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Abstract— The design of controllers from data for nonlinear
systems is a challenging problem. In a recent paper, De
Persis, Rotulo and Tesi, “Learning controllers from data via
approximate nonlinearity cancellation,” IEEE Transactions on
Automatic Control, 2023, a method to learn controllers that
make the closed-loop system stable and dominantly linear was
proposed. The approach leads to a simple solution based on
data-dependent semidefinite programs. The method uses input-
state measurements as data, while in a realistic setup it is more
likely that only input-output measurements are available. In this
note we report how the design principle of the above mentioned
paper can be adjusted to deal with input-output data and obtain
dynamic output feedback controllers in a favourable setting.

I. INTRODUCTION

Learning controllers from data is of uttermost importance
and a fascinating topic, with foundations in both control
theory and data science. Several recent approaches have
been proposed for data-driven control, initially focusing,
as is natural, on linear systems, e.g. [1], [2], [3], [4].
For nonlinear systems, some results have appeared as well,
mostly focusing on special classes of nonlinear systems,
bilinear [5], [6], polynomial [7], [8], [9], rational [10] or
with quadratic nonlinearities [11], [12]. Other approaches
consist of approximating general nonlinear control systems
to classes for which data-driven design is possible [13], [14]
or expressing nonlinear systems via a dictionary of known
functions, in which case the design can aim at making the
closed-loop system dominantly linear [15] or prescribing a
desired output signal [16].

The understanding of the topic is far from having reached
a mature phase, even in the case full measurements of the
state are available. Yet, it can be argued that the use of these
data-dependent design schemes in practice very much rely
on the possibility that they work with output measurements
data only, which dispenses the designer from requiring to
know the state of the system – a very restrictive prior in
many cases. In this paper we report on some early results
on using data-driven control techniques in conjunction with
input/output data for discrete-time nonlinear systems.

Related work. Even when a model is known, output
feedback control for nonlinear systems is a challenging open
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problem [17, Section 8.7]. The certainty equivalence princi-
ple, which is valid for linear systems, is hard to extend to
a nonlinear setting. Nonetheless, certain nonlinear discrete-
time versions of the certainty equivalence principle have been
obtained [18]. In [19], the state in a globally stabilizing
state feedback (possibly generated by a finite horizon model
predictive scheme) is replaced by an estimate provided by an
observer under a uniform observability assumption to obtain
a globally stabilizing output feedback controller.

The important uniform observability property [20], [21],
[22] can be explored in different ways in the context of
learning control from data. Since it guarantees the existence
of an injective map from input/output sequences to the
state, deep neural networks can be trained to approximate
such a map and provide estimates of the state to be used
in the given input-to-state stabilizing feedback, obtaining a
locally asymptotically stable closed-loop system [23]. The
injective map can also be used to define the regression
relating the input/output sequences of the system and deep
neural networks can be used to learn such a regression [24].
However, to the best of our knowledge there are very few
other attempts at designing controllers for nonlinear system
from input/output data.

Contribution. The aim of this note is to start the in-
vestigation of feedback design from input/output data for
nonlinear discrete-time systems. We adopt the notion of
uniform observability, which allows us to extend some of
the design procedures introduced in [2]. Namely, we consider
past inputs and outputs as fictitious state variables and obtain
a form of the system for which the data-driven “state”
feedback design techniques for nonlinear systems of [15] can
be used. The implementation of the controller is then carried
out by replacing the past input/output measurements with
the quantities returned by a dead-beat observer of the output
and a chain of integrators driven by the input. A formal
analysis of the stability of the overall closed-loop system is
then presented along with a discussion about the proposed
solution.

In Section II we recall the notion of observability that
we adopt for our analysis and introduce an auxiliary system
that reproduces the input/output behaviour of the system to
control. The auxiliary system is extended in Section III-A
with a chain of integrators that provides the past inputs of
the system to be used in the controller. The design of the
output feedback dynamic controller based on input/output
data is presented in Section III. The analysis of the closed-
loop system to show the convergence of the system’s and
the controller’s state to the origin is the topic of Section IV,
along with a discussion of the result. The proofs are omitted
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due to space limitations and can be found in [25].

II. PRELIMINARIES

We consider the single-input single-output nonlinear
discrete-time system

x+ = f(x, u)
y = h(x)

(1)

where x ∈ Rn, u, y ∈ R, f(0, 0) = 0 and h(0) = 0. f, h are
continuous functions of their arguments with domains Rn×R
and Rn. These functions are unknown. The dimension of the
state-space n is not necessarily known.

