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Abstract— In this paper, the distributed leaderless consensus
problem of multiple manipulators with elastic joints under a
directed graph is investigated, which extends existing results
on the coordination of multiple second-order Euler-Lagrange
systems to fourth-order manipulators with elastic joints. We use
the model reference adaptive consensus scheme to transform the
consensus problem into two subproblems. A trajectory tracking
algorithm is designed based on the command filter adaptive
backstepping approach, and it is shown that the joint positions
of the manipulators achieve ultimately bounded consensus. The
proposed algorithm only requires the interaction of the relative
joint position information.
Index Terms— Multi-agent systems, directed graph, manipula-
tor with elastic joints, command filter based adaptive backstep-
ping approach, model reference adaptive consensus

I. INTRODUCTION

In the past two decades, cooperative control of multi-agent
systems has drawn a lot of attention in the control field.
Current research mainly includes consensus, formation con-
trol, coordination exploration, and distributed optimization
[1], [2]. As a fundamental problem, the consensus of multi-
agent systems is deeply studied. The goal of consensus is to
use local information interaction among agents to make the
states of agents achieve the same final value. Furthermore,
the consensus of multi-agent systems is closely related to
formation, flocking and containment control.

The results of early research on multi-agent systems
mainly focus on linear systems. However, many mechanical
systems like the robotic manipulators are inherently nonlin-
ear. Basically, the coordination on networked manipulators
is based on Euler-Lagrange dynamics [3]–[5]. [3] proposes
a distributed algorithm of multiple Euler-Lagrange systems
under an undirected graph, and considers the situation of
unknown velocity information and input saturation. For a di-
rected graph, the nonlinearities in Euler-Lagrange dynamics
bring a lot of difficulties for the convergence analysis. A
widely used strategy is to employ distributed sliding mode
variables and design a control algorithm to drive the agents’
states toward the sliding surface. [4] presents a consensus
algorithm without the need of relative velocity information.
In a recent study [5], the problem of distributed adaptive
consensus under switching directed graphs is examined.

The above results concentrate on second-order Euler-
Lagrange dynamics. For manipulators with elastic joints, the
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dynamics become a fourth-order one with unmatched uncer-
tainties. The benefits of using fourth-order dynamics include
enhanced modeling accuracy, improved control precision,
and better performance in compliance control. Meanwhile,
unmatched uncertain high-order dynamic systems brings
significant challenges to the consensus algorithm design.
To cope with the unmatched uncertainties, backstepping
method is commonly used in [6]–[8]. In [6], a tracking
control algorithm based on the integrator backstepping is
proposed. The authors in [8] present an output feedback
tracking algorithm by adopting the link velocity observer
and actuator velocity observer. A proportional-derivative type
algorithm for the position tracking problem is proposed
in [7]. However, one of the shortcomings of backstepping
method is that the derivatives of the virtual control inputs
become difficult to calculate with the increase in the num-
ber of uncertain parameters. An effective method to solve
this problem is using command filter based backstepping
approach [9]. In [10], the command filters are designed to
approximate the virtual control inputs in the tracking problem
of a manipulator with elastic joints. The results in [6]–
[10] consider the control problem of one single manipulator.
As far as we know, there are only a few relevant results
about the coordination of multiple manipulators with elastic
joints. In [11], the authors propose a consensus algorithm
under an undirected graph. In [12], the consensus problem
in task space under a directed graph is investigated. However,
the interactive information among agents in [11], [12] is
related to the dynamical parameters, which are difficult to
obtain when dealing with parametric uncertainties. In [13],
we study the consensus problem without the exchange of
high-order derivatives under a directed graph where there
are no parametric uncertainties.

In this paper, we study the consensus problem of multiple
manipulators with elastic joints under a directed graph in
the presence of parametric uncertainties. By utilizing the
model reference adaptive scheme in [14], we assign each
manipulator a fourth-order reference to track. A trajectory
tracking algorithm is designed based on the command filter
adaptive backstepping approach [10], and it is shown that
the joint positions of the manipulators achieve ultimately
bounded consensus.

Notations: Let 1n and 0n denote, respectively, the n×1
column vector of all ones and all zeros. Let 0n×n denote the
n×n matrix with all zeros and In denote the n×n identity
matrix. Throughout the paper, we use ‖ · ‖ to denote the
Euclidean norm. For a vector η = (η1, . . . ,ηn)

T , diag(η)
denotes a diagonal matrix with η1, . . . ,ηn on its diagonal.
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II. BACKGROUND AND PROBLEM STATEMENT

A. Graph Theory

We use a directed graph to describe the network topology
among the N agents. Let GN

4
= (VN ,EN) be a directed graph

with the node set VN
4
= {v1, ...,vN} and the edge set EN ⊆

VN ×VN . An edge (vi,v j) ∈ EN denotes that agent v j can
obtain information from agent vi, but not vice versa. Here,
node vi is the parent node while node v j is the child node.
A directed path from node vi to node v j is a sequence
of edges of the form (vi,vi2), (vi2,vi3), . . ., (vik,v j), in a
directed graph. A directed tree is a directed graph, where
every node has exactly one parent except for one node, called
the root, and the root has directed paths to every other node.
A directed spanning tree of a directed graph is a direct tree
that contains all nodes of the directed graph. A directed graph
contains a directed spanning tree if there exists a directed
spanning tree as a subset of the directed graph.

