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Abstract— While the disturbance observer (DOB)-based con-
troller is widely utilized in various practical applications,
there has been a lack of extension of its use to differential
algebraic equations (DAEs). In this paper, we introduce several
lemmas that establish necessary and/or sufficient conditions for
specifying the relative degree of DAEs. Using these lemmas, we
also figure out that there is a class of DAEs which can be
viewed as linear systems with zero relative degree. For the
class of DAEs, we propose a design of Q-filter-based DOB
as well as a robust stability condition for systems controlled
by the DOB through time domain analysis using singular
perturbation theory. The proposed stability condition is verified
by an illustrative example.

I. INTRODUCTION

Differential algebraic equations (DAEs) have attracted
considerable attention in recent years due to their widespread
use in engineering and science. They arise naturally in
many applications such as robotics, aerospace, and circuit
theory, where the behavior of the system is constrained by
algebraic equations. Because DAEs do not treat the algebraic
equations as independent constraints along with ordinary
differential equations (ODEs), they provide a more accurate
representation of many physical systems and allow for the
modeling of more complex behaviors.

In particular, robust control of DAEs whose goal is to
compensate plant uncertainties and reject disturbances is
becoming an important and challenging problem in control
theory. For instance, disturbance decoupling has been studied
for the discrete-time linear DAEs in [1] and in continuous
time in a general behavioral framework in [2]. Other robust
control schemes for DAEs have been investigated in [3]–[5].

A popular robust controller design method, which has
not yet been applied for DAE systems is the Q-filter-based
disturbance observer (DOB) which was first introduced by
[6]. As a matter of fact, the robust stability condition of
the DOB-based control systems has been extensively in-
vestigated. For example, [7] and [8] incorporated singular
perturbation theory to analyze the DOB-based control sys-
tems and discovered a necessary and sufficient condition
for robust stability, which was further studied in [9]. This
condition makes it possible to systematically design the Q-
filter-based DOB for plants, which have a positive relative
degree, guaranteeing robust stability.

1Bernoulli Institute, University of Groningen, Nijenborgh 9, 9747 AG
Groningen, The Netherlands.

2ASRI, Department of Electrical and Computer Engineering, Seoul
National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea. Email:
h.chang@rug.nl; s.trenn@rug.nl

One of the main features of the Q-filter-based DOB is
that it is designed based on the inverse model of a given
plant. For this reason, it is essential to have some information
on the relative degree, zero dynamics, and normal form of
the plant. In fact, there are several recent studies on the
notion of the relative degree of DAEs. For instance, [10]–[12]
developed the notions of relative degree, zero dynamics, and
normal form of nonlinear DAEs (corresponding to Byrnes-
Isidori normal form of nonlinear ODEs) and made use of
the notions for stabilization and funnel control of DAEs. In
particular, the notion of the vector relative degree of muti-
input multi-output (MIMO) systems was generalized later
on in [13]. More recently, [14] established a connection
between the differentiation index of a nonlinear DAE and
the relative degree of an associated control system. However,
the design of the Q-filter-based DOB for DAEs has yet to
be investigated even for the simplest case, where DAEs can
be regarded as biproper linear ODEs.

The contributions of this paper are as follows. First, we
provide a lemma that explains a necessary and sufficient
condition for regular DAEs to be equivalent to ODEs in
the sense of input and output behavior. Additionally, we
present another lemma that enables us to find the relative
degree of a given regular DAE. On the other hand, observing
the fact that a certain class of DAEs can be represented by
linear systems with a direct feed-through term, we propose a
design method of the Q-filter-based DOB for linear systems
with zero relative degree. It is also noted that the DOB can
reject external disturbances as well as compensate model
uncertainties. Finally, a necessary and sufficient condition
for robust stability of the closed-loop system with the Q-
filter-based DOB is provided.

