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Abstract—The average consensus problem under binary-
valued communications is investigated in the paper. Measure-
ment noises and fixed quantizers are considered. A signal
comparison algorithm is proposed for the problem. Neither the
noise distribution information nor assumptions on the states’
approximate locations are required for the algorithm design.
The signal comparison algorithm is proved to achieve average
consensus both in the almost sure and mean square sense. The
algorithm’s mean square convergence rate is also calculated.
The efficiency of the algorithm is demonstrated by a numerical
example.

I. INTRODUCTION

Cooperative control and distributed consensus problems of
multi-agent systems have attracted increasing attention due
to the applications in distributed sensor networks, satellite
internet constellations, and multiple unmanned aerial vehicle
systems, etc. Many of these applications are based on digital
networks. Digital networks only allow quantized communi-
cations. Therefore, in recent years, researchers pay interests
in distributed consensus algorithms that rely on quantized
communications.

Consensus algorithms based on infinite-level quantizers
have been well-developed. [1] proposes the quantized gossip
algorithm under the integer-valued state assumption. When
the states are real-valued, [2] applies logarithm quantizers
in the average consensus algorithm design. The algorithm
achieves consensus exponentially. Besides, [3], [4] design
quantized consensus algorithms based on probabilistic quan-
tizers, whose quantization error is independent of the state
values and unbiased [5].

Consensus problems under finite communication data rate
is more important and difficult, since real digital networks
can only transmit finite bits of information at each moment.
Under the constraint of communication data rate, [6], [7]
use the zooming-in technique to design quantized consensus
algorithms. [8] considers measurement noises, and proposes
an empirical measurement consensus algorithm. The algo-
rithm only requires binary-valued communications. [9]–[11]
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give recursive projection-based consensus algorithms, whose
mean square convergence rate can be O(1/k) when the step-
size is properly selected.

There are still challenging issues for the consensus prob-
lem under finite communication data rate. One of the issues
is to achieve average consensus without any a priori infor-
mation on the initial values. Among existing works, [6], [11]
proposes average consensus algorithms under the assumption
that all the agents’ initial states are located in a known
compact set. Using the assumption, they design control laws
to constrain all the states in the compact set. The assumption
is difficult to remove, because there is no upper bound
for quantization errors of finite-level quantizers. [8] gives
a consensus algorithm without any a priori information on
the initial values. But, the algorithm cannot achieve average
consensus, and the mean square convergence rate is slower
compared with the algorithm in [9].

Another important issue is about the distribution of the
measurement noises. In existing works considering measure-
ment noises [8]–[11], the distribution of the measurement
noises should be exactly known. This is because these
algorithms are based on the set-valued system identification
methods that require full knowledge of noise distribution
[8], [12]. To avoid the limitation, we should consider a new
consensus algorithm that does not rely on set-valued system
identification methods.

In the paper, a signal comparison average consensus algo-
rithm under binary-valued communications and measurement
noises is designed. The assumption on the initial states re-
quired in [6], [7], [9]–[11] is removed. The key is to construct
a stochastic process with averaged observations (SPAO) [13]
to estimate the distribution tail. Besides, our algorithm does
not rely on the knowledge of the noise distribution. Instead,
our algorithm controls the system by directly comparing the
binary-valued outputs of the agent itself and its neighbours.

The main contributions of the paper include
• A signal comparison average consensus algorithm is

proposed. Measurement noises are considered. Only
binary-valued communications are required.

• The algorithm’s efficiency is verified. The almost sure
and mean square average consensus is proved. It appears
to be first to obtain almost sure consensus under finite
communication data rate and measurement noises. Be-
sides, when the step-size is properly selected, the mean
square convergence rate can be O(1/k).

• The consensus analysis is established under weak con-
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ditions. Firstly, any a priori information on the initial
states is not required. Secondly, the noise distribution is
not required to be known. This appears to be the first
to be achieved for the consensus problem under binary-
valued communications. Thirdly, the noise distribution is
only assumed to be strictly increasing, in contrast to the
normal distribution assumption for noises in [8]–[10].

