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Abstract— This study addresses a distributed optimization
with a novel class of coupling of variables, called clique-wise
coupling. A clique is a node set of a complete subgraph of an
undirected graph. This setup is an extension of pairwise coupled
optimization problems (e.g., consensus optimization) and allows
us to handle coupling of variables consisting of more than
two agents systematically. To solve this problem, we propose
a clique-based linearized ADMM algorithm, which is proved
to be distributed. Additionally, we consider objective functions
given as a sum of nonsmooth and smooth convex functions
and present a more flexible algorithm based on the FLiP-
ADMM algorithm. Moreover, we provide convergence theorems
of these algorithms. Notably, all the algorithmic parameters
and the derived condition in the theorems depend only on
local information, which means that each agent can choose
the parameters in a distributed manner. Finally, we apply the
proposed methods to a consensus optimization problem and
demonstrate their effectiveness via numerical experiments.

I. INTRODUCTION

In recent years, distributed optimization has attracted much
attention in the control, signal processing, and machine
learning communities. In this field, a large body of stud-
ies has been dedicated to pairwise coupled optimization
problems. In this type of problem, every coupling of vari-
ables comprises two agents’ decision variables correspond-
ing to the communication path between the two agents.
The most representative example of this setup is consensus
optimization problems, and many studies have presented
sophisticated algorithms, such as [1]–[4]. Recently, [5] and
[6] have investigated distributed optimization problems with
pairwise linear constraints. Their applications are not limited
to consensus optimization but contain formation control,
distributed model predictive control, and so on. Moreover,
in the field of multi-agent control, various coordination tasks
(e.g., rendezvous and formation) have been formulated in a
pairwise coupled form [7]–[9].

This study addresses a more general form of distributed
optimization than the conventional pairwise coupled ones
to handle coupling of more than two decision variables.
Consider a multi-agent system with n agents over a commu-
nication network, expressed by a time-invariant undirected
graph G = (N , E) with N = {1, . . . , n} and an edge
set E . Now, we aim to solve the following optimization
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Fig. 1: Example of cliques.

problem, called a clique-wise coupled optimization problem,
in a distributed manner:

minimize
xi∈Rd, i∈N
yl∈Rql , l∈QG

∑
i∈N

fi(xi) +
∑
l∈QG

gl(yl)

subject to AlxCl
+Blyl = cl ∀l ∈ QG ⊂ Q̄G︸ ︷︷ ︸

Clique-wise coupling w.r.t. Cl⊂N

(1)

with Al ∈ Rpl×|Cl|d, Bl ∈ Rpl×ql , and cl ∈ Rpl , where
fi : Rd → R ∪ {+∞}, i ∈ N and gl : Rql → R ∪
{+∞}, l ∈ QG are proper, closed, and convex functions
(possibly nonsmooth). The vector xi represents the decision
variable of agent i, and yl represents the variable with respect
to clique l. For x1, . . . , xn, and the set Cl = {j1, . . . , j|Cl|} ⊂
N , let xCl

denote xCl
= [x⊤

j1
, . . . , x⊤

j|Cl|
]⊤ ∈ R|Cl|d. Here,

the set Cl represents a clique, i.e., a complete subgraph in
the graph G [10]. Q̄G is the index set of all the cliques in G,
and QG is a subset of Q̄G . For example, in the undirected
graph in Fig. 1, Q̄G = {1, . . . , 9} holds, and the cliques
C1, . . . , C9 are obtained as shown in Fig. 1. Note that the
nodes and edges are always cliques, and hence Problem (1)
always contains conventional pairwise coupled optimization
problems.