The rest of this paper is organized as follows. Section II
provides a background on DAEs and presents two lemmas
dealing with the relative degree of DAEs. Section III intro-
duces a DOB design for linear systems with zero relative de-
gree and proposes a robust stability condition for the closed-
loop system with the DOB. In Section IV, we demonstrate the
effectiveness of the proposed DOB in rejecting the effects of
input disturbances on the system output through a simulation
result. Finally, Section V concludes this paper and suggests
future research directions.

II. DIFFERENTIAL ALGEBRAIC EQUATIONS AND
RELATIVE DEGREE

Let us consider the following single-input single-output
(SISO) system based on a linear time-invariant (LTI) differ-
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ential algebraic equation (DAE):

Eẋ(t) = Ax(t) +Bu(t) (1a)
y(t) = Cx(t) +Du(t), (1b)

where E,A ∈ Rn×n, u(t) ∈ R is the smooth input,
x(t) ∈ Rn is the state, and y(t) ∈ R is the output. The
matrix E is not invertible and for that reason (1a) can not
be represented as an ordinary differential equation (ODE).
The matrix pair (E,A) is assumed to be regular, namely,
det(sE−A) is not the zero polynomial. For the regular pair
(E,A), it is known in [15, Theorem 2.6] that there exist
invertible matrices S, T ∈ Rn×n such that

SET =

[
I 0
0 N

]
, SAT =

[
J 0
0 I

]
,

where J ∈ Rn1×n1 , 0 ≤ n1 ≤ n, is some matrix and N ∈
Rn2×n2 , n2 = n−n1, is nilpotent. Let us define the following
matrices

Π := T

[
I 0
0 0

]
T−1,

Πdiff := T

[
I 0
0 0

]
S, Πimp := T

[
0 0
0 I

]
S,

Adiff := ΠdiffA, Eimp := ΠimpE,

Bdiff := ΠdiffB, Bimp := ΠimpB.

It is important to note that these matrices (viewed as linear
maps) are still acting on the original linear space and are
therefore independent from the chosen coordinate system
(i.e. they do not depend on T and S, but only on the original
linear maps E, A, and B). According to [16, Remark 6.4.5],
the initial value problem (1a) with x(0) ∈ Rn has a solution
if and only if x(0) ∈ I(u(0), u(1)(0), . . . , u(n−1)(0)), where

I(u(0), u(1)(0), . . . , u(n−1)(0))

:=

{
ζ ∈ Rn

∣∣∣ζ + n−1∑
i=0

(Eimp)iBimpu(i)(0) ∈ imΠ

}
.

Taking this into account, the following lemma provides
a necessary and sufficient condition for system (1) to be
externally equivalent to an ODE-based system.

Lemma 1: Consider system (1) with smooth inputs and an
initial value x(0) ∈ I(u(0), u(1)(0), . . . , u(n−1)(0)). Then,
there exists an ODE-based LTI system

˙̂x(t) = Âx̂(t) + B̂u(t)

ŷ(t) = Ĉx̂(t) + D̂u(t)
(2)

with suitable initial condition x̂(0) ∈ Rn (depending on the
input), such that

y(t) = ŷ(t), ∀u(·), t ≥ 0

if and only if

C(Eimp)iBimp = 0, i = 1, . . . , n− 1. (3)

Proof: Since x(0) ∈ I(u(0), u(1)(0), . . . , u(n−1)(0)),
there exists ξ ∈ Rn such that

x(0) = Πξ −
n−1∑
i=0

(Eimp)iBimpu(i)(0).

By [15, Theorem 2.7], a unique solution of (1a) with the
initial value x(0) is given by

x(t) = eA
difftΠξ +

∫ t

0

eA
diff(t−τ)Bdiffu(τ)dτ

−
n−1∑
i=0

(Eimp)iBimpu(i)(t).