The adjacency matrix AN
4
= [ai j] ∈ RN×N of a directed

graph (VN ,EN) is defined such that ai j > 0 if (v j,vi) ∈
EN , and ai j = 0 if (v j,vi) 6∈ EN . In this paper, self-edges
are not allowed, i.e., aii = 0. The in-degree of node i is
defined as follows: degin(vi) = ∑

N
j=1 ai j, i = 1, ...,N. Then,

DN = diag{degin (v1) , · · · ,degin (vN)} is called the in-degree
matrix of GN . The (non-symmetric) Laplacian matrix of GN
is defined as LN = DN −AN , with lii = ∑

n
j=1, j 6=i ai j and

li j =−ai j, i 6= j. A directed graph associated with n agents
is denoted by GN , (VN ,EN).

Assumption 1: The directed graph G contains a directed
spanning tree.

Lemma 1: [15] Under Assumption 1, the eigenvalues of
LN + kα 1NvT

N possess positive real parts, where kα is a
positive constant, vN represents the left eigenvector of the
Laplacian matrix associated with the zero eigenvalue and
meets the condition vT

N1N = 1.

B. Agent Model

The dynamics of a manipulator with p elastic joints can
be represented by the following equations [16]:

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +gi(qi) = Ki(θi−qi), (1)

Jiθ̈i +Biθ̇i +Ki(θi−qi) = ui +di(t), (2)

where qi ∈Rp and θi ∈Rp represent, respectively, the vectors
of joint position and actuator position, Mi(qi) ∈ Rp×p

represents the link inertia matrix, Ci(qi, q̇i) ∈ Rp×p

represents the Coriolis and centrifugal terms, gi(qi) ∈ Rp

represents the gravitational terms, ui represents the vector of
actuator torques, Ki = diag{Ki1,Ki2, . . . ,Kip}, Ji, Bi ∈ Rp×p

are positive constant diagonal matrices that represent joint
stiffness, actuator inertia, and actuator damping, respectively,
and di(t) ∈ Rp is the external time-varying disturbance
satisfying ‖di(t)‖ ≤ d̄i, where d̄i is assumed to be a known
constant. Several fundamental properties can be employed
to simplify the subsequent control algorithm design [17].

(P1) The link inertia matrix is symmetric, positive definite
and satisfies the following inequality for any x,y ∈ Rp

mi‖x‖2 ≤ xT Mi (y)x≤ m̄i‖x‖2,

where mi, m̄i ∈ R are known positive constants. More-
over, there exist positive constants k

′
Mi, kCi,1, and k

′
gi

such that k
′
Mi‖y‖ ≤ ‖Mi(x)y‖, ‖Ci(x,y)z‖ ≤ kCi,1‖y‖‖z‖,

‖gi(x)‖ ≤ k
′
gi, ∀x,y,z ∈ Rp.

(P2) Skew symmetric property: Ṁi(qi)− 2Ci(qi, q̇i) is skew
symmetric.

(P3) Linear in parameters: Yi,1 (qi, q̇i, q̈i)θi,1 =
Mi (qi) q̈i + Ci (qi, q̇i) q̇i + gi (qi), ∀q̈i, q̇i, qi, ∈ Rp,
where Yi,1 (qi, q̇i, q̈i) ∈ Rp×pθ i,1 is known as the
regression matrix, and θi,1 ∈ Rpθ i,1 is an unknown
parameter vector associated with the ith agent satisfying
‖θi,1‖ ≤ θ̄i,1, where θ̄i,1 is known upper bound.

(P4) Joint stiffness matrix Ki satisfies

xT Kix≤ xT Kix≤ xT K̄ix, ∀x ∈ Rp, (3)

where Ki = diag{Ki1,Ki2, . . . ,Kip} and K̄i =
diag{K̄i1, K̄i2, . . . , K̄ip} are positive definite diagonal
matrices. Define ki as the minimum element of Ki and
k̄i as the maximum element of K̄i.