A remarkable benefit of the clique-wise coupling frame-
work is that we can systematically handle variable couplings
of more than two agents. Possible applications include con-
sensus optimization [1], [2], [4], [11], formation control [5],
[7], robust PCA (with clique-wise trace norm minimization)
[12], [13], network lasso (fused lasso, total variation regu-
larization) [14]–[16], multi-task learning [17], and (clique-
wise) resource allocation [18], as illustrated in Table I.
This table shows concrete formulations of these applications
corresponding to Problem (1). Notice that one can also deal
with other examples, e.g., semidefinite programming with
chordal sparsity [19] and its application for distributed design
of decentralized controllers [20], as clique-wise coupled
problems with an appropriate transformation.

In this study, we propose a novel distributed algorithm, the
Clique-based Linearized ADMM (CL-ADMM) algorithm,
for Problem (1) based on the framework of the alternating
direction method of multipliers (ADMM) [11], [21], [22]
with the linearization technique and localized algorithmic
parameters. The proposed method can be implemented with
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TABLE I: Practical application examples of Problem (1).

Applications Constraints f[l] fi

Consensus optimization [1]–[4] xCl
− yl = 0

Indicator function for
Dl = {yl : ∃ξ s.t. yl = 1|Cl| ⊗ ξ} 1 fi(xi)

Robust PCA [12], [13]
(clique-wise trace norm minimization)

Yj = Sj + Lj ∀j ∈ Cl 2 θl∥LCl
∥∗ ∥Si∥1

Formation control [5], [7]–[9]
xi,t+1 = Aixi,t +Biui,t

yl,t = xi,t − xj,t

1
2

∑T
t=1 ∥[yl,t − rij∥2Qij

1
2

∑T−1
t=1 u⊤

i,tRiui,t

Network lasso [14]–[16] xi − xj − yl = 0 λij∥yl∥ loss function ℓi(xi)

Multi-task learning [17]
xj − yl,j = 0

∀j ∈ Cl = {j1, . . . , j|Cl|}
λl∥[yl,j1 , . . . , yl,j|Cl|

]∥∗ loss function ℓi(xi)

(Clique-wise) resource allocation [18] xCl
− yl = 0

Indicator function for
Dl = {yl : 1⊤yl = Nl > 0, yl ≥ 0}

1
2
∥xi − x∗∥2

local communication. Additionally, we consider that the ob-
jective functions fi and gl are given as a sum of a non-smooth
convex and smooth convex functions. Under this setup, we
provide a more flexibly implementable algorithm, called the
Clique-based Linearized FLiP-ADMM (CL-FLiP-ADMM),
based on the Function Linearized Proximal ADMM (FLiP-
ADMM) algorithm in [22]. Furthermore, through the conver-
gence analysis of the CL-ADMM and CL-FLiP-ADMM, we
prove the exact convergence to an optimal solution under
fully localized conditions. Finally, we apply the proposed
methods to consensus optimization and demonstrate their
effectiveness through numerical experiments. The experi-
mental result of consensus optimization implies that the
clique-wise handling of pairwise constraints can enhance the
performance.

The major contributions of this paper are as follows: (a)
We propose a highly expressive framework in (1) suitable
for distributed optimization and provide a variety of practical
examples as shown in Table I; (b) The algorithmic parameters
in the CL-ADMM and CL-FLiP-ADMM are also distributed.
Moreover, we provide convergence theorems with no global
parameter, which means that each agent can choose its
parameters in a distributed manner; (c) The CL-ADMM and
CL-FLiP-ADMM can alleviate the computational burden be-
cause the agents in the same clique can share the computation
of the proximal mapping of gl.

Recently, several studies (e.g., [23]–[26]) have presented
distributed algorithms to solve optimization problems with
globally coupled constraints. This setup allows us to consider
constraints involving all decision variables. However, the
existing methods for this setup cannot enjoy our proposed
methods’ features, such as the contributions (b) and (c)
in the above paragraph. Moreover, the clique-wise coupled
problem in (1) can be solved more flexibly than the globally
coupled problems because the primal problem (1) can be
solved directly by well-known methods (e.g., ADMM [11],
[21], [22] and Condat-Vũ [27], [28]) in a distributed manner.
This is advantageous in terms of ease of solving problems.
To apply these well-known methods to the globally coupled
problems, we need to introduce additional auxiliary variables
(e.g., to take their dual problems to transform them into a
consensus optimization). This approach may increase the size

of variables and degrade the performance.
Finally, notice that Problem (1) is more general than

optimization problems with clique-wise coupled constraints
in the authors’ paper [18] because we can handle not only
constraints but also regularization terms in Problem (1).