(4)

Now we first prove the “if” part. Since C(Eimp)iBimp = 0
for i = 1, . . . , n− 1, output (1b) can be written as

y(t) = CeA
difftΠξ + C

∫ t

0

eA
diff(t−τ)Bdiffu(τ)dτ

+ (D − CBimp)u(t),

(5)

which is in fact the same as ŷ(t), the output of sys-
tem (2), for every input u(·) if x̂(0) = Πξ = x(0) +∑n−1

i=0 (E
imp)iBimpu(i)(0) and the system matrices are cho-

sen as

Â = Adiff, B̂ = Bdiff, Ĉ = C, D̂ = D − CBimp.

To prove the “only if” part, suppose that y(t) = ŷ(t) for
all u(·) and t ≥ 0. In other words,

CeA
difftΠξ + C

∫ t

0

eA
diff(t−τ)Bdiffu(τ)dτ

− C

n−1∑
i=0

(Eimp)iBimpu(i)(t) +Du(t)

= ĈeÂtx̂(0) + Ĉ

∫ t

0

eÂ(t−τ)B̂u(τ)dτ + D̂u(t)

(6)

holds for all u(·) and t ≥ 0. Substituting u(t) ≡ 0, we have
CeA

difftΠξ = ĈeÂtx̂(0) which hence cancels out in (6). Let
us now consider the smooth function

fk(t) =
1

k!
tk, k = 1, 2, . . .

that satisfies

f
(j)
k (0) =

{
0 j ̸= k,

1 j = k.

Again by substituting u(t) = fi(t) for i = 1, . . . , n− 1 and
evaluating (6) at t = 0, we obtain C(Eimp)iBimp = 0 which
completes the proof.

We also present the following lemma that explains nec-
essary and/or sufficient condition for specifying the relative
degree of system (1).

Lemma 2: Consider system (1) with smooth inputs and
an initial value x(0) ∈ I(u(0), u(1)(0), . . . , u(n−1)(0)). Let
us denote the (possibly negative) relative degree of system
(1) as r ∈ Z, i.e. r = deg(q(s)) − deg(p(s)), where p(s)

q(s) =

C(sE −A)−1B.
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(a) If C(Eimp)iBimp = 0, i = 1, . . . , n − 1, then r ≥ 0.
Additionally, r = 0 if and only if D − CBimp ̸= 0.

(b) If C(Eimp)iBimp ̸= 0 for some i ∈ {1, . . . , n− 1}, then

r = −max{i ∈ {1, . . . , n− 1}
∣∣C(Eimp)iBimp ̸= 0}.

Proof: It is straightforward that both (a) and (b) hold
according to (4) and (5).

Example 1: Consider an electric circuit in Fig. 1 which is
a part of the circuit of a transistor network in [17, Figure 1].

−
+u

Cc

− +

vc

ic

Fig. 1. A voltage source connected with a capacitor.

Defining the state x := [vc, ic]
⊤ and the output y := vc,

we have a DAE that models the circuit as
Eẋ = Ax+Bu

y = Cx,
(7)

where

E =

[
Cc 0
0 0

]
, A =

[
0 1
1 0

]
, B =

[
0
1

]
, C =

[
1 0

]
,

and Cc > 0 represents the capacitance. It is easy to see
that the matrix pair (E,A) is regular. Choosing invertible
matrices

S =

[
1 0
0 1

]
, T =

[
0 1
1 0

]
yields

SET =

[
0 Cc

0 0

]
= N, SAT =

[
1 0
0 1

]
= I.

Here, the nilpotent matrix N satisfies N ̸= 0 and N2 =
0 since Cc > 0 which directly means that the matrix pair
(E,A) has index 2 [18, Definition 2.9]. By definition we
have

Πimp =

[
0 1
1 0

]
, Eimp =

[
0 0
Cc 0

]
, Bimp =

[
1
0

]
.

Therefore, CEimpBimp = 0 and D − CBimp = −1 ̸= 0 hold
which means that system (7) has relative degree 0 according
to Lemma 2-(a). (In fact, it is trivial to see that the input and
output of system (7) have the relation y = −u and this can
also be deduced by using Lemma 1.)

