)(ai−1 + dr,i−1ω

2
i−1)

− sin(θi−1 − θi)(−dr,i−1αi−1 + vi−1ωi−1)

)
(12)

and

k2(ξi) = αi + ω3
i −

1

df,i
(2aiωi + viαi) +

1

λdf,i

(
− viωi − df,iαi + sin(θi−1 − θi)(ai−1 + dr,i−1ω

2
i−1)

+ cos(θi−1 − θi)(−dr,i−1αi−1 + vi−1ωi−1)

)
(13)

and ūi is any function satisfying ūi = 0 if ei = ėi = 0.
Proof: For notational convenience we denote

R(θi) :=

[
cos θi − sin θi
sin θi cos θi

]
.

Given this notation, it can be verified that

ṗi = R(θi)

[
vi

df,iωi

]
; p̈i = R(θi)

[
ai − df,iω

2
i

df,iαi + viωi

]
;

...
p i = R(θi)

[
ȧi − 3df,iωiαi − viω

2
i

df,iα̇i + 2aiωi + viαi − df,iω
3
i

]
, (14)

and analogously we can express p̈
i−1

similarly. Due to (9),
the spacing error satisfies

ëi = p̈
i−1

− p̈i − λ
...
p i. (15)

If ei = 0 for all t ⩾ 0 then also ėi = ëi = 0 for all t ⩾ 0.
If ëi = 0, then multiplying (15) by R(θi)

−1 and collecting
the inputs on the left-hand side leads to

λ

[
τ−1
i ui,1
df,iui,2

]
= R(θi−1 − θi)

[
ai−1 + dr,i−1ω

2
i−1

−dr,i−1αi−1 + vi−1ωi−1

]
−
[
ai − df,iω

2
i

df,iαi + viωi

]
−λ

[
−τ−1

i ai − 3df,iωiαi − viω
2
i

−df,iαi + 2aiωi + viαi − df,iω
3
i

]
,

which proves the necessity. For the sufficiency, we have that

ëi = −λR(θi)
[
τ−1
i 0
0 df,i

]
ūi, (16)

due to our choice of ui. Since ūi = 0 whenever ei = ėi = 0,
if ξ(0) is such that ei(0) = ėi(0) = 0, we have that ei(t) = 0
for all t ⩾ 0.

Remark 2: In the case that dr,i−1 ̸= 0, a controller ui
for vehicle i that solves Problem 1 depends on the angular
acceleration αi−1 of the preceding vehicle. In the case that
αi−1 is not available or cannot be measured, the spacing
policy cannot be tracked. However, an alternative approach
is to require a different spacing policy where dr,i−1 = 0.
In that case the controller that solves Problem 1 does not
depend on αi−1.

The result of Theorem 1 shows not only that part i) of
Problem 1 is solvable, but also that the controller that solves
part i) is not unique. Consequently, we can directly state the
following result.

Corollary 1: Consider the platoon with dynamics (1) and
the constant headway spacing policy (4). Then part ii) of
Problem 1 is solvable.

Remark 3: A canonical choice for ūi is given by

ūi =
1

λ

[
τi 0
0 d−1

f,i

] [
cos θi sin θi
− sin θi cos θi

] [
c1ei,1 + c2ėi,1
c3ei,2 + c4ėi,2

]
(17)

for some constants c1, c2, c3, c4 > 0. Due to (16), such a
choice for ūi leads to the spacing error dynamics[
ėi,1
ëi,1

]
=

[
0 1

−c1 −c2

] [
ei,1
ėi,1

]
,

[
ėi,2
ëi,2

]
=

[
0 1

−c3 −c4

] [
ei,2
ėi,2

]
,

which are asymptotically stable. Fig. 1 illustrates the be-
havior of a platoon that adopts this control design. A
heterogeneous platoon is considered, where the leader is
modelled with a driveline constant τ0 = 1 and the following
vehicles with τi = iτ0. Each follower aims to follow its
predecessor using the controller of Theorem 1 and Remark 3
at a headway λi = 0.1 seconds, with standstill distances
df,i = dr,i−1 = 0.5 meter. The controller gains are chosen
as c1 = 1, c2 = 2, c3 = 1, c4 = 2.