The rest of the paper is organized as follows. Section II
formulates the average consensus problem and designs the
signal comparison algorithm. Section III analyzes the con-
vergence properties of the algorithm. Section IV simulates
a numerical example to demonstrate the efficiency of the
algorithm. Finally, Section V gives a brief conclusion.

II. PROBLEM STATEMENT

A. Preliminaries

Here, we denote Rn and Rn×m as the sets of n-
dimensional real vectors and n × m-dimensional matrices,
respectively. The n-dimensional identity matrix is denoted by
In. ∥v∥ is the Euclidean norm for vector v. 1n,0n ∈ Rn are
column vectors with all ones and zeros, respectively. Then,
we define a projection matrix Jn = In− 1

n1n1
⊤
n . rank(A) as

the rank of the matrix A. Besides, we use diag(λ1, . . . , λn)
to represent the diagonal matrix with i-th diagonal element
being λi, and vol(λ1, . . . , λn) to represent the column vector
with i-th element being λi.

The communications between agents can given by an
undirected weighted graph G = (V, E ,A), where the agent
set V = {1, . . . , N} , and the edge set E = {(i, j) :
i, j ∈ V}. A = (aij)N×N represents the symmetric weighted
adjacency matrix of the graph whose elements are all non-
negative, and aij > 0 if and only if (i, j) ∈ E . Besides,
Ni = {j : (i, j) ∈ E} is used to denote the agent i’s the
neighbour set. Define Laplacian matrix as L = D−A, where
D = diag

(∑
i∈N1

ai1, . . . ,
∑

i∈NN
aiN

)
.

B. Average Consensus Problem and Algorithm Design

Consider a multi-agent system with an undirected and
connected communication graph G, whose dynamics can be
written as

xi(k) = xi(k − 1) + ui(k), ∀i = 1, . . . , N,

where xi(k) ∈ R is the agent i’s state, and ui(k) ∈ R is
the input to be designed. The state values xi(k), including
the initial value xi(0), are not necessarily directly measured
by the agent i. The agent i quantizes the state measurement
using a fixed quantizer with a single threshold C ∈ R. Then,
the binary-valued message can be represented by

si(k) =

{
1, if xi(k) + di(k) < C;

0, otherwise.
.

A necessary assumption for the noises is given below.

Assumption 1. Measurement noise sequence {di(k)} is
independent and identically distributed (i.i.d.) with a strictly
positive distribution function F (·).

Remark 1. The strict positive assumption for the distribu-
tion function F (·) is necessary for the consensus problem.
Otherwise, F (C − θ1) = F (C − θ2) for some θ1 > θ2.
Then, one cannot distinguish the cases of xi(k) = θ1 and
xi(k) = θ2 through the stochastic properties of binary-
valued output messages si(k). The assumption is weak. Even
the density function of the noises does not necessarily exist
under Assumption 1. For comparison, [8]–[10] assume that
measurement noises di(k) should be normal variables.

Our goal is to have all the states converge to 1
N

∑N
i=1 xi(0)

based on binary-valued messages si(k). To achieve the
goal, we propose the signal comparison average consensus
algorithm

xi(k) = xi(k − 1) + q(k)
∑
j∈Ni

aij (si(k − 1)− sj(k − 1)) ,

(1)
where step-size q(k) satisfies

∞∑
k=1

q(k) = ∞,

∞∑
k=1

q2(k) <∞.

Remark 2. Both the a priori information on the location of
xi(0) and the distribution function F (·) are not required to
be known for the algorithm design. For comparison, [6], [7],
[9]–[11] assume that maxi|xi(0)| ≤ M for known M > 0,
and [8]–[11] assume that the noise distribution function F (·)
should be known for the algorithm design.

III. MAIN RESULTS

The section focuses on the consensus properties of the
signal comparison algorithm (1), including the almost sure
and mean square average consensus, as well as the mean
square convergence rate.