In this paper, we assume that the parameters θi,1, Ki, Ji,
and Bi are constant but unknown. Define xi,1 = θi, xi,2 = θ̇i.
The above system can be described as

Mi (qi) q̈i +Ci (qi, q̇1) q̇i +gi (qi)+Kiqi = Kixi,1, (4)
ẋi,1 = xi,2, (5)

ẋi,2 = J−1
i ui + J−1

i di− J−1
i Bixi,2− J−1

i Ki (xi,1−qi) . (6)

It can be seen from (4)-(6) that the dynamics of a ma-
nipulator with elastic joints is different from second-order
Euler-Lagrange system. Therefore, we cannot directly design
consensus algorithm for (4) due to the influence of the
actuator dynamics.

The objective of this paper is to design a consensus
algorithm for multiple manipulators with elastic joints under
a directed graph in the sense that the relative joint position
error qi(t)− q j(t) and the joint velocity q̇i(t) converge to
certain bounded sets.

III. MAIN RESULTS

Due to the nonlinearity and strong coupling of the
manipulator with elastic joints, it is difficult to design con-
sensus algorithm directly. Inspired by [14], by designing a
linear reference model for each manipulator, the consensus
problem of multiple manipulators with elastic joints can be
transformed into two subproblems, namely, the consensus of
the linear reference models and the tracking algorithm design
of one single manipulator with elastic joints.

A. The Framework of The Consensus Algorithm

In this subsection, we first design a suitable reference
model for each manipulator. Note that the manipulator with
elastic joints has a fourth-order dynamics. Therefore, the
reference model should also be fourth-order with the relative
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joint position error τi = −∑
n
j=1 ai j(qi − q j) as input and

(zi, żi, z̈i,z
(3)
i ) ∈ R4p as state. For agent i, the dynamics of

the linear reference model can be designed as

z(4)i +ai,3z(3)i +ai,2z̈i +ai,1żi +ai,0zi = biτi, i = 1, . . . ,n, (7)

where ai,0,ai,1,ai,2,ai,3,bi are positive parameters to be de-
termined later. The tracking error is defined as

ei = qi− zi.

Then, we present a variable substitution for the fourth-order
reference model as follows. Define the auxiliary variables
ξi,1 = zi and ξi,2,ξi,3,ξi,4 ∈ Rp with

ξi,l =
1
ki

ξ̇i,l−1 +ξi,l−1, l = 2,3,4, (8)

where ki is an arbitrarily positive constant. From (8), ξi,4 can
be written as

ξi,4 = zi +
3
ki

żi +
3
k2

i
z̈i +

1
k3

i
z(3)i . (9)

Taking the derivative of (9) with respect to time yields

ξ̇i,4 = żi +
3
ki

z̈i +
3
k2

i
z(3)i +

1
k3

i
z(4)i . (10)

By adding and subtracting −k−1
i ∑

n
j=1 ai jξi,4 −

k−1
i ∑

n
j=1 ai j(ξi,1−ξ j,1) into (10), we obtain

ξ̇i,4 =− [
ai,1

k3
i
− 3

k2
i

n

∑
j=1

ai j−1]żi− [
ai,2

k3
i
− 3

ki
− 3

k3
i

n

∑
j=1

ai j]z̈i

− [
ai,3

k3
i
− 3

k2
i
− 1

k4
i

n

∑
j=1

ai j]z
(3)
i +

ai,0

k3
i

zi−
bi

k3
i

n

∑
j=1

ai j(qi

−q j)−
1
ki

n

∑
j=1

ai jξi,4 +
1
ki

n

∑
j=1

ai jξ j,1 +
1
ki

n

∑
j=1

ai j(ξi,1

−ξ j,1). (11)

Choose ai,0 = 0, ai,1 = k3
i + 3ki ∑

n
j=1 ai j, ai,2 = 3k2

i +

3∑
n
j=1 ai j, ai,3 = 3ki + k−1

i ∑
n
j=1 ai j, bi = k2

i . Then, (11) can
be written as

ξ̇i,4 = k−1
i

n

∑
j=1

ai jξi,4 + k−1
i

n

∑
j=1

ai jξ j,1 + k−1
i

n

∑
j=1

ai j(ei− e j).

(12)

Define the stack vectors ξ = (ξ T
1,1,ξ

T
2,1, . . . ,ξ

T
n,1, . . . ,

ξ T
1,4,ξ

T
2,4, . . . ,ξ

T
n,4)

T , and e∗ =
(
eT

1 ,e
T
2 , . . . ,e

T
n
)T . (8) and (12)

can be written in the following vector form

ξ̇ =−(L̃ ⊗ Ip)ξ +He∗, (13)

where L̃ is defined as

L̃ =


K −K 0n×n 0n×n

0n×n K −K 0n×n
0n×n 0n×n K K
−K−1A 0n×n 0n×n K−1D

 ,

where H , (0np×np,0np×np,0np×np,−(L T K−1)⊗ Ip)
T , A ,

D , L are the adjacency matrix, the in-degree matrix,

and the Laplacian matrix of G , respectively, and K =
diag{k1,k2, . . . ,kn}. For the matrix L̃ , it can be seen that its
row sum is zero, the diagonal elements are all non-negative,
and the off-diagonal elements are non-positive. Hence L̃
can be viewed as the Laplacian matrix of a directed graph
with 4n nodes denoted by G̃