Remark 4: If the leading vehicle is driving along the x-
axis, i.e., θi−1 = 0 and p

i−1,2
= ωi−1 = αi−1 = 0 and the

initial condition of the follower vehicle satisfies pi,2(0) = 0
and θi(0) = 0, ωi(0) = 0 and αi(0) = 0, the controller (11)
with ūi given by (17) satisfies

ui =

[
τi
λ (ai−1 − ai)− ai − c1ei,1 − c2ėi,1

0

]
.

This recovers the controller synthesized in [10], [11].

IV. THE NOMINAL BEHAVIOR OF THE
FOLLOWER VEHICLE AND INTERNAL

DYNAMICS

As the controller of Theorem 1 can be regarded as the
result of input-output linearization, it remains to be shown
that the internal dynamics of (7) are stable. To address
this problem, a representation of the internal state dynamics
should be phrased, and shown to be input-to-state stable (cf.
[19]) with respect to the state variables of the leader vehicle

0 100 200

0

10

20

x [m]

y
[m

]

Platooning behavior

Vehicle 0
Vehicle 1
Vehicle 2
Vehicle 3
Vehicle 4
Vehicle 5

0 5 10 15
0

5

10

t [s]

∥e
i∥

[m
]

Error convergence

∥e1∥
∥e2∥
∥e3∥
∥e4∥
∥e5∥

Fig. 1. A simulation of a platoon of vehicles that implement the controller
of Theorem 1 and Remark 3. The leader of the platoon, vehicle 0, drives
from the origin to the point (300, 25). The left figure shows the spatial
behavior of the platoon that follows the trajectory of the leader. The right
figure shows the spacing errors of the following vehicles converge to zero
asymptotically.

1423



i−1 and the error dynamics ei and ėi. In this paper we give
a partial answer to this problem by studying the case where
the leader vehicle i − 1 follows an unexcited trajectory, by
which we mean that ai−1 = αi−1 = 0. Although simulations
indicate input-to-state stability as well in the case of an
excited trajectory of the leader, it remains future work to
prove this property for all trajectories.

When vehicle i − 1 follows an unexcited trajectory, its
velocity vi−1 and angular velocity ωi−1 are constant. Conse-
quently, its trajectory is either a line if ωi−1 = 0, or a circle if
ωi−1 ̸= 0. To arrive at an internal state representation of the
follower vehicle, we study the limit behavior of the follower
vehicle subject to an unexcited leader, which we refer to
as the nominal following behavior. In this case, we expect
the follower vehicle i to drive at a fixed position relative to
vehicle i − 1 when ei = 0. For this purpose we define the
transformation T (x) and its inverse by

T (x) := R(θi−1)
−1(x− p

i−1
),

T−1(x) := p
i−1

+R(θi−1)x.

The transformation T (x) takes any point in the global frame
and transports it to the corresponding point in the frame of
p
i−1

, the point behind vehicle i−1. We let q := T (pi) denote
the point pi in this local frame. The derivative of q satisfies

λq̇ = −λωi−1

[
0 −1
1 0

]
q + λR(θi−1)

−1(ṗi − ṗ
i−1

),

= −λωi−1

[
0 −1
1 0

]
q +R(θi−1)

−1(p
i−1

− pi − λṗ
i−1

),

= −λωi−1

[
0 −1
1 0

]
q − q −R(θi−1)

−1λṗ
i−1

,

where we used (9) with ei = 0. The intuition that the vehicle
i drives at a fixed position behind vehicle i − 1 is reflected
by setting q̇ = 0. The obtained expression for q gives the
relative position of vehicle i in the local frame. We find that
setting q̇ = 0 implies

q = −λ
(
λωi−1

[
0 −1
1 0

]
+ I

)−1

R(θi−1)
−1ṗ

i−1
,

= − λ

1 + λ2ω2
i−1

[
1 λωi−1

−λωi−1 1

]
R(θi−1)

−1ṗ
i−1

.