From Lemmas 1 and 2, we observe that there is a
certain class of linear systems based on DAEs which can
be considered as ordinary linear systems with a direct feed-
through term; specifically, this is the case when system (1)
satisfies

C(Eimp)iBimp = 0, i = 1, . . . , n− 1,

D − CBimp ̸= 0.

Motivated by this observation, we present a design of Q-
filter-based disturbance observer (DOB) for linear systems
with zero relative degree and provide a robust stability
condition of the closed-loop system in the following section.

Remark 1: We point out two sufficient conditions for (3).
(i) Eimp = 0. In that case we have

0 = Eimp = ΠimpE = T

[
0 0
0 I

]
SE.

Since T is invertible, this implies that

0 =

[
0 0
0 I

]
SET =

[
0 0
0 I

] [
I 0
0 N

]
=

[
0 0
0 N

]
,

and thus, N = 0. In fact, the converse implications
are also true so that Eimp = 0 if and only if N = 0.
Therefore, regular DAEs whose index is 1 are contained
in the class of systems that satisfies (3).

(ii) CEimp = 0. In that case, the DAE can have an arbitrary
high index, but possible Dirac impulses in the state
induced by inconsistent initial values as well as depen-
dencies on higher derivatives of the input are inside
kerC and not visible in the output. In other words the
higher index parts of the DAE are “hidden” inside the
kernel of the output matrix. In fact, if we would consider
arbitrary initial values, the condition CEimp = 0 would
be necessary for an equivalence between (1) and (2),
because otherwise there would exist inconsistent initial
values leading to Dirac impulses in the output, which
ODE (2) of course is not able to reproduce.

III. DESIGN OF DISTURBANCE OBSERVER FOR
RELATIVE DEGREE ZERO SYSTEMS

In this section, we introduce a design of Q-filter-based
DOB for LTI systems with zero relative degree. Furthermore,
we present a robust stability condition for the closed-loop
system with the proposed DOB through a time domain
analysis. A classical configuration of the closed-loop system
with Q-filter-based DOB is depicted in Fig. 2.

C(s) P(s)

P̄−1(s)QA(s)

QB(s)

r ur u y

−
ū

+ w

−

d

+
−

Fig. 2. Block diagram of the closed-loop system with Q-filter-based DOB
(gray block).

In the figure, P(s) and P̄(s) represent a real plant and its
nominal model, respectively, C(s) is an outer-loop controller
which is typically designed in advance for P̄(s). In particular,
QA(s) and QB(s) are stable low-pass filters usually called
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Q-filter with a parameter τ that determines the bandwidth.
Here, we only consider the case where both the real plant
and the nominal model have zero relative degree. Thus,
the inverse of the nominal model P̄−1(s) is still a proper
transfer function and it can be directly implemented unlike
the case in, for example, [7, Remark 1], where P̄−1(s) is
improper so that an additional Q-filter QA(s), that makes the
block QA(s)P̄

−1(s) proper, must be employed. Therefore,
we discover a robust stability condition for the closed-loop
system with a fixed QA(s) = 1. Another Q-filter QB(s) is
conventionally designed as

QB(s) =
ck(τs)

k + ck−1(τs)
k−1 + · · ·+ c0

(τs)l + al−1(τs)l−1 + · · ·+ a0
,

where k and l are non-negative integers such that l > k and
a0 = c0 ̸= 0 for unity dc gain. A parametric uncertainty of
the real plant P(s) is taken into account as follows.

Assumption 1: The real plant P(s) belongs to the set of
uncertain plants:

P :=

{
βns

n + βn−1s
n−1 + · · ·+ β0

sn + αn−1sn−1 + · · ·+ α0
:

αi ∈
[
αl
i, α

u
i

]
, βi ∈ [βl

i, β
u
i ]
}
,

where n is a positive integer and αl
i, αu

i , βl
i , and βu

i are
known constants. The nominal plant P̄(s) also has the form

P̄(s) =
β̄ns

n + β̄n−1s
n−1 + · · ·+ β̄0

sn + ᾱn−1sn−1 + · · ·+ ᾱ0
,

where ᾱi and β̄i are known. In addition, it is known that
βn, β̄n ̸= 0, and

βn + β̄n ̸= 0.