4
= (Ṽ , Ẽ ). Overall, the reference

model (7) can be written as

z(4)i +[3ki + k−1
i

n

∑
j=1

ai j]z
(3)
i +[3k2

i +3
n

∑
j=1

ai j]z̈i

+[k3
i +3

n

∑
j=1

ai j]żi =−k2
i

n

∑
j=1

ai j(qi−q j), (14)

with the initial states being chosen as zi(0) = qi(0), żi(0) =
0p, z̈i(0) = 0p, z(3)i (0) = 0p. (14) can be seen as the fourth-
order linear system with ∑

n
j=1 ai j(qi − q j) as input and

zi, żi, z̈i,z
(3)
i as output.

Under the above framework, the following analysis is
divided into two parts. Firstly, we analyze the consensus
convergence of the reference models, in which the key is
the proof of the graph connectivity. Secondly, we design a
trajectory tracking algorithm for each manipulator to track
the output of the reference model. Under a fixed directed
graph, consensus can be achieved for multiple first-order
integrators if and only if the graph includes a spanning tree.
And we have the following result.

Lemma 2: Graph G̃ contains a spanning tree if and only if
G contains a spanning tree.

The proof follows a similar procedure to that in Theorem
4.6 of [14] and Lemma 3 of [13], and we omit it here.

B. Command Filter based Adaptive Backstepping Control
Algorithm Design

In this subsection, we aim to design a trajectory tracking
algorithm for each manipulator such that ei converges to a
bounded set. Since the parameters of the manipulator are
unknown and a desired trajectory is given by the reference
model, the actual control input can be designed using the
command filter based adaptive backstepping approach. De-
fine the following auxiliary variables

q̇ri = żi− kdiei,

si = q̇i− q̇ri = ėi + kdiei, (15)

where kdi is a constant positive gain. Then (4) can be written
as

Mi(qi)ṡi =−Ci(qi, q̇i)si +Ki(xi,1−qi)−Mi(zi)z̈i

−Ci(zi, żi)żi−gi(zi)+hi. (16)

where the residual term hi is

hi = Mi(qi)kdi(si− kdiei)+Ci(qi,kdiei)(si− kdiei)

+Ci(qi,kdiei)żi +[Mi(zi)−Mi(qi)]z̈i

+[Ci(zi, żi)−Ci(qi, q̇i)]żi +gi(zi)−gi(qi), (17)
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Under (P1), the residual term hi satisfies

‖sT
i hi‖ ≤ (ζi,1 +ζi,2‖żi‖2 +ζi,3‖żi‖4 +ζi,4‖z̈i‖2

+ζi,5‖ei‖2)‖si‖2 +ζi,6‖ei‖2. (18)

where ζi, j are positive constants associated with the ith
agents parameters, j = 1, . . . ,6. Here we define the lin-
early parameterizable function Yi,1(zi, żi, z̈i)θi,1 = Mi(zi)z̈i +
Ci(zi, żi)żi +gi(zi). Let θki ∈Rp denote the vector consisting
of the diagonal elements of K−1

i , and let θ̂i ∈Rpθ i,1 be the es-
timate of θi, θ̂ki = (θ̂ki1, . . . , θ̂kip)

T ∈Rp present the estimate
of θki. Additionally, K̂−1

i = diag(θ̂ki) = diag{θ̂ki1, . . . , θ̂kip}.
Choose xi,1 as the virtual control input of (16) and define the
virtual control law as

xi,1d =− kqisi +qi +diag(Yi,1θ̂i,1)θ̂ki

=− kqisi +qi + K̂−1
i Yi,1θ̂i,1, (19)

where kqi = ζi,0 + k−1(ζi,1 + k−2
di ζi,6 + ζi,2‖żi‖2 + ζi,3‖żi‖4 +

ζi,4‖z̈i‖2 + ζi,5‖ei‖2) is time-varying control gain with ζi,0
being a positive constant to be determined later. Differenti-
ating (19), we obtain

ẋi,1d =−kqiṡi− k̇qisi + q̇i +
d(diag(Yi,1θ̂i,1)θ̂ki)

dt
. (20)

From (20), the calculation of ṡi is difficult and hinders the
backstepping. Here we use a second-order command filter
to approximate the derivatives of xi,1d . The dynamics of the
second-order command filter can be written as

˙̄xi,1 =− kxi(x̄i,1− x̄i,2), x̄i,1(0) = xi,1d(0),
˙̄xi,2 =− kxi(x̄i,2− xi,1d), x̄i,2(0) = xi,1d(0), (21)

where kxi(t) > 0 is a continuous time-varying positive gain
to be determined later, and x̄i,1, ˙̄xi,1 ∈ Rp are the outputs of
the command filter. (21) can be written as

¨̄xi,1 =−(2kxi− k−1
xi k̇xi) ˙̄xi,1− k2

xi(x̄i,1− xi,1d). (22)

where kxi(t) > 0 is a continuous differential time-varying
positive gain associated with the ith agent to be determined
later, x̄i,1, ˙̄xi,1 ∈ Rp are the outputs of the command filter.