A. Consensus Analysis

The subsection verifies the average consensus of the signal
comparison algorithm (1).

The following lemmas are given first before proceeding
the analysis.

Lemma 1. For the signal comparison algorithm (1), we have
that

∑N
i=1 xi(k) keeps constant.

Proof. Note that

N∑
i=1

∑
j∈Ni

aij (si(k − 1)− sj(k − 1)) = 0.

Then, the lemma is proved.

Remark 3. By Lemma 1, the sum of agents’ states keeps
constant. Therefore, it suffices to prove that the algorithm
can achieve consensus.

Here, we give a lemma for the construction of the Lya-
punov function.

Lemma 2. The set

[1]⊥N =
{
B∈RN×N

∣∣B1N = B⊤1N = 0N , rank(B)=N−1
}
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is a group whose identity element is JN , and for any B ∈
[1]⊥N , the inverse of B in the group [1]⊥N is the B’s pseudo-
inverse B+.

Proof. Since B1N = B⊤1N = 0N for all B ∈ [1]⊥N , one
can get BJN = JNB = B. Therefore, JN is the identity
element of [1]⊥N .

Then, we prove B+ ∈ [1]⊥N and B+B = JN . There exist
mutually independent unit vectors e1, . . . , eN−1 ∈ RN such
that 1⊤

Nei = 0 for any i = 1, . . . , N − 1. Since B1N = 0N ,
it holds that

B =

N−1∑
i=1

Beie
⊤
i = BHH⊤,

where

H =
[
e1 · · · eN−1

]
∈ RN×(N−1).

Therefore, as pointed out in Section 4.4 of [14], the pseudo-
inverse B+ can be written as

B+ = H(H⊤H)−1(H⊤B⊤BH)−1H⊤B⊤

= H(H⊤B⊤BH)−1H⊤B⊤.

By H⊤1N = 0N−1 and B⊤1N = 0N , we have B+ ∈ [1]⊥N .
Besides, one can get

B+B = H(H⊤B⊤BH)−1H⊤B⊤BHH⊤

= HH⊤ = JN .

The lemma is thereby proved.

Remark 4. Note that L ∈ [1]⊥N . Then, from Lemma 2, one
can get L+ ∈ [1]⊥N and L+L = LL+ = JN . Here, we use
the Lyapunov function V (x) = x⊤L+x for the consensus
analysis.

For the consensus analysis of the signal comparison algo-
rithm (1), it is important to analyze the stochastic properties
of si(k)− sj(k). Especially, given

Fk−1 = σ({di(t) : i ∈ V, 1 ≤ t ≤ k − 1}), (2)

The following lemma is for

E [si(k)− sj(k)|Fk−1] = F (C − xi(k))− F (C − xj(k)).

Lemma 3. Given a strictly monotonic function F (·) and two
real sequences ϕ1(k), ϕ2(k) satisfying

inf
k∈N

max {ϕ1(k), ϕ2(k)} > −∞,

sup
k∈N

max{ϕ1(k), ϕ2(k)} <∞,

then lim
k→∞

F (ϕ1(k)) − F (ϕ2(k)) = 0 implies lim
k→∞

ϕ1(k) −
ϕ2(k) = 0.

Proof. Without loss of generality, F (·) is assumed to be
strictly monotonically increasing and bounded. Otherwise,
consider

F ′(ϕ) =

∫ F (ϕ)(F (1)−F (0))

−∞
e−t2dt.

We now prove the lemma by contradiction.