A. Dataset

A dataset consisting of open-loop input-output measure-
ments

D := {(u(k), y(k))}N+T−1
k=0 (2)

is available, where the positive integers N,T will be spec-
ified later. The samples in the dataset are obtained from
off-line experiment(s) conducted on system (1), hence they
satisfy the equations (1), namely

x(k + 1) = f(x(k), u(k))
y(k) = h(x(k)), ∀k = 0, 1, . . . , N + T − 1

For our purpose of designing an output feedback controller
from D it is not required that all the samples of the dataset
are sequentially obtained in a single experiment. In fact, even
multiple experiments collecting N +T samples suffice. This
is useful especially when dealing with unstable dynamics.

B. Uniform Observability

The problem of interest is to design an output feedback
controller that stabilizes the nonlinear system, based on the
dataset D. To this purpose, we need to infer the behavior
of the state x from input-output measurements, for which
suitable “observability” conditions on the system (1) are
required. Before stating them, we introduce some notation.
We let

F 0(x) := x
F 1(x, v0) := f(x, v0)

F k+1(x, v0, . . . , vk) := f(F k(x, v0, . . . , vk−1), vk), k ≥ 1
(3)

Note that (3) gives x(k) = FN (x(k − N), u[k−N,k−1]).
To reduce the notational complexity, we introduce v[0,k],
which denotes the sequence of values v0, . . . , vk. Hence,
the last identity above is rewritten as F k+1(x, v[0,k]) :=
f(F k(x, v[0,k−1]), vk). In what follows, we will use symbols
like v[0,k] also to denote the vector [ v0 v1 ... vk ]

⊤.

The following is the main assumption on system (1).
Assumption 1: Let X ⊂ Rn and U ⊂ R be compact sets

such that X × U contains the origin of Rn+1. There exists
N ∈ Z>0 such that, for any v[0,N−2] ∈ UN−1, the mapping

ΦN (x, v[0,N−2]) =


h ◦ F 0(x)

h ◦ F 1(x, v0)
...

h ◦ FN−1(x, v[0,N−2])

 (4)

is injective as a function of x on X . □

Following [22, Definition 1], we refer to the assump-
tion above as a uniform observability on X property. It
is observed in [22] that, if f, h are continuously differen-
tiable functions, uniform observability is not restrictive in
the sense that a nonuniform distinguishability property and
a nonuniform observability rank condition imply uniform
observability. Since for any M ≥ N the mapping ΦM

remains injective, we do not need to know the smallest N
for which Assumption 1 holds.

For any v[0,N−2] ∈ UN−1, the function

ΦN (·, v[0,N−2]) : X → RN

such that x 7→ w = ΦN (x, v[0,N−2]), is injective on X and
one can define a left inverse

ΨN (·, v[0,N−2]) : ΦN (X , v[0,N−2]) → Rn

such that ΨN (ΦN (x, v[0,N−2]), v[0,N−2]) = x for all x ∈ X .

C. An auxiliary system

We introduce a system equivalent to (1) which is better
suited for control design. By equivalent it is meant that the
new system has the same input-output behavior of system
(1) when properly initialized. We use this auxiliary system
for control design purposes. Later on we show the effect of
the designed controller on the actual system (1).

For any v[0,N−1] ∈ RN , define the functions

ψ(w, v[0,N−1]) := FN (ΨN (w, v[0,N−2]), v[0,N−1])

h̃(w, v[0,N−1]) := h ◦ ψ(w, v[0,N−1])

f̃(w, v[0,N−1]) := Acw +Bch̃(w, v[0,N−1])

(5)

with the pair (Ac, Bc) ∈ RN×N×RN in the Brunovsky form.
The domain of ψ(·, v[0,N−1]), h̃(·, v[0,N−1]), f̃(·, v[0,N−1]) is
ΦN (X , v[0,N−2]). Under the standing assumptions on f, h,
these functions are continuous and zero at (w, v) = (0, 0).

In the result below, for a k ∈ Z, we let u[k−N,k−1] be
an input sequence applied to system (1) and y[k−N,k−1] its
output response from some initial condition x(k −N).