Define x̃i,1 = x̄i,1− xi,1d , x̃i,2 = x̄i,2− xi,1d . The dynamics
of x̃i,1, x̃i,2 can be written as follows

˙̃xi,1 =− kxi(x̃i,1− x̃i,2)− ẋi,1d ,

˙̃xi,2 =− kxix̃i,2− ẋi,1d . (23)

Define wi,1 = (wi,11,wi,12, . . . ,wi,1p)
T ∈ Rp with

wi,1 = xi,1− x̄i,1. (24)

Define the parameter estimate errors θ̃ki = θ̂ki−θki and θ̃i,1 =
θ̂i,1−θi,1. Then (16) can be rewritten as

Mi(qi)ṡi =−Ci(qi, q̇i)si− kqiKisi +Yi,1θ̃i,1 +hi

+Kidiag(Yi,1θ̂i,1)θ̃ki +Kiwi,1 +Kix̃i,1. (25)

The adaptation law for θ̂i,1 with σ -modification is formulated
as

˙̂
θi,1 =−Γi,1Y T

i,1si−σiΓi,1θ̂i,1, (26)

where Γi,1 = diag{Γi,11,Γi,12, . . . ,Γi,1pθi,1}T ∈ Rpθ i,1×pθ i,1 is
a positive diagonal matrix satisfying 0 < Γi � Γi,1 � Γ̄i. Note
that θ̂ki should satisfy K̄−1

i j ≤ θ̂ki j ≤K−1
i j . A projection-based

adaptation law of θ̂ki j, j = 1, . . . , p, is used

˙̂
θki j =



ΓKi jyi j if K̄−1
i j < θ̂ki j < K−1

i j or θ̂ki j = K−1
i j

and yi j ≤ 0, or θ̂ki j = K̄−1
i j

and yi j ≥ 0.
0 if θ̂ki j = K−1

i j and yi j > 0,
or θ̂ki j = K̄−1

i j and yi j < 0.
(27)

where ΓKi = diag{ΓKi1,ΓKi2, . . . ,ΓKip}T is a positive di-
agonal matrix satisfying 0 < ΓKi � ΓKi � Γ̄Ki, yi =
(yi1, . . . ,yip)

T = −diag(Yi,1θ̂i,1)si, the initial value θ̂ki(0) is
chosen such that K̄−1

i j ≤ θ̂ki j(0)≤ K−1
i j . Note that xi,1 is not

the actual control input of the manipulator with elastic joints.
Therefore, we assume that xi,2 in the subsystem (5) is the
virtual control input. Taking the derivative of wi,1 yields

ẇi,1 = ẋi,1− ˙̄xi,1 = xi,2− ˙̄xi,1. (28)

A virtual control law for xi,2 for (28) would be

xi,2d =−Λi,1wi,1 + ˙̄xi,1, (29)

where Λi,1 is a positive definite diagonal matrix and the
smallest diagonal element of Λi,1 is Λi,1 > 1

4 k̄i. Then (28)
can be rewritten as

ẇi,1 = (xi,2− xi,2d)−Λi,1wi,1. (30)

Define

wi,2 = xi,2− xi,2d . (31)

Substituting (31) into (30) yields

ẇi,1 = wi,2−Λi,1wi,1, (32)

However, xi,2 is not the actual control input. We then use
the backstepping method and take the derivative of wi,2 to
obtain the control input ui. Note that

ẇi,2 = ẋi,2− ẋi,2d . (33)

Multiplying both sides of (33) by Ji yields

Jiẇi,2 =−Ki(xi,1−qi)−Bixi,2 +ui− Jiẋi,2d , (34)

Note that (34) can be written as

Jiẇi,2 = ui−Yi,2θi,2, (35)

where Yi,2θi,2 = Ki(xi,1−qi)+Bixi,2 + Jiẋi,2d . Let θ̂i,2 be the
estimate of θi,2, and define θ̃i,2 = θ̂i,2− θi,2. For (35), we
propose the following control algorithm

ui =−Λi,2wi,2−wi,1 +Yi,2θ̂i,2−
d̄iwi,2

‖wi,2‖+ e−t , (36)

where Λi,2 is a positive definite diagonal matrix and the
smallest diagonal element of Λi,2 is Λi,2. Substituting (36)
into (35) yields

Jiẇi,2 =−Λi,2wi,2−wi,1 +Yi,2θ̃i,2−
d̄iwi,2

‖wi,2‖+ e−t . (37)
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The parameter adaptation law for θ̂i,2 with σ -modification is
designed as

˙̂
θi,2 = −Γi,2Y T

i,2wi,2−σiΓi,2θ̂i,2, (38)

where Γi,2 = diag{Γi,21,Γi,22, . . . ,Γi,2pθi,2}T ∈ Rpθ i,2×pθ i,2 is
a positive diagonal matrix satisfying 0 < Γi � Γi,2 � Γ̄i.