The rest of the paper is organized as follows. Section II
provides preliminaries. Section III presents the proposed al-
gorithms, and Section IV presents the convergence theorems.
In Section V, we apply the proposed methods to consensus
optimization. Finally, Section VI concludes our paper.

II. PRELIMINARIES

A. Notation

Let R and N be the set of real numbers and that of positive
integers, respectively. Let | · | be the number of elements in a
countable finite set. Let Id ∈ Rd×d denote the d×d identity
matrix. We omit the subscript of Id when the dimension is
obvious. Let 1d = [1, . . . , 1]⊤ ∈ Rd. For a m-dimensional
vector [a1, . . . , ai, . . . , aN ]⊤ ∈ RN , diag(a) denotes the
diagonal matrix whose ith diagonal entry is ai. Similarly, for
matrices R1, . . . , Ri, . . . , RN , blk-diag(R1, . . . , RN ) repre-
sents the block diagonal matrix whose ith diagonal block
is Ri. For M = {1, . . . , N}, blk-diag([Rj ]j∈M) represents
blk-diag(R1, . . . , RN ). For v, u ∈ Rm, and a positive def-
inite and symmetric matrix Q ∈ Rm×m, ⟨v, u⟩Q := v⊤Qu
denotes the inner product of v and u with respect to Q.
Additionally, we define the norm ∥·∥Q as ∥v∥Q =

√
⟨v, v⟩Q

for a vector v ∈ Rm. When Q = Im, we simply write
⟨·, ·⟩Im and ∥ · ∥Im as ⟨·, ·⟩ and ∥ · ∥, respectively. For
v ∈ Rm, ∥v∥1 denotes the ℓ1 norm of v. For a matrix
R ∈ Rd1×d2 , ∥R∥∗ denotes the trace norm of R, i.e., the
sum of its singular values. Let λmax(Q) and λmin(Q) be
the largest and smallest eigenvalues of Q, respectively. For
a vector v = [v⊤1 , . . . , v

⊤
j , . . . , v

⊤
N ]⊤ ∈ RNd with vectors

v1, . . . , vj , . . . , vN ∈ Rd, [v]j represents the operation to

1In this formulation, we can include some proximable functions (e.g., ℓ1
norm regularization) in gl. For details, see Subsection V-A.

2Here, Y = [Y1, . . . , Yn] is a data matrix. For example, Y is a sequence
of images, and each column of Y corresponds to each frame. We assume
that Y can be decomposed into a sparse matrix Ŝ = [S1, . . . , Sn] and a
low-rank matrix L = [L1, . . . , Ln].
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extract the jth vector vj from v, that is,

[v]j = vj ∈ Rd.

For a vector x = [x⊤
1 , . . . , x

⊤
n ]

⊤ ∈ Rnd with x1, . . . , xn ∈
Rd and a subset C = {j1, . . . , j|C|} ⊂ N , let xC be
xC = [x⊤

j1
, . . . , x⊤

j|C|
]⊤ ∈ R|C|d, where {j1, . . . , j|C|} is a

strictly monotonically increasing sequence. For a differen-
tiable function f : Rnd → R and x ∈ Rnd, we write
∇f(x) = ∂f/∂x(x).

For a proper, closed, and convex function g : Rd :→ R ∪
{+∞}, a positive definite and symmetric matrix Q ∈ Rd×d,
and x ∈ Rd, the proximal mapping of g with respect to Q is
represented by proxQg (x) = argminy∈Rd{g(y) + (1/2)∥x−
y∥2Q}. When Q = Id, we write proxIdg (·) = proxg(·). When
the proximal mapping of g can be computed efficiently, the
function g is said to be proximable.