Due to the boundedness of F (·), if lim
k→∞

ϕ1(k)−ϕ2(k) >

0, then there would exist subsequences {ϕ1(ks), ϕ2(ks)}s∈N
such that ϕ1(ks)−ϕ2(ks) converges to a positive number or
diverges to infinity, and F (ϕ1(ks)) and F (ϕ2(ks)) converge
to the same value. Note that F (ϕ1(ks)) and F (ϕ2(ks))
converges to 0 or 1 contradicts infk∈N ϕ1(k) > −∞ and
supk∈N ϕ2(k) < ∞, and F (ϕ1(ks)) and F (ϕ2(ks)) con-
verges to a finite number contradicts lim

s→∞
ϕ1(ks)−ϕ2(ks) >

0. The lemma is thereby proved.

Corollary 3.1. Under the condition of Lemma 3, one can get
lim
k→∞

(ϕ1(k) − ϕ2(k)) (F (ϕ1(k))− F (ϕ2(k))) = 0 implies
lim
k→∞

ϕ1(k)− ϕ2(k) = 0.

Lemma 4. Given a Laplacian matrix L ∈ RN×N with
rank(L) = N − 1, a strictly monotonic distribution function
F (·), a fixed threshold C ∈ R, and the function F(·) defined
as

F(x) = vol {F (C − x1), . . . , F (C − xN )} , (3)

where x = [x1, . . . , xN ]⊤, we have the following assertions:
1) xLF(x) < 0 if JNx ̸= 0N ;
2) lim

JNx→0N

xLF(x) = 0;

3) lim
k→∞

x(k)LF(x(k)) = 0, infk∈N maxi xi(k) > −∞ and
supk∈N mini xi(k) <∞ imply lim

k→∞
JNx(k) = 0N ;

4) lim
k→∞

x(k)JNF(x(k))
∥JNx(k)∥ = 0, infk∈N maxi xi(k) > −∞ and

supk∈N mini xi(k) <∞ imply lim
k→∞

JNx(k) = 0N .

Proof. Because

xLF(x) =
∑

(i,j)∈E

aij(xi−xj)(F (C−xi)−F (C−xj)), (4)

we have xLF(x) < 0 if JNx ̸= 0N .
Besides, by (4) one can get

− lim
JNx→0N

xLF(x)

≤ lim
JNx→0N

∑
(i,j)∈E

aij |xi − xj |

≤ lim
JNx→0N

N(max
i,j

aij)x
⊤JNx

= 0.

The third assertion of the lemma can be obtained by
Corollary 3.1 and (4).

Note that JN is a Laplacian matrix. By (4), when JNx ̸=
0N , one can get

xJNF(x)
∥JNx∥

=

∑N
i=1

∑N
j=1(F (C − xi)− F (C − xj))(xi − xj)√

2N
∑N

i=1

∑N
j=1(xi − xj)2

<
(maxi xi−mini xi)(F (C −maxi xi)−F (C −mini xi))√

2N3(maxi xi −mini xi)

=
1√
2N3

(
F
(
C −max

i
xi

)
− F

(
C −min

i
xi

))
.
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Then, since lim
k→∞

x(k)JNF(x(k))
∥JNx(k)∥ = 0,

lim
k→∞

F
(
C −max

i
xi(k)

)
− F

(
C −min

i
xi(k)

)
= 0,

which together with Lemma 3 implies the fourth assertion.

Following theorem gives the almost sure average consensus
of the signal comparison algorithm.

Theorem 1. Given Assumption 1, the signal comparison
algorithm (1) achieves average consensus almost surely.

Proof. By Lemma 1, it suffices to prove the almost sure
consensus of the algorithm.

For ease of notation, denote

x(k) = vol{x1(k), . . . , xN (k)},
w(k) = vol{w1(k), . . . , wN (k)},

where

wi(k) =
∑
j∈Ni

aij (si(k)− F (C − xi(k))

−sj(k) + F (C − xj(k))) .

Given σ-algebra Fk that is defined in (2), one can get x(k) is
Fk-measurable. Therefore, E [si(k)|Fk−1] = F (C − xi(k)),
which implies

E [w(k)|Fk−1] = 0N .