Now, we have the following result.

Lemma 3: For (4), (5), and (6) with unknown parameters,
under the control algorithm (36) and adaptation law (26),
(27), (38), the tracking error ei is ultimately bounded.

Proof. Consider the following Lyapunov function candidate

Vi,1 =
1
2

sT
i Mi (qi)si +

1
2

θ̃
T
i,1Γ
−1
i,1 θ̃i,1 +

1
2

θ̃
T
ki Γ
−1
Ki Kiθ̃ki

+ζi,6k−1
di eT

i ei +
1
2

wT
i,1wi,1 +

1
2

wT
i,2Jiwi,2 +

1
2

θ̃
T
i,2Γ
−1
i,2 θ̃i,2.

Taking the derivative of Vi,1 along with the solutions of (37)
and (38) yields

V̇i,1 ≤−ζi,0sT
i Kisi−wT

i,1Λi,1wi,1 +wT
i,1wi,2 + sT

i Kix̃i,1

− sT
i Yi,1θ̃i,1 + θ̃

T
i,1Γ
−1
i,1

˙̃
θi,1−wT

i,2Λi,2wi,2−wT
i,1wi,2

−wT
i,1Yi,2θ̃i,2 + θ̃

T
i,2Γ
−1
i,2

˙̃
θi,2−

d̄iwT
i,2wi,2

‖wi,2‖+ e−t +wT
i,2di

≤− (ζi,0−1)sT
i Kisi− (Λi,1−

1
4

k̄i)wT
i,1wi,1−wT

i,2Λi,2wi,2

− 1
2

σiθ̃
T
i,1θ̃i,1 +

1
2

σiθ
T
i,1θi,1−

1
2

σiθ̃
T
i,2θ̃i,2 +

1
2

σiθ
T
i,2θi,2

+
1
2

sT
i K2

i si +
1
2

x̃T
i,1x̃i,1 + d̄ie−t . (39)

Then, we design the following Lyapunov function candidate
for (23)

Vi,2 =
1
2

k−1
xi x̃T

i,1x̃i,1 +
1
2

k−1
xi x̃T

i,2x̃i,2. (40)

Taking the derivative of (40) yields

V̇i,2 = k−1
xi x̃T

i,1 ˙̃xi,1 + k−1
xi x̃T

i,2 ˙̃xi,2

≤− 1
4

x̃T
i,1x̃i,1−

1
4

x̃T
i,2x̃i,2 +2k−1

xi k−1
xi ẋT

i,1d ẋi,1d . (41)

Note that ẋi,1d satisfies ‖ẋi,1d‖2 ≤ λi(
17
32‖si‖2+ 1

512‖si‖4+2),
where a detailed analysis about calculation of λi and λ i is

given in Appendix V-A. Therefore, we choose kxi = λ
− 1

2
i λi,

and kxi = λ
1
2
i . Substituting kxi into (41) yields

V̇i,2 ≤−
1
4

x̃T
i,1x̃i,1−

1
4

x̃T
i,2x̃i,2 +

17
16
‖si‖2 +

1
256
‖si‖4 +4.

Define the following Lyapunov function candidate as

Vi,3 = 16Vi,1 +Vi,2. (42)

The derivative of Vi,3 satisfies

V̇i,3 ≤− (ζi,0−1)sT
i Kisi− (Λi,1−

1
4

k̄i)wT
i,1wi,1−wT

i,2Λi,2wi,2

− 1
2

σiθ̃
T
i,1θ̃i,1 +

1
2

σiθ
T
i,1θi,1−

1
2

σiθ̃
T
i,2θ̃i,2 +

1
2

σiθ
T
i,2θi,2

+
1

12
sT

i K2
i si− x̃T

i,1x̃i,1−4x̃T
i,2x̃i,2 +17‖si‖2 +

1
16
‖si‖4

+64+ d̄ie−t . (43)

Let V̄i,3 be the upper bound of Vi,3(0). Define a constant
ci =min(2Λi,1− 1

2 k̄i,2Λi,2,
1
8 kxi,σiΓi). Here we choose ζi,0 =

1+ 1
12 k̄i + 17k−1

i + k−1
i ( 1

4 m−2
i V̄i,3 +

1
2 m̄ici +βi), where βi is

an arbitrarily positive constant.