Lemma 1: Let system (1) satisfy Assumption 1. Consider
arbitrary k0 ∈ Z, x(k −N) ∈ X and u[k−N,k−1] ∈ UN for
all k ∈ Z≥k0

. Consider the system

w+ = f̃(w, v)

yw = h̃(w, v)
(6)

with f̃ , h̃ defined in (5). If the input v(k) applied to (6)
satisfies v(k) = u[k−N,k−1] for all k ∈ Z≥k0 and the initial
condition of (6) is set to w(k0) = y[k0−N,k0−1], then

w(k) = y[k−N,k−1], yw(k) = y(k), ∀k ∈ Z≥k0
.

Furthermore, x(k) = ψ(w(k), v(k)), for all k ∈ Z≥k0 . □
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III. DESIGN OF AN OUTPUT FEEDBACK CONTROLLER
FROM DATA

A. A dynamic extension

System (6) is driven by the past N samples of u, which
is the input to (1). These past values are obtained by adding
a chain of integrators to the dynamics (6)

ξ+ = Ac ξ +Bcu (7)

with the interconnection condition

v = ξ

which returns the system

w+ = f̃(w, ξ)
ξ+ = Ac ξ +Bcu

y = h̃(w, ξ)

(8)

Once the system’s state satisfies (w(k), ξ(k)) =
(y[k−n,k−1], u[k−n,k−1]) for some k ∈ Z, the input-
output behavior of this system matches the one of (1) for
all k ≥ k. We will discuss later on the availability of such
initial condition at a time k.

B. Control input design

To obtain u that drives the chain of integrators making
the dynamic controller, we argue as in [2], [15]. We first
introduce the following:

Assumption 2: For any ξ ∈ UN and any w ∈
ΦN (X , ξ[1,N−1]), where ξ[1,N−1] denotes the first N − 1

entries of ξ, it holds that h̃(w, ξ) = αZ(w, ξ), where
Z(w, ξ) ∈ RS is a vector of known continuous functions
and α ∈ R1×S is an unknown vector. □

This is a technical assumption due to the need to give
the nonlinearities of (8) a form for which the controller
design is possible. Although it is restrictive, [15, Section
VI.B] bypasses such an assumption by expressing h̃(w, ξ)
as αZ(w, ξ) + d(w, ξ), where the term d(w, ξ) represents
the nonlinearities that were excluded from Z(w, ξ), and then
analyzing the stability of the system in the presence of the
neglected nonlinearity d(w, ξ). This analysis goes beyond the
scope of this paper.

We consider the case in which the function Z(w, ξ)
comprises both a linear part and a nonlinear part Q(w, ξ),
i.e.

Z(w, ξ) =

 w
ξ

Q(w, ξ)


The system (8) can then be written as[

w+

ξ+

]
= A

[
w
ξ

]
+B1u+B2αZ(w, ξ)

y = αZ(w, ξ)
(9)

where

A :=

[
Ac 0
0 Ac

]
, B1 :=

[
0
Bc

]
, B2 :=

[
Bc

0

]
and the pair (Ac, Bc) is in the Brunovsky canonical form.

We focus on the case in which the input u is designed as
a function of Z(w, ξ), i.e.

u = κZ(w, ξ) (10)

where κ ∈ R1×S is the control gain. Write the closed-loop
system (9)-(10) as[

w+

ξ+

]
= A

[
w
ξ

]
+B1κZ(w, ξ) +B2αZ(w, ξ)

y = αZ(w, ξ)
(11)

The system is defined for any ξ ∈ UN and any w ∈
ΦN (X , ξ[1,N−1]).

C. Data-dependent representation of the closed-loop system

Preliminary to the design of the controller is a data-
dependent representation of the closed-loop system. We
first introduce some notation. Recall the dataset in (2) and
introduce, for i = 0, . . . , T − 1,

U(i) :=


u(i)

u(i+ 1)
...

u(i+N − 1)

 , Y (i) :=


y(i)

y(i+ 1)
...

y(i+N − 1)


We assume that the samples of the dataset evolve in the
domain of definition of (11).

Assumption 3: For any i = 0, . . . , T − 1, U(i) ∈ UN and
Y (i) ∈ ΦN (X , u[i,i+N−2]). □

We let:

Y0 :=
[
Y (0) Y (1) . . . Y (T − 1)

]
V0 :=

[
U(0) U(1) . . . U(T − 1)

]
Y1 :=

[
Y (1) Y (2) . . . Y (T )

]
V1 :=

[
U(1) U(2) . . . U(T )

]
Q0 :=

[
Q(0) Q(1) . . . Q(T − 1)

]
U0 :=

[
u(N) u(N + 1) . . . u(N + T − 1)

]
(12)