By (1),

x(k) = x(k − 1) + q(k) (LF(x(k − 1)) + w(k − 1)) , (5)

where F(·) is defined in (3). Set Lyapunov function V (·) as

V (x) = x⊤L+x, (6)

where L+ is the pseudo-inverse of L. Then, by Lemma 2,
we have

E [V (x(k))|Fk−1]

=V (x(k − 1)) + 2q(k)x⊤(k − 1)JNF(x(k − 1))

+O
(
q2(k)

)
. (7)

Since
∑∞

k=1 q
2(k) <∞, by Theorem 1 of [15], it holds that

the limit of V (x(k)) exists almost surely, and

lim
k→∞

x⊤(k)JNF(x(k)) = 0, a.s. (8)

Therefore, by Lemma 4, there is a subsequence {x(ks)}s∈N
satisfying lim

s→∞
JNx(ks) = 0N almost surely, which together

with Lemma 2 implies lim
s→∞

V (x(ks)) = 0. Then, due to the
almost sure convergence of V (x(k)), we have lim

k→∞
V (x(k))

= 0 almost surely. This proves the theorem.

Theorem 2. Given Assumption 1, the signal comparison
algorithm (1) achieves mean square average consensus.

Proof. By (7) one can get

EV (x(k)) ≤ EV (x(k − 1)) +O
(
q2(k)

)
,

which together with
∑∞

k=1 q
2(k) <∞ implies EV (x(k)) =

O(1). Therefore, by Lemma 4,

E
[
V (x(k − 1))x⊤(k − 1)JNF(x(k − 1))

]
≤ 0,

which together with (5) implies

E[V (x(k))]2 ≤ E[V (x(k − 1))]2 +O
(
q2(k)

)
.

Then, we have E[V (x(k))]2 = O(1), which together with
de La Vallée Poussin criterion [16] implies that V (x(k)) is
uniformly integrable.

Note that by Theorem 1 and Corollary 3.3.1 in [17],
V (x(k)) converges to 0 in probability. By Corollary 4.2.4
in [17] and the uniform integrability, one can get the theo-
rem.

B. Convergence Rate

The subsection calculates the mean square convergence
rate. For an accurate convergence rate analysis, we set
q(k) = q0

kp for some p ∈ ( 12 , 1]. Besides, the following
continuity assumption of the distribution function F (·) is
required.

Assumption 2. Measurement noise sequence {di(k)} is i.i.d.
Besides, the density function f(·) exists and for any compact
set Ξ,

inf
x∈Ξ

f(x) > 0.

Theorem 3. Set q(k) = q0
kp in the signal comparison algori-

thm (1). Then, under Assumption 2,

E
∥∥∥∥x(k)− 1

N
1N1⊤

Nx(0)

∥∥∥∥2

=


O
(
1
k

)
, if p = 1, 2q0fλ2(L) > 1;

O
(
ln k
k

)
, if p = 1, 2q0fλ2(L) = 1;

O
(

1
k2q0fλ2(L)

)
, if p = 1, 2q0fλ2(L) < 1;

O
(

1
kp

)
, if p ∈ ( 12 , 1),

where f = f
(
C − 1

N

∑N
i=1 xi(0)

)
, and λ2(L) is the mini-

mum positive eigenvalue of the Laplacian matrix L.

Proof. Here we just sketch the proof.
Firstly, we estimate the distribution tail using the technique

of [13]. We construct a stochastic process with averaged
observations (SPAO) as

ψ(k) = x(k)−AW (k),

where AW (k) =
q0

∑k−1
t=1 w(t)
kp . Similar to the proofs of

Theorems 1 and 7 in [13], one can get that for any given
m > 0 and ε ∈ (0, p− 1

2 ), there exist δ, ν ∈ (0, 1) such that
when k is sufficiently large,

∞⋃
t=⌊kδ⌋

{
∥AW (t)∥ < mt−ε

}
⊆

{
∥JNψ(k)∥2 < k−ν

}
.

Then, one can get

P
{
∥JNx(k)∥2 ≥ k−ν

}
= O (exp(−kγ)) (9)
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for some γ, ν ∈ (0, 1) similar to the proof of Theorem 2 in
[13].