V̇i,3 ≤− (ζ
i,0
− 1

2
m̄ici−

1
4

m−2
i Vi,3)‖si‖2 +

1
2

σiθ̄
2
i,1 +

1
2

σiθ̄
2
i,2

− ciVi,3 +
1
2

σiΓ̄iΓ
−1
Ki

p

∑
j=1

K̄i j(K̄−1
i j −K−1

i j )2 +64+ d̄ie−t

≤− (βi +
1
2

cimi)‖si‖2 +
1
2

σiθ̄
2
i,1 +

1
2

σiθ̄
2
i,2 +64+ d̄ie−t

+
1
2

σiΓ̄iΓ
−1
Ki

p

∑
j=1

K̄i j(K̄−1
i j −K−1

i j )2. (44)

From (44), we have the semi-global ultimately
bounded stability of the error dynamics. Therefore,
si,wi,1,wi,2, x̃i,1, x̃i,2, θ̃i,1, θ̃Ki, θ̃i,2 ∈ L∞. From (44),
the term d̄ie−t eventually converges to zero and
we have lim

t→∞
si(t) ∈ Ωsi = {‖si‖ ≤ s̄i}, where

s̄i = (βi +
1
2 cimi)

− 1
2 ( 1

2 σiθ
T
i,1θi,1 +

1
2 σiΓ̄iΓ

−1
Ki ∑

p
j=1 K̄i j(K̄−1

i j −
K−1

i j )2 + 1
2 σiθ

T
i,2θi,2 + 64)

1
2 . According to (15), we obtain

that lim
t→∞

ei(t) ∈Ωei = {‖ei‖ ≤ k−1
di s̄i}, i = 1, . . . ,n.

C. Consensus Analysis

The following theorem demonstrates the main result of
this paper.

Theorem 1: Under Assumption 1, using (26), (27), (36)
and (38) for (4), (5), and (6), the agents will achieve the
ultimately bounded consensus, i.e., ‖qi(t)−q j(t)‖ converge
to set Ωqi j = {‖qi − q j‖ ≤ 2c∑

n
i=1 k−1

di s̄i + k−1
di s̄i + k−1

d j s̄ j},
and ‖q̇i(t)‖ converge to set Ωq̇i = {‖q̇i‖ ≤ [λmax(P)c +
λmax(K−1L )]∑n

i=1 k−1
di s̄i + k−1

di s̄i + s̄i}, ∀i, j = 1, . . . ,n.

Proof. Assume that the eigenvector corresponding to
the zero eigenvalue of L and L̃ are v0 ∈ Rn

ṽ = {ṽ1, . . . , ṽ4n} ∈ R4n, respectively. From L̃ T ṽ = 04n
and 1T

4nṽ = 1, we have ṽ = (1T
4nṽ∗)−1ṽ∗, where ṽ∗ =

(vT
0 DK−1,vT

0 DK−1,vT
0 DK−1,vT

0 )
T . Left multiplying both

sides of (13) by ṽT ⊗ Ip yields we have (ṽT ⊗ Ip)ξ̇ = 04p.
Therefore, (ṽT ⊗ Ip)ξ (t) = (ṽT ⊗ Ip)ξ (0), ∀t > 0, which
implies that ∑

4n
j=1 ṽ jξ j(t) =∑

4n
j=1 ṽ jξ j(0) and ∑

4n
j=1 ṽ jξ j ∈L∞.

Define ξ̃ = ξ − (14nṽT ⊗ Ip)ξ . Noted that (14nṽT ⊗ Ip)ξ̃ =
04np. Then, (13) can be written as

˙̃
ξ = Pξ̃ +He∗, (45)

where P = −(L̃ + kα 14nṽT )⊗ Ip. From Lemma 1, P is a
Hurwitz matrix. Note that there exist positive constants ω,δ
such that ‖ePt‖ ≤ δe−ωt . Integrating both sides of (45), we
can get ‖ξ̃ (t)‖ ≤ δe−ωt ξ̃ (t0)+ c sup

t0≤τ≤t
‖e∗(τ)‖, where c =

ω−1δ‖H‖. Therefore, we conclude that the consensus error
of the reference models ξ̃ converges to the set Ω

ξ̃
= {‖ξ̃‖ ≤
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c∑
n
i=1 k−1

di s̄i}. The relative position errors among reference
models ‖zi− z j‖ are ultimately bounded with the ultimate
bounds Ωzi j = {‖zi − z j‖ ≤ 2c∑

n
i=1 k−1

di s̄i}, ∀i, j = 1, . . . ,n.
From the boundedness of ei, the relative joint position errors
among agents ‖qi − q j‖ are ultimately bounded with the
ultimate bounds Ωqi j = {‖qi−q j‖ ≤ 2c∑

n
i=1 k−1

di s̄i + k−1
di s̄i +

k−1
d j s̄ j}. The velocity of the reference models ˙̃

ξ converges to

the set Ω ˙̃
ξ
= {‖ ˙̃

ξ‖ ≤ [λmax(P)c+λmax(K−1L )]∑n
i=1 k−1

di s̄i}.
Finally, the joint velocities q̇i converge to the set Ωq̇i =
{‖q̇i‖ ≤ [λmax(P)c + λmax(K−1L )]∑n

i=1 k−1
di s̄i + k−1

di s̄i + s̄i},
i, j = 1, . . . ,n, which completes the proof.