B. Graph Theory

Here, we provide graph-theoretic concepts. Consider a
graph G = (N , E) with a node set N = {1, . . . , n} and
an edge set E consisting of pairs {i, j} of different nodes
i, j ∈ N . Note that throughout this paper, we consider
undirected graphs and do not distinguish {i, j} and {j, i}
for each {i, j} ∈ E . For i ∈ N and G, let Ni ⊂ N be the
neighbor set of node i over G, defined as Ni = {j ∈ N :
{i, j} ∈ E} ∪ {i}.

For an undirected graph G, consider a set C ⊂ N . For C
and E , let E|C be E|C = {{i, j} ∈ E : i, j ∈ C}. We call
G|C = (C, E|C) a subgraph induced by C. If G|C is complete,
C is called a clique in G. We define Q̄G = {1, 2, . . . , q} as
the set of indices of all the cliques in G. For Q̄G , the set QG
represents a subset of Q̄G . If a clique C is not contained by
any other cliques, C is said to be maximal. Let Qmax

G (⊂ Q̄G)
be the set of indices of all the maximal cliques in G. For
i ∈ N , we define Q̄i

G as an index set of all the cliques
containing i, that is, Q̄i

G = {l ∈ Q̄G : i ∈ Cl}. For each
i ∈ N , Ni, and Cl, l ∈ Q̄i

G ,

Ni =
⋃

l∈Q̄i
G

Cl. (2)

holds [9]. Note that agent i can independently compute
the cliques that it belongs to, i.e., Cl, l ∈ Q̄i

G , from the
undirected subgraph (Ni, Ei) with Ei = {{i, j} ∈ E : j ∈
Ni}.

III. ALGORITHM DESCRIPTION

A. Clique-based Linearized ADMM Algorithm

The proposed algorithm to solve (1), the Clique-based
Linearized ADMM (CL-ADMM) algorithm, is illustrated
in Algorithm 1. This algorithm is based on the linearized
ADMM algorithm [21], [22] and can be implemented in a
distributed manner from (2). Here, let Qi

G := Q̄i
G ∩ QG .

Besides, αi, i ∈ N is an agent-wise algorithmic parameter,
and βl, γl, and ϕl > 0, l ∈ QG are clique-wise parameters.
In Algorithm (1), ykl represents the estimate of an optimal
yl, and uk

l represents the dual variable for l ∈ QG at the kth
iteration. In the xi-update in (3a), πl : Cl → {1, . . . , |Cl|}

Algorithm 1 Clique-based Linearized ADMM (CL-ADMM)
Algorithm

Require: x0
i , αi > 0, y0l , u0

l , βl > 0, γl > 0, and ϕl > 0
for all l ∈ Qi

G (:= Q̄i
G ∩QG).

1: for k = 0, 1, . . . do
2: Update xk

i by

xk+1
i = proxαifi

(
xk
i − αi

∑
l∈Qi

G

[
A⊤

l u
k
l

+ γlA
⊤
l

(
Alx

k
Cl
+Bly

k
l − cl

)]
πl(i)

)
. (3a)

3: Send xk+1
i to all agents in Ni \ {i}.

4: Update ykl and uk
l for all l ∈ Qi

G by

yk+1
l = proxβlgl

(
ykl − βl

(
B⊤

l uk
l

+ γlB
⊤
l

(
Alx

k+1
Cl

+Bly
k
l − cl

)))
(3b)

uk+1
l = uk

l + ϕlγl
(
Alx

k+1
Cl

+Bly
k+1
l − cl

)
. (3c)