We recall that ωi−1 is constant since αi−1 = 0. The matrix

1√
1+λ2ω2

i−1

[
1 λωi−1

−λωi−1 1

]
(18)

constitutes a rotation matrix and is also constant. We define
the constant angle ψ such that R(ψ) coincides with (18).
Transporting the point q back to the global frame yields

T−1(q) = p
i−1

− λ√
1+λ2ω2

i−1

R(ψ)ṗ
i−1

,

which we refer to as the nominal trajectory of the follower
vehicle. Our expectation is that pi → T−1(q) asymptotically,
and we therefore define

ζ := p
i−1

− pi − λ√
1+λ2ω2

i−1

R(ψ)ṗ
i−1

, (19)

so that ζ = T−1(q) − pi. We take ζ as part of the internal
state representation, and as such show that ζ is input-to-state
stable. Note from (9) and (19) that

λṗi = ζ − ei +
λ√

1+λ2ω2
i−1

R(ψ)ṗ
i−1

(20)

and that due to (19) the derivative of ζ satisfies

λζ̇ = λṗ
i−1

− ζ + ei − λ√
1+λ2ω2

i−1

R(ψ)(ṗ
i−1

+ λp̈
i−1

).

By defining the Lyapunov candidate V := λ
2 ζ

⊤ζ we find

V̇ = λζ⊤ζ̇ = −ζ⊤ζ + ζ⊤ei + λζ⊤ṗ
i−1

− λ√
1+λ2ω2

i−1

ζ⊤R(ψ)(ṗ
i−1

+ λp̈
i−1

),

⩽ −∥ζ∥2 + ∥ζ∥
(
∥ei∥+ λ∥ṗ

i−1
∥

+ λ√
1+λ2ω2

i−1

(∥ṗ
i−1

∥+ λ∥p̈
i−1

∥)
)
,

using Cauchy-Schwartz’ inequality. It follows that V̇ ⩽ 0 if

∥ei∥+ λ∥ṗ
i−1

∥+ λ√
1+λ2ω2

i−1

(∥ṗ
i−1

∥+ λ∥p̈
i−1

∥) ⩽ ∥ζ∥.

Since vi−1 and ωi−1 are constant, and since

ṗ
i−1

= R(θi−1)

[
vi−1

−dr,i−1ωi−1

]
,

p̈
i−1

= R(θi−1)

[
ai−1 + dr,i−1ω

2
i−1

−dr,i−1αi−1 + vi−1ωi−1

]
,

(21)

we have that ∥ṗ
i−1

∥ and ∥p̈
i−1

∥ are constant. This shows
that ζ remains bounded and that ζ is input-to-state stable.

Whenever ei = 0 and ζ = 0, we expect that also the
angular velocity of the follower vehicle i relative to the leader
vehicle i − 1, given by ωi − ωi−1, converges. If ωi−1 = 0
and the leader trajectory is a straight line, we expect that
ωi → 0. Similarly, if ωi−1 = c ̸= 0 and the leader trajectory
is a circle, we similarly expect that ωi → ωi−1 and that
θi − θi−1 converges to a constant angle ϕ. We refer to ϕ as
the nominal orientation difference between the two vehicles.
We determine the value of ϕ as follows. By taking ζ = 0 in
(19) and assuming that ωi = ωi−1 we observe that

ṗi = ṗ
i−1

− λ√
1+λ2ω2

i−1

R(ψ)p̈
i−1

.

By substituting (14) with ωi = ωi−1 and (21) with
ai−1 = αi−1 = 0, we find that

R(θi)

[
vi

df,iωi−1

]
= R(θi−1)

[
vi−1

−dr,i−1ωi−1

]
− λωi−1√

1+λ2ω2
i−1

R(ψ)R(θi−1)

[
0 −1
1 0

] [
vi−1

−dr,i−1ωi−1

]
.

Multiplication by R(θi−1)
−1 yields

R(θi − θi−1)

[
vi

df,iωi−1

]
=

(
I − λωi−1√

1+λ2ω2
i−1

R(ψ)

[
0 −1
1 0

])[
vi−1

−dr,i−1ωi−1

]
= 1√

1+λ2ω2
i−1

R(ψ)

[
vi−1

−dr,i−1ωi−1

]
(22)
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by direct computation. For this equality to hold, we require
that the (squared) norms of both sides of the equation
coincide. This is to say that we require

v2i + d2f,iω
2
i−1 =

v2i−1 + d2r,i−1ω
2
i−1

1 + λ2ω2
i−1

. (23)