IV. CONCLUSION

This paper has studied the distributed consensus problem
of multiple manipulators with elastic joints under a directed
graph. Through the model reference adaptive consensus
method, a linear reference model has been constructed and
the ultimately bounded consensus of the reference models
has been proved. Then, for the trajectory tracking problem
of a single manipulator with elastic joints, a tracking con-
trol algorithm has been designed using the command filter
based adaptive backstepping method. Under the proposed
distributed control law, the joint positions of the manipulators
eventually achieve consensus with bounded error.

V. APPENDIX

A. Boundedness of ẋi,1d

From (20), ẋi,1d has upper bound as follows

‖ẋi,1d‖=‖− k̇qisi− kqiṡi + q̇i− ˙̂KiK̂−2
i Yi,1θ̂i− K̂−1

i Ẏi,1θ̂i

− K̂−1
i Yi,1

˙̂
θi‖. (46)

Under property (P1), q̈i satisfies

‖q̈i‖ ≤ ζi,7‖si + kdiei + żi‖2 +ζi,8‖Ki(xi,1−qi)‖+ζi,9. (47)

where ζi,7 = k
′−1
Mi kci,1, ζi,8 = k

′−1
Mi , ζi,9 = k

′−1
Mi k

′
gi. Then (46)

can be written as

‖ẋi,1d‖ ≤ ‖k−1(2ζi,2żT
i z̈i +4ζi,3‖żi‖2żT

i z̈i +2ζi,4z̈T
i z(3)i

+ kqi +1+ Γ̄kik−2
i ‖Yi,1θ̂i,1‖2 + k−1

i Γ̄iȲ 2
i,1)‖si‖

+‖(kqik2
di− kdi)ei + k−1

i kqiz̈i− K̂−1
i Ẏi,1θ̂i,1

+σiK̂−1
i Yi,1Γi,1θ̂i‖+2k−1

i ζi,5‖ei‖‖si‖2 + kqi‖q̈i‖.

Yi,1 satisfies ‖Yi,1‖ ≤ Ȳi,1 = ζi,10(‖z̈i‖+‖żi‖2+1), where ζi,10
is a positive constant. Then ẋi,1d satisfies

‖ẋi,1d‖ ≤ λi,1‖si‖+λi,2‖si‖2 +λi,3

≤ (2λi,1 +32λi,2 +λi,3)(
1
2
‖si‖+

1
32
‖si‖2 +1),

where λi,1 = k−1
i (ζi,2‖żi‖2 + ζi,2‖z̈i‖2 + 2ζi,3‖żi‖6 +

2ζi,3‖z̈i‖2) + ζi,4‖z̈i‖2 + ζi,4‖z(3)i ‖2 + kqikdi +
2k−1

i ζi,5kdi‖ei‖2 + 1 + Γ̄i‖Yi,1θ̂i‖2 + k−1
i Γ̄iȲ 2

i,1 +

ζi,7kqi(k2
di‖ei‖2+‖żi‖2+2), λi,2 = k−1

i ζi,5(‖ei‖2+1)+kqiζi,7,
λi,3 = 1

2 + 1
2‖(kqik2

di − kdi)ei − kqiz̈i − diag(Ẏi,1θ̂i)θ̂Ki +

σidiag(Yi,1θ̂i)θ̂Ki‖2 + kqi

[
2ζi,7k2

di‖ei‖2 + 2ζi,7‖żi‖2 +

1
2 ξi,8ζ

−1
i,9 ‖K̄i(xi − qi)‖2 + 3

2 ζi,9

]
. Therefore, by using

Young’s inequality, we have

‖ẋi,1d‖2 ≤ (2λi,1 +32λi,2 +λi,3)
2(

17
32
‖si‖2 +

2
1024

‖si‖4 +2)

≤ λi(
17
32
‖si‖2 +

1
512
‖si‖4 +2), (48)

where λi = (2λi,1 +32λi,2 +λi,3)
2. From the definition of λi,

the lower bound of λi can be calculated as

λ i =
[5

2
+2k−1

i Γ̄iζ
2
i,10 +32k−1

i ζi,5 +(ζi,0 + k−1
i ζi,1

+ k−1
i k−2

di ζi,6)(2kdi +36ζi,7 +
3
2

ζi,9)
]2
. (49)
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