In the definition of Q0, we are using the shorthand notation
Q(i) for Q(Y (i), U(i)). As shown in Section V, these
matrices can also be built from data obtained from multiple
experiments. Under Assumption 3, bearing in mind the
dynamics (9), the dataset-dependent matrices introduced in
(12) satisfy[

Y1
V1

]
= A

[
Y0
V0

]
+B1U0 +B2α

Y0V0
Q0

 (13)

We establish the following:
Lemma 2: Let Assumptions 1, 2 and 3 hold. Consider any

matrices κ ∈ R1×S , G ∈ RT×S that satisfy the relation

[
κ
IS

]
=


U0

Y0
V0
Q0

G (14)
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and partition G as

G =
[
G1 G2

]
where G1 ∈ RT×2N , G2 ∈ RT×(S−2N). Then the closed-
loop system (11) can be written as[

w+

ξ+

]
=M

[
w
ξ

]
+NQ(w, ξ)

where

M = X1G1, N = X1G2, X1 =

[
Y1
V1

]
. □ (15)

Let the set of real-valued symmetric matrices of dimension
n× n be denoted by Sn×n. This data-dependent representa-
tion leads to the following local stabilization result:

Proposition 1: Let Assumptions 1, 2 and 3 hold. Consider
the following SDP in the decision variables P1 ∈ S2N×2N ,
Y1 ∈ RT×2N , and G2 ∈ RT×(S−2N):

minimizeP1,Y1,G2
∥X1G2∥ (16a)

subject to

Y0V0
Q0

Y1 =

[
P1

0(S−2N)×2N

]
, (16b)

[
P1 (X1Y1)

⊤

X1Y1 P1

]
≻ 0 , (16c)Y0V0

Q0

G2 =

[
02N×(S−2N)

IS−2N

]
. (16d)

Assume that
lim

|(w,ξ)|→0

|Q(w, ξ)|
|(w, ξ)|

= 0 . (17)

If the SDP is feasible then

ξ+ = Acξ +Bcu (18)

with
u = κZ(w, ξ) (19)

and κ as in

κ = U0

[
Y1 G2

] [ P−1
1 02N×(S−2N)

0(S−2N)×2N IS−2N

]
(20)

renders the origin (w, ξ) = (0, 0) an asymptotically stable
equilibrium of

w+ = f̃(w, ξ)
ξ+ = Acξ +BcκZ(w, ξ)

y = h̃(w, ξ).

(21)

□

D. Region of Attraction

Proposition 1 provides a local stabilization result. Fol-
lowing [15], Proposition 1 can be extended to provide an
estimate of the Region of Attraction (ROA) of the system
(21). First we recall the following definitions.

Definition 1: [26, Definition 13.2] Suppose that x = 0 is
an asymptotically stable equilibrium for x+ = f(x). Then
the ROA of x+ = f(x) is given by

A0 = {x0 : lim
k→∞

sk(x0) = 0}

where sk(x0) is the solution to x+ = f(x) at time k ≥ k0
from the initial condition x0. □

Definition 2: [26, Definition 13.4] A set M ⊂ Rn is a
positively invariant set for x+ = f(x) if sk(M) ⊆ M for
all k ≥ k0, where sk(M) = {sk(x0) : x0 ∈ M}. □

Recall the Lyapunov difference

V (w+, ξ+)− V (w, ξ)

=

(
M

[
w
ξ

]
+NQ(w, ξ)

)⊤

P−1
1

(
M

[
w
ξ

]
+NQ(w, ξ)

)
−
[
w
ξ

]⊤
P−1
1

[
w
ξ

]
=: W(w, ξ)

with M,N as in (15).
Corollary 1: Consider the same setting as Proposition 1.

Let1 V := {(w, ξ) : W(w, ξ) < 0}. Any sublevel set Rγ =
{(w, ξ) : V (w, ξ) ≤ γ} contained in V ∪ {0} is positively
invariant for system (21) and defines an estimate of the ROA
of system (21). □

As the function W(w, ξ) is known from the data, the
estimate of the ROA Rγ is computable.

IV. MAIN RESULT

To draw conclusions on the convergence of system (1),
we first observe that the dynamical controller (18) uses its
own state ξ and the state w to generate the control action
u = κZ(ξ, w). At time k the state w(k) contains the past N
output measurements from the process (1), from which we
only measure y(k). To make the past measurements in w(k)
available to the controller, we extend it with the dynamics

η+ = Acη +Bcy (22)

Then, for any k0 ∈ Z and any η(k0) ∈ RN , we have
that η(k) = y[k−N,k−1] = w(k) for all k ≥ k0 + N , that
is, independently of the initialization of (22), its state η(k)
provides the vector w(k) of the past output measurements
from time N onward. Similarly, for any ξ(k0) ∈ RN , system
(18) is such that ξ(k) = u[k−N,k−1] for all k ≥ k0+N . See
[19] for the same structure of the controller (18), (22).