Note that (23) is an equation in vi and does not always have
a solution. Specifically, this is the case only if ωi−1 ̸= 0
and the leader trajectory is a circle, and df,i is too large or
dr,i−1 is too small. Fig. 2 shows the erratic behavior that
results whenever a solution to (23) does not exist. The key
observation here is that the radius of the circular trajectory
of p

i−1
should not exceed df,i. We remark that the existence

of a solution to (23) is a necessary condition for the follower
to converge to the nominal trajectory, but does not affect the
asymptotic convergence of ei to zero. The erratic behavior
can be avoided by increasing dr,i−1 and/or decreasing df,i,
such that (23) is always solvable along the trajectory of the
leader vehicle. However, this analysis is beyond the scope of
this paper.

−10 −8 −6 −4 −2 0 2
−2

0

2

4

6

x [m]

y
[m

]

Vehicle 0
Vehicle 1

Fig. 2. Example of the erratic follower behavior that may occur if the leader
vehicle drives on a circle and (23) does not have a solution. The plot shows
the trajectory of the centers of mass of the two vehicles. The trajectory of
the point p

i−1
behind the leader vehicle is also circular. Since (23) has

no solution, dr,i−1 is too small compared to df,i, and consequently the
radius of the trajectory of p

i−1
that vehicle i wishes to track is too small

compared to the following distance df,i. As a result, the follower cannot
drive at a fixed position behind the leader, and erratic following behavior
occurs.

Assuming that (23) is solvable for vi, we define

v̂i :=

√
v2i−1 + d2r,i−1ω

2
i−1

1 + λ2ω2
i−1

− d2f,iω
2
i−1

as the nominal velocity of the follower vehicle. If vi = v̂i
in (22), both sides of the equation have the same norm and
there exists a choice for the relative orientation θi − θi−1

such that (22) holds. We let ϕ be this angle, which is to say
that ϕ is defined by

R(ϕ)

[
v̂i

df,iωi−1

]
= 1√

1+λ2ω2
i−1

R(ψ)

[
vi−1

−dr,i−1ωi−1

]
. (24)

It may be observed that this is equivalent to the equation

R(ϕ)

[
v̂i −df,iωi−1

df,iωi−1 v̂i

]
= 1√

1+λ2ω2
i−1

R(ψ)

[
vi−1 dr,i−1ωi−1

−dr,i−1ωi−1 vi−1

]
.

We may invert the matrix after R(ϕ) to obtain an explicit
expression for R(ϕ). Using (18), by direct computation we
find that ϕ satisfies

cosϕ =
vi−1(v̂i − λdf,iω

2
i−1)

v2i−1 + d2r,i−1ω
2
i−1

+
dr,i−1ωi−1(λv̂iωi−1 + df,iωi−1)

v2i−1 + d2r,i−1ω
2
i−1

;

sinϕ =
−dr,i−1ωi−1(v̂i − λdf,iω

2
i−1)

v2i−1 + d2r,i−1ω
2
i−1

+
vi−1(λv̂iωi−1 + df,iωi−1)

v2i−1 + d2r,i−1ω
2
i−1

.

Note in particular that ωi−1 = 0 implies ϕ = 0.
To capture the remaining internal state variable that is

complementary to ζ, we make the following definitions. Let
α ∈ [−2π, 0) be the angle defined by

α :=


2 arctan

(
−v̂i

df,iωi−1

)
if ωi−1 > 0,

2 arctan
(

−v̂i
df,iωi−1

)
− 2π if ωi−1 < 0,

−π if ωi−1 = 0.

Furthermore, we define the variable

δ(t) :=

∫ t

0

ωi(s)− ωi−1(s) ds+ θi(0)− θi−1(0)− ϕ,

= θi − θi−1 − ϕ

and for δ ∈ [α, α+ 2π) the function

F (δ) := λv̂i(1− cos(δ)) + λdf,iωi−1(δ − sin(δ)).

We note the partial derivative of F with respect to δ satisfies

∂F
∂δ = λv̂i sin(δ) + λdf,iωi−1(1− cos(δ)). (25)

Consequently, the extrema of F are the local minimum at
δ = 0 and the local maxima at δ = α, α+ 2π.