Secondly, for all i ̸= j, define

f̌ij(k) =

{
f(C − xi(k)), if xi(k) = xj(k),

−F (C−xi(k))−F (C−xj(k))
xi(k)−xj(k)

, otherwise,

and Lf (k) = (lfij)N×N , where lfij = −aij f̌ij(k) if i ̸= j,
and lfii =

∑
j∈Ni

aij f̌ij(k). Then,

LF(x(k)) = −Lf (k)x(k). (10)

By (9), there exist γ, ν ∈ (0, 1) such that

P
{
∥fL − Lf∥2 ≥ k−ν

}
= O (exp(−kγ)) . (11)

Thirdly, by (5) and (10), it holds that

E ∥JNx(k)∥2

=

(
1− 2q0

kp
fλ2(L) +O

(
1

kp+
ν
2

))
E ∥JNx(k − 1)∥2

+O

(
1

k2p

)
.

Then, by Lemmas 3.2 and 3.3 in [18], we have

E ∥JNx(k)∥2

=


O
(
1
k

)
, if p = 1, 2q0fλ2(L) > 1;

O
(
ln k
k

)
, if p = 1, 2q0fλ2(L) = 1;

O
(

1
k2q0fλ2(L)

)
, if p = 1, 2q0fλ2(L) < 1;

O
(

1
kp

)
, if p ∈ ( 12 , 1).

By Lemma 1, the theorem is proved.

Remark 5. From Theorem 3, one can figure out when
the step-size q(k) is properly selected, the mean square
convergence rate of the signal comparison algorithm can be
O(1/k). For comparison, the mean square convergence rate
of the empirical measurement algorithm [8] is O(1/kζ) for
some ζ ∈ (0, 12 ), and that of the recursive projection-based
algorithms [9], [10] can be O(1/k) when the noise distribu-
tion function F (·) and the upper bound of maxi|xi(0)| are
known as a priori.

IV. SIMULATION

This section considers a four-agent system. The undirected
communication graph is shown in Figure 1, which also gives
the weights aij of the graph.

1 2

34

1

1
1

2

2

Fig. 1. Communication topology.

In the four-agent system, the agents’ initial values are

x1(0) = 3, x2(0) = 1, x3(0) = −1, x4(0) = −3.

Then,
∑4

i=1 xi(0) = 0. In the algorithm (1), the step-size
is set to be q(k) = 2/k. The measurement noise di(k) is
unbiased and normal with variance 1. The threshold C is set
to be 1.

Figure 2 gives a trajectory of the algorithm (1). The
trajectory shows that the four-agent system achieves average
consensus. Figure 3 illustrates a trajectory of kx⊤(k)JNx(k)
in 200 repeated experiments. The trajectory is bounded,
which demonstrates that the mean square convergence rate
can be O(1/k).

Fig. 2. The trajectories of the agents’ states.

Fig. 3. The average trajectory of kx⊤(k)JNx(k) in 200 repeated experi-
ments.

V. CONCLUDING REMARKS

The paper investigates the average consensus problem un-
der finite communication data rate and measurement noises.
A signal comparison algorithm is proposed for the problem.
Only binary-valued communications are required for the
algorithm. The algorithm design does not require the knowl-
edge on the upper bound of maxi|xi(0)|. Besides, under
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finite communication data rate and measurement noises, our
algorithm appears to be the first to allow the noise distribution
to be unknown. The algorithm is proved to achieve the
almost sure and mean square average consensus. The mean
square convergence rate of the algorithm is also calculated.
When the step-size q(k) is properly selected, the mean square
convergence rate can be O(1/k). For the future work, we
can try to extend the signal comparison algorithm into the
directed graph case, and can also apply the signal comparison
algorithm to other consensus problem, such as distributed
optimization problems. We can also consider the privacy-
preserving issue for the average consensus problem [19].
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