5: end for

is the one-to-one mapping satisfying πl(ij) = j for Cl =
{i1, . . . , ij , . . . , i|Cl|} with 1 ≤ i1 < ij < i|Cl| ≤ n. Note
that if the yl-subproblem in (3b) has multiple solutions, the
agents in Cl must choose the same value as yk+1

l . In addition,⋃
l∈QG

Cl = N is assumed here.
Example 1: Consider Cl = {2, 3, 5} and yl =

[y⊤l,1, y
⊤
l,2, y

⊤
l,3]

⊤ ∈ R|Cl|d. Then, πl(2) = 1, πl(3) = 2,
and πl(5) = 3 hold. Besides, for yl, [yl]πl(2) = yl,1,
[yl]πl(3) = yl,2, and [yl]πl(5) = yl,3 are obtained.

We provide an interpretation of Algorithm 1. First, we give
the aggregated form of Problem (1) as follows:

minimize
x,y

F (x) +G(y)

subject to AWx+By = c,
(4)

where F (x) =
∑

i∈N fi(xi), G(y) =
∑

l∈QG
gl(yl),

x = [x⊤
1 , . . . , x

⊤
n ]

⊤, y = [y⊤1 , . . . , y
⊤
|QG|]

⊤, A =
blk-diag([Al]l∈QG ), B = blk-diag([Bl]l∈QG ), and c =
[c⊤1 , . . . , c

⊤
|QG|]

⊤. Now, W is defined as the matrix satisfying
the following relationships for any x ∈ Rdn:

W =
[
W⊤

1 , . . . ,W⊤
|QG|

]⊤
∈ R

(∑
l∈QG

|Cl|
)
d×nd

,

Wlx = xCl
∀l ∈ QG . (5)

Then, the Lagrangian function is obtained as follows:

L(x,y,u) = F (x) +G(y) + ⟨u,AWx+By − c⟩. (6)

By applying the linearized ADMM algorithm [21], [22] to
the problem in (4), we obtain the following algorithm, where
the scalar-valued constants in the normal linearized ADMM
are replaced by the diagonal matrices Dα, Dβ , Γ, and Φ:

xk+1 = prox
D−1

α

F (xk −DαW
⊤A⊤(uk

+ Γ(AWxk +Byk − c))) (7a)

yk+1 = prox
D−1

β

G (yk −DβB
⊤(uk

+ Γ(AWxk+1 +Byk − c))) (7b)

uk+1 = uk +ΦΓ(AWxk+1 +Byk+1 − c). (7c)
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Then, by setting

Dα = blk-diag([αiId]i∈N ), Dβ = blk-diag([βlIql ]j∈QG ),

Γ = blk-diag([γlIpl
]j∈QG ), Φ = blk-diag([ϕlIpl

]j∈QG )

with αi > 0, i ∈ N and βl, γl, ϕl > 0, l ∈ QG , we obtain
the CL-ADMM in Algorithm 1 from Algorithm (7). This
follows from the following proposition.

Proposition 1: Consider i ∈ N , Cl, l ∈ Qi
G , W in

(5), the mapping πl : Cl → {1, . . . , |Cl|}, and v =
[v⊤1 , . . . , v

⊤
l , . . . , v

⊤
|QG|]

⊤ with any vl ∈ R|Cl|d. Then, it
holds that [W⊤v]i =

∑
l∈Qi

G
[vl]πl(i) ∈ Rd.

Proof: From (5), the (j, i) block of Wl ∈ R|Cl|d×nd

can be written as [Wl]ji = wl,jiId, where

wl,ji =

{
1, i ∈ Cl and πl(i) = j

0, otherwise
. (8)

Additionally, we have W⊤u =
∑

l∈QG
(Wl)

⊤ul. Then,
for the ith block [W⊤v]i ∈ Rd of W⊤v, we obtain
[W⊤v]i =

∑
l∈QG

(∑|Cl|
j=1[Wl]ji[vl]j

)
=
∑

l∈Qi
G
[vl]πl(i)

because [W l]ji[v
l]j = [vl]πl(i) holds for j satisfying πl(i) =

j, and [W l]ji[v
l]j = 0 holds otherwise.