By substituting (14), (21) and (24) in (20), we find that

λR(θi)

[
vi

df,iωi

]
= ζ − ei + λR(ϕ)R(θi−1)

[
v̂i

df,iωi−1

]
,

which, through multiplying by R(θi)−1, yields

λ

[
vi

df,iωi

]
= R(θi)

−1(ζ − ei) + λR(δ)−1

[
v̂i

df,iωi−1

]
,

= R(δ + θi−1 + ϕ)−1(ζ − ei) + λR(δ)−1

[
v̂i

df,iωi−1

]
.

By writing out the second line of this equation, we obtain

λdf,iωi =− sin(δ + θi−1 + ϕ)(ζ1 − ei,1)

+ cos(δ + θi−1 + ϕ)(ζ2 − ei,2)

− λv̂i sin(δ) + λdf,iωi−1 cos(δ),

and substitution in (25) yields the partial derivative of F as

∂F
∂δ =λdf,i(ωi−1 − ωi)− sin(δ + θi−1 + ϕ)(ζ1 − ei,1)

+ cos(δ + θi−1 + ϕ)(ζ2 − ei,2).
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We define as our internal state variable z := ωi − ωi−1,
together with the candidate Lyapunov function

W (z, t) := F

(∫ t

0

z(τ)dτ + θi(0)− θi−1(0)− ϕ

)
.

Note that W (z, t) = F (δ), and therefore

Ẇ = ∂F
∂δ δ̇ = −λdf,i(ωi − ωi−1)

2

− sin(δ + θi−1 + ϕ)(ζ1 − ei,1)(ωi − ωi−1)

+ cos(δ + θi−1 + ϕ)(ζ2 − ei,2)(ωi − ωi−1),

≤ −λdf,i|ωi − ωi−1|2
+ (|ζ1 − ei,1|+ |ζ2 − ei,2|)|ωi − ωi−1|,

= −λdf,iz2 + (|ζ1 − ei,1|+ |ζ2 − ei,2|)|z|.
Consequently, if

|ζ1 − ei,1|+ |ζ2 − ei,2| ≤ λdf,i|z|,

then Ẇ ≤ 0. Thus, we can conclude that the variable z =
ωi − ωi−1 is input-to-state stable with respect to ζ and ei if
z considered as part of the internal state representation.

Finally, when adjoining the internal state variables ζ and z
to the error dynamics ei, ėi and the state of the leader ξ

i−1
,

this representation constitutes a coordinate transformation.
Lemma 3: The function defined by

S(ξ) :=
[
ξ⊤
i−1

e⊤i ė⊤i ζ⊤ z
]⊤

,

yields a coordinate transformation.
Proof: A direct computation of the determinant of the

Jacobian of S(ξ) yields det (∇S(ξ)) = 1. Hence, S(ξ) is
invertible and thus a coordinate transformation.

Altogether we have proven the following result.
Theorem 2: Consider the spacing policy (4) and the dy-

namics (7), where the leader vehicle follows an unexcited
trajectory. The remaining internal dynamics are input-to-state
stable with respect to ei, ėi and ξi−1.

V. CONCLUSIONS

In this paper we consider decentralized controller design
for lateral and longitudinal control of heterogeneous vehi-
cle platoons with constant headway spacing. A nonlinear
spacing policy is obtained by approximation of a time
delayed spacing policy. The results generalize the already
existing constant headway spacing policy for longitudinal
control to the two-dimensional case. Necessary and sufficient
conditions for tracking of the spacing policy are presented,
which motivate the synthesis of the longitudinal and lateral
controllers. The resulting internal dynamics are shown to be
input-to-state stable with respect to the spacing errors for an
unexcited leader trajectory. The same analysis for a general
leader trajectory is left for future research. Another future
direction of research is to re-frame the results in terms of
a body fixed frame, instead of an inertial frame, to enable
practical implementation and experimental validation of the
controller. The authors have obtained some results in this
direction which seem promising. However, they are not suf-
ficiently developed to incorporate in this paper. Additionally,

detailed analysis of the choice of standstill distances and
the effects on the (erratic) following behavior should be
addressed in future research. Finally, it remains to investigate
the performance of the controller in the case of imperfect
knowledge of the state.
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