Remark 1: System (22) is the so-called deadbeat observer,
since for k ≥ k0 + N , the mapping ψ(η(k), ξ(k)) would
return x(k). If both ψ and a state-feedback stabilizer for
system (1) were known, one could obtain a dynamic output
feedback controller for the system (1). Here we are interested
to the case in which this knowledge is not available and we
design a dynamic output feedback controller under a suitable
assumption on the nonlinearity h̃ (Assumption 2). ■

The following statement transfers the result obtained for
the system (21) to the actual closed-loop system that includes
the process (1).

Proposition 2: Let Assumptions 1, 2 and 3 hold. Consider
the SDP (16), assume that it is feasible and let condition
(17) hold. For any (x0, ξ0, η0) ∈ X × RN × RN for
which there exists v = (v[0,N−2], vN−1) ∈ UN such that

1Although not indicated explicitly, V is a subset of the domain of
definition of V (w, ξ).
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(ΦN (x0, v[0,N−2]), v) ∈ Rγ , the solution of the system (1)
in closed-loop with the time-varying controller comprised by
(18), (22) and

u(k) =

{
vk−k0

k0 ≤ k ≤ k0 +N − 1
κZ(η(k), ξ(k)) k ≥ k0 +N

(23)

that starts from (x0, ξ0, η0), asymptotically converges to the
origin. □

Proof. First note that, by definition of the mapping ΦN

and since f(0, 0) = 0 and h(0) = 0, each entry of ΦN is
a continuous function of its arguments which is zero when
these are zero, hence there exists a neighbourhood of the
origin (x, v) = (0, 0) such that any point (x, v) in the
neighbourhood satisfies (ΦN (x, v[0,N−2]), v) ∈ Rγ .

By definition of the mapping ΦN in Assumption 1 and
(23), ΦN (x0, v[0,N−2]) = y[k0,k0+N−1], where y denotes the
output response of the closed-loop system from the initial
condition (x0, ξ0, η0).

By the dynamics of the controller (18), (22), we have
η(k) = y[k−N,k−1], ξ(k) = u[k−N,k−1] for all k ≥ k0 + N
and (η(k0 +N), ξ(k0 +N)) = (ΦN (x, v[0,N−2]), v) ∈ Rγ .
Hence, by Lemma 1, the solution of (18), (22) are the same as
those of system (21) intialized at (w(k0+N), ξ(k0+N)) =
(y[k0,k0+N−1], u[k0,k0+N−1]). As (η(k0 +N), ξ(k0 +N)) ∈
Rγ , by Proposition 1 and Corollary 1, (η(k), ξ(k)) converges
to the origin. By Lemma 1, for all k ≥ k0 + N , x(k) =
ψ(η(k), ξ(k)), which implies convergence of x(k) to the
origin by continuity of ψ. ■

The particular form of u(k) in (23) is due to the fact that,
during the first N -steps, the controller state does not provide
an accurate value of the past input-output measurements of
the system, hence the choice to apply an open-loop input
sequence. After N time steps, when such past measurements
become available through the controller states η(k), ξ(k),
u(k) is set to the feedback κZ(η(k), ξ(k)).

We also remark that in the result above if the initial
condition x0 is sufficiently close to the origin and the initial
sequence of control values v0, . . . , vn−2, vn−1 does not drive
the output response of (1) outside the set Rγ , then the
designed controller (23) steers the state of the overall closed-
loop system to the origin. Note that Rγ is known thanks to
Corollary 1, hence the designer can check whether the initial
control sequence and the corresponding measured output
response are in Rγ . For the design of the initial control
sequence, the designer could take advantage of some expert
knowledge.

Remark 2: (Prior on input/output measurements) The
controller is designed under the assumption that the in-
put/output measurements collected during the experiment
range over some specified sets – see Assumption 3 – where
the measurements provide meaningful information about the
system’s internal state. These sets are not known, hence,
the feature that the evolution of the system during the
experiments remain in the sets of interest must be considered
as one of the priors under which the design is possible.