Remark 1: One of the advantages of the CL-ADMM in
Algorithm 1 is that the agents in the same clique Cl can share
the computation of the yl-subproblem in (3b). Hence, we can
alleviate computational burdens per iteration by allocating
the computation.

Remark 2: The proposed algorithm is based on the lin-
earized ADMM, which is essential for its distributed imple-
mentation. This is because the augmented Lagrangian of (6)
can be separated into an agent-wise form by eliminating its
coupled terms by the linearization technique.

B. Clique-based Linearized FLiP-ADMM Algorithm

We provide a more flexible algorithm, the Clique-based
Linearized FLiP-ADMM (CL-FLiP-ADMM), than Algo-
rithm 1 based on the FLiP-ADMM in [22]. Suppose that
the objective functions fi and gl can be separated as

fi = f1
i + f2

i , gl = g1l + g2l , (9)

where f1
i and g1l are proper, closed, and convex functions,

and f2
i and g2l are proper, closed, convex, and smooth

functions.
Now, we present the Clique-based Linearized FLiP-

ADMM (CL-FLiP-ADMM) algorithm in Algorithm 2. This
algorithm can be implemented distributedly in the same
manner as Algorithm 1. When f2

i = g2l = 0, this algorithm
is reduced to Algorithm 1. Notably, this algorithm allows us
to avoid computing the proximal map involving f2

i and g2l .
Note that although the FLiP-ADMM algorithm with

the linearization technique is named as doubly linearized
ADMM in [22], we refer to Algorithm 2 as CL-FLiP-ADMM
for the sake of consistency with Algorithm 1.

IV. CONVERGENCE ANALYSIS

This section presents the key convergence theorems of
the CL-ADMM in Algorithm 1 and CL-FLiP-ADMM in
Algorithm 2. We now assume the following assumption.

Algorithm 2 Clique-based Linearized FLiP-ADMM (CL-
FLiP-ADMM) Algorithm

Require: x0
i , αi > 0, y0l , u0

l , βl > 0, γl > 0, and ϕl > 0
for all l ∈ Qi

G (:= Q̄i
G ∩QG).

1: for k = 0, 1, . . . do
2: Update xk

i by

xk+1
i = proxαif1

i

(
xk
i − αi

(
∇f2

i (x
k
i ) +

∑
l∈Qi

G

[
A⊤

l u
k
l

+ γlA
⊤
l

(
Alx

k
Cl
+Bly

k
l − cl

)]
πl(i)

))
. (10a)

3: Send xk+1
i to all agents in Ni \ {i}.

4: Update ykl and uk
l for all l ∈ Qi

G by

yk+1
l = proxβlg1

l

(
ykl − βl

(
∇g2l (y

k
l ) +B⊤

l uk
l

+ γlB
⊤
l

(
Alx

k+1
Cl

+Bly
k
l − cl

)))
(10b)

uk+1
l = uk

l + ϕlγl
(
Alx

k+1
Cl

+Bly
k+1
l − cl

)
. (10c)

5: end for

Assumption 1: The following statements hold:
(a) fi : Rd → R ∪ {+∞}, i ∈ N is proper, closed,

and convex. Additionally, for fi of the form in (9),
f2
i : Rd → R is convex and differentiable, and

the gradient of f2
i is Lf2

i
-Lipschitz continuous, i.e.,

∥∇f2
i (xi) − ∇f2

i (zi)∥ ≤ Lf2
i
∥xi − zi∥ holds for any

xi, zi ∈ Rd and some Lf2
i
≥ 0.

(b) gl : Rql → R ∪ {+∞}, l ∈ QG is proper, closed, and
convex. Additionally, for gl of the form in (9), g2l :
Rql → R is convex and differentiable, and the gradient
of g2l is Lg2

l
-Lipschitz continuous with some Lg2

l
≥ 0.