Suppose that a state space representation of P(s) is given
as

ẋ = Ax+B(u+ d) (8)
y = Cx+D(u+ d), (9)

where x ∈ Rn is the state and D = βn ̸= 0. Observing that
its inverse model can be realized as

ẋ = Ax+B(u+ d) = (A−BD−1C)x+BD−1y

u+ d = −D−1Cx+D−1y,

the inverse nominal model P̄−1(s) is represented as

˙̄x = (Ā− B̄D̄−1C̄)x̄+ B̄D̄−1y

w = −D̄−1C̄x̄+ D̄−1y, (10)

where x̄ ∈ Rn is the state and Ā, B̄, C̄, and D̄ = β̄n ̸= 0
are the nominal system matrices. For the Q-filter QB(s), we
use a realization of

τ q̇ = A1q +B1u (11)
ū = C1q, (12)

where q ∈ Rl is the state and

A1 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −al−1

 , B1 =


0
...
0
1

 ,

C1 =
[
c0 c1 · · · ck 0 · · · 0

]
.

By substituting

u = ur + ū− w = ur + C1q − w (13)

from Fig. 2 and (12) into output equations (9) and (10), we
have

Cx+D(ur + C1q − w + d) = y = C̄x̄+ D̄w.

Thus, it holds that

w = g(Cx− C̄x̄+DC1q +D(ur + d)), (14)

where g := (D + D̄)−1 = (βn + β̄n)
−1 is well-defined by

Assumption 1. Therefore, the overall system is obtained as

ẋ = Ax+B(ur + C1q − w + d)

= (A− gBC)x+ gBC̄x̄

+ (BC1 − gBDC1)q + (B − gBD)(ur + d)

˙̄x = Āx̄+ B̄w

= gB̄Cx+ (Ā− gB̄C̄)x̄+ gB̄DC1q + gB̄D(ur + d)

τ q̇ = A1q +B1(ur + C1q − w)

= −gB1Cx+ gB1C̄x̄+ (A1 +B1C1 − gB1DC1)q

− gB1D(ur + d) +B1ur

y = C̄x̄+ D̄w

= gD̄Cx+ (C̄ − gD̄C̄)x̄+ gD̄DC1q + gD̄D(ur + d).
(15)

Let us analyze the overall system using singular perturba-
tion theory [19] as in [7]. Firstly, consider the extreme case
where τ = 0. Then the q-dynamics (11) combined with (13)
results in

0 = (A1 +B1C1)q +B1ur −B1w. (16)

According to the structure of matrices A1, B1, and C1, it
is clear that the solution q = q∗ := [q∗1 , · · · , q∗l ]⊤ of (16)
satisfies q∗2 = · · · = q∗l = 0 and ur = w. Then, we have
C1q

∗ = c0q
∗
1 so that from (14), it holds that

ur = w = g(Cx− C̄x̄+Dc0q
∗
1 +D(ur + d))

from which it follows that

q∗1 =
1

Dc0

(
−Cx+ C̄x̄+ D̄ur −Dd

)
. (17)

Therefore, we can conclude that the solution q∗ of (16) is an
isolated root of the q-dynamics when τ = 0, which ensures
that overall system (15) is in standard form of singular
perturbation [20, Chapter 11]. Consequently, when τ > 0
is sufficiently small, it is possible to segregate the variables
of (15) into two distinct categories, namely fast variables and
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slow variables. In fact, it is obvious that q becomes the only
fast variable while x, x̄, ur, and d are considered to be slow
variables. Imposing τ = 0 and q = q∗ (which also imply that
ur = w) to the overall system (15), we obtain the following
quasi-steady-state subsystem that depends only on the slow
variables, also so-called slow model:

ẋ = Ax+B(ur + C1q
∗ − w + d)

= Ax+Bc0q
∗
1 +Bd

= (A−D−1BC)x+D−1BC̄x̄+D−1D̄Bur

˙̄x = Āx̄+ B̄ur

y = C̄x̄+ D̄ur.