V. NUMERICAL EXAMPLE

We consider [15, Example 5]

x+
1 = x1 + Tsx2 (24a)

x+
2 =

Tsg

ℓ
sinx1 +

(
1− Tsµ

mℓ2

)
x2 +

Ts

mℓ
(cosx1)u , (24b)

with the output y = x1. The system parameters are Ts = 0.1,
m = 1, ℓ = 1, g = 9.8 and µ = 0.01. We compute

Φ2(x, v0) =

[
x1

x1 + Tsx2

]
which is globally invertible with N = 2 (Assumption 1
holds). Following the analysis in Section II, we compute the
auxiliary system in the form of (6) with w = Φ2(x, v0),
ξ1 = v0 and

h̃(w, ξ1) = (−1 + Tsµ
mℓ2 )w1 + (2− Tsµ

mℓ2 )w2 +
T 2
s g
ℓ sinw1+

T 2
s

mℓ (cosw1)ξ1

Next, following [15, Example 5], we choose

Z(w, ξ) = col(w, ξ, sinw1 − w1, ξ1 cosw1 − ξ1)).

Note that Assumption 2 and (17) hold.
The problem is to learn an output feedback controller for

(24) from input-output data that renders the origin of the
closed-loop system locally asymptotically stable. We collect
data by running T = 7, N = 2-long experiments with input
uniformly distributed in [−0.5, 0.5] and with an initial state
in [−0.5, 0.5] × [−0.5, 0.5] ⊂ R2. For each experiment j =
0, 1, . . . , T −1, we collect the samples {uj(k), yj(k)}2k=0 in

Y j
0 := col(yj(0), yj(1)), Y j

1 := col(yj(1), yj(2)),

V j
0 := col(uj(0), uj(1)), V j

1 := col(uj(1), uj(2)),

U j
0 := uj(2), Qj

0 := Q(Y j
0 , V

j
0 ).

Then we construct data matrices Y1, Y0, V1, V0, U0, Q0 in
(12) as

Y0 :=
[
Y 0
0 Y 1

0 · · · Y T−1
0

]
,

Y1 :=
[
Y 0
1 Y 1

1 · · · Y T−1
1

]
,

V0 :=
[
V 0
0 V 1

0 · · · V T−1
0

]
,

V1 :=
[
V 0
1 V 1

1 · · · V T−1
1

]
,

Q0 :=
[
Q0

0 Q1
0 · · · QT−1

0

]
,

U0 :=
[
U0
0 U1

0 · · · UT−1
0

]
.

The program (16) is feasible and we obtain the controller
gain with

κ =
[
52.4412 −76.1179 −0.5782 −0.4467 0 0

]
(25)

using the YALMIP toolbox [27], MOSEK solver [28]. To
assess the effectiveness of the designed controller, instead
of computing Rγ , which for this example provides a con-
servative estimate of the ROA, we depict in Fig. 1 the set
of initial conditions x0 for which, choosing vk−k0 = 0 for
k0 ≤ k ≤ k0 + N − 1 in (23), the state (x(k), η(k), ξ(k))
converges to zero. Note that the choice of η0, ξ0 is inessential.
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The set is obtained by letting the closed-loop system evolve
for 200 time steps and then checking whether or not the norm
∥(x(k), η(k), ξ(k))∥∞ is smaller than 10−6 on the interval
195 ≤ k ≤ 200.

-3 -2 -1 0 1 2 3

x
1

-6

-4

-2

0

2

4

6

x
2

Fig. 1. The blue area represents the estimate of the ROA of system (24)
in closed-loop with the controller (18), (22), (23), where vk−k0

= 0 for
k0 ≤ k ≤ k0 +N − 1 and κ is given in (25).

VI. CONCLUSIONS

We have examined a design of dynamic output feedback
controllers for nonlinear systems from input/output data. The
uniform observability property of the system, a prior in the
approach, is instrumental to define a new set of coordinates,
from which a data-driven “state”-feedback design can be
conducted. The result is local and the size of the region
of attraction is limited by the free evolution of the system
during the first N steps during which the dead-beat observer
reconstructs the past input/output values that feed the con-
troller. The design and analysis have been carried out in the
favourable setting in which measurements are noise-free and
the nonlinearities can be expressed via a dictionary of known
functions. Regarding the future work, besides going beyond
the favourable setting, we would like to explore either a
more sophisticated observer design or a different data-driven
control design method. An option is to express the function
ψ via a dictionary of functions, perform a data-driven design
of an observer and follow a certainty equivalence principle
in the analysis of the closed-loop system.
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