(c) The Lagrangian L in (6) has a saddle point.
(d)

⋃
l∈QG

Cl = N holds for QG .
First, we provide the following theorem. In this theorem,

each agent can check the conditions in a distributed fashion.
Regarding the choice of the parameters, a detailed discussion
is available in Chapter 8 of [22].

Theorem 1: Consider Algorithms 1 and 2. Assume that
Assumption 1 is satisfied. Assume that for all i ∈ N , all
l ∈ QG , and some εl ∈ (0, 2− ϕl), these inequalities hold:

α−1
i ≥

∑
l∈Qi

G

γlλmax(A
⊤
l Al) + Lf2

i
, (11a)

β−1
l − γlλmax(B

⊤
l Bl) ≥ 0, (11b)

γl

(
1− (1− ϕl)

2

2− ϕl − εl

)
B⊤

l Bl +Ql ⪰ 3Lg2
l
Iql , (11c)

where Ql = β−1
l Iql − γlB

⊤
l Bl. Then, limk→∞(F (xk) +

G(yk)) = (F (x∗)+G(y∗)) and limk→∞(AWxk +Byk −
c) = 0 hold, where (x∗,y∗,u∗) is a saddle point of the
Lagrangian function L.

Proof: We prove Theorem 1 based on Theorem 6 in
[22]. Note that the supporting lemmas for this proof are
provided in the preprint [29] due to the space limit.

First, we give preliminaries of the proof. Let F (x) =
F 1(x) + F 2(x) and G(y) = G1(y) + G2(y), where
F 1(x) =

∑
i∈N f1

i (xi), F 2(x) =
∑

i∈N f2
i (xi), G1(y) =
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∑
l∈QG

g1l (yl), and G2(y) =
∑

l∈QG
g2l (yl). Now, we con-

sider the following FLiP-ADMM algorithm:

xk+1 ∈ argmin
x

{F 1(x) + ⟨∇F 2(xk) +W⊤A⊤uk,x⟩

+
1

2
∥AWx+Byk − c∥2Γ +

1

2

∥∥x− xk
∥∥2
P
} (12a)

yk+1 ∈ argmin
y

{G1(y) + ⟨∇G2(yk) +B⊤uk,y⟩

+
1

2
∥AWxk+1 +By − c∥2Γ +

1

2
∥y − yk∥2Q} (12b)

uk+1 = uk +ΦΓ(AWxk+1 +Byk+1 − c). (12c)

Now, suppose P and Q are given as P = D−1
α −

W⊤A⊤ΓAW and Q = blk-diag([Ql]l∈QG ) = D−1
β −

B⊤ΓB, respectively. Then, (12) is equivalent to Algorithm
2. Additionally, when F 2 = G2 = 0, (12) is reduced to
Algorithm 1. Note that under Assumption 1a–b, the xi- and
yl- subproblems in (3a), (10a), (3b), and (10b) are always
well-defined (see Proposition 12.15 in [30]). Moreover, let
wk := [xk⊤,yk⊤,uk⊤]⊤ and w∗ := [x∗⊤,y∗⊤,u∗⊤]⊤.
Furthermore, we define

M0 =
1

2
blk-diag(P, B⊤ΓB+Q, Γ−1Φ−1),

M1 =
1

2
blk-diag(0, LG2 +Q, Θ(Φ−1)2Γ−1),

M2 =
1

2
blk-diag(P− LF 2 ,

B⊤Γ(I −Θ−1(I −Φ)2)B+Q− 3LG2 ,

(Φ−1)2Γ−1(2I −Φ−Θ)), (13)

where LF 2 = blk-diag([Lf2
i
Id]i∈N ), LG2 =

blk-diag([Lg2
l
Iql ]l∈QG ), and Θ = blk-diag([θlIpl

]) with
θl = 2 − ϕl − εl > 0, l ∈ QG . Finally, we define the
Lyapunov function V k as

V k = ∥wk −