(18)

On the other hand, let us define a stretched time scale t̃ :=
t/τ and a change of variable q̃ := q−q∗. Then, the boundary-
layer subsystem with respect to (15) is obtained as

dq̃

dt̃
= −gB1Cx+ gB1C̄x̄− gB1D(ur + d) +B1ur

+ (A1 +B1C1 − gB1DC1)(q̃ + q∗)

= (A1 +B1C1 − gB1DC1)q̃

(19)

according to (16) and (17). Here, the slow variables x,
x̄, ur, and d are treated as a fixed (frozen) constant in
the new time scale t̃. By singular perturbation theory, the
slow variables rapidly converge to the solution of the quasi-
steady-state subsystem (18) after a short transient as long as
the boundary-layer subsystem (19) is exponentially stable.
It is noted that the quasi-steady-state subsystem (18) does
not contain any term associated with the disturbance d and
preserves the nominal plant inside. Therefore, the output
y of (18) is the one from nominal plant with the input
ur generated by the outer-loop controller C(s). These are
summarized in the following theorem as in [7, Theorem 1]
without proof.

Theorem 1: Under Assumption 1, there exists a τ∗ > 0
such that, for all 0 < τ ≤ τ∗, the closed-loop system is
robustly stable if
(a) the quasi-steady-state subsystem (18) with the outer-

loop controller C(s) is exponentially stable and
(b) the boundary-layer subsystem (19) is exponentially sta-

ble, i.e., the system matrix

A1 +B1C1 − gB1DC1 = A1 +
D̄

D + D̄
B1C1 (20)

is Hurwitz for all D = βn ∈ [βl
n, β

u
n].

Conversely, if (a) or (b) is not satisfied in the way that
the quasi-steady-state subsystem (18) with the outer-loop
controller C(s) has an unstable pole with a positive real part
or matrix (20) has an eigenvalue having a positive real part,
then there exists a τ∗ > 0 such that for all 0 < τ ≤ τ∗, the
closed-loop system is not robustly stable.

In order to guarantee condition (a) in Theorem 1, we need
the matrix A−D−1BC to be Hurwitz which means the zero
dynamics of the plant P(s) is stable for all variations allowed
in Assumption 1 because state equation (8) can be rewritten
as

ẋ = (A−D−1BC)x+D−1By.

It is in fact well-known in [7] and [9] that it is inevitable
to have such minimum phase assumption also on strictly
proper plants for designing the Q-filter-based DOB. On the
other hand, condition (b) in Theorem 1 restricts the choice of
coefficients of the Q-filter a0, . . . , al−1 and c0, . . . , ck. Since
the characteristic polynomial of matrix (20) is

sl + al−1s
l−1 + · · ·+ a0 −

D̄

D + D̄
(cks

k + · · ·+ c0),

one might use the design methodology of coefficients of the
Q-filter proposed in [9, Section 2.3] which is based on root
locus technique. Furthermore, we have no information on the
value τ∗ in Theorem 1 yet. Still, one can follow the algorithm
proposed in [21], where a frequency domain approach is
studied to find the exact value of τ∗ considering strictly
proper plants.

IV. ILLUSTRATIVE EXAMPLE

In this section, an illustrative example is presented to
describe the utility of the proposed condition for robust
stability of the closed-loop system with the DOB.

Suppose that components in Fig. 2 are given in the form
of transfer functions as follows:

• C(s) = 2/(s+ 4),
• P̄(s) = (s+ 4)/(s+ 2),
• P(s) = (β1s + β0)/(s + α0), where α0 ∈ [2, 4], β0 ∈

[5, 6], and β1 ∈ [1, 2].
• QA(s) = 1,
• QB(s) = 1/(τs+ 1),
• r(t) = 1(t) (Heaviside step function),
• d(t) = 0.1 sin(2t).

The parametric uncertainty of real plant P(s) follows the
one in Assumption 1. Also, it is easily checked that these
components satisfy conditions (a) and (b) in Theorem 1.
When τ = 0.5 and τ = 0.01, the output of the closed-loop
system with DOB for the real plant P(s) = (s+ 5)/(s+ 3)
is shown in Fig. 3 and Fig. 4, respectively, in which all
the initial conditions are set as zero. The output is also
compared with that of the nominal closed-loop system,
P̄(s)C(s)/(1+ P̄(s)C(s)), without any disturbance and that
of the closed-loop system without DOB but with the same
disturbance d(t). It is observed that with DOB, the closed-
loop system is stable and the smaller the τ , the better
the approximation performance, as expected in the analysis.
This capability of DOB to approximate the real closed-loop
system to the nominal closed-loop system is often called
nominal performance recovery [22].

V. CONCLUDING REMARKS

In this paper, a couple of lemmas regarding necessary
and/or sufficient conditions for specifying the relative degree
of DAEs were presented. Focusing on the class of DAEs
which can be interpreted as linear systems with zero relative
degree, we proposed a design of Q-filter-based DOB and
a robust stability condition of the system controlled by the
DOB. While this work figured out how to apply Q-filter-
based DOB on this particular class of DAEs, further research
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Fig. 3. Nominal performance recovery with τ = 0.5
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Fig. 4. Nominal performance recovery with τ = 0.01

is needed to cover DAEs that are nonregular or have a
higher index. Since this paper is using the existing singular
perturbation theory-based approach, it may be feasible to
apply the same approach to nonlinear DAEs with index 1
[23].
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[1] A. Banaszuk, M. Kociȩcki, and K. M. Przyłuski, “The disturbance
decoupling problem for implicit linear discrete-time systems,” SIAM
J. Control Optim., vol. 28, no. 6, pp. 1270–1293, 1990.

[2] T. Berger, “Disturbance decoupling by behavioral feedback for linear
differential-algebraic systems,” Automatica, vol. 80, pp. 272–283,
2017.

[3] Y. Feng and M. Yagoubi, Robust control of linear descriptor systems.
Springer, 2017.

[4] A. Di Giorgio, A. Pietrabissa, F. D. Priscoli, and A. Isidori, “Robust
output regulation for a class of linear differential-algebraic systems,”
IEEE Control Systems Letters, vol. 2, no. 3, pp. 477–482, 2018.

[5] A. Di Giorgio, A. Pietrabissa, F. Delli Priscoli, and A. Isidori,
“An extended-observer approach to robust stabilisation of linear
differential-algebraic systems,” International Journal of Control,
vol. 93, no. 2, pp. 181–193, 2020.

[6] K. Ohnishi, “A new servo method in mechatronics,” Trans. of Japanese
Society of Electrical Engineering, D, vol. 177, pp. 83–86, 1987.

[7] H. Shim and Y.-J. Joo, “State space analysis of disturbance observer
and a robust stability condition,” in 2007 46th IEEE Conference on
Decision and Control, pp. 2193–2198, IEEE, 2007.

[8] J. Back and H. Shim, “Adding robustness to nominal output-feedback
controllers for uncertain nonlinear systems: A nonlinear version of
disturbance observer,” Automatica, vol. 44, no. 10, pp. 2528–2537,
2008.

[9] H. Shim and N. H. Jo, “An almost necessary and sufficient condition
for robust stability of closed-loop systems with disturbance observer,”
Automatica, vol. 45, no. 1, pp. 296–299, 2009.

[10] T. Berger, On Differential-Algebraic Control Systems. PhD thesis,
Institut für Mathematik, Technische Universität Ilmenau, Univer-
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ysis and Numerical Solution. Zürich, Switzerland: EMS Publishing
House, 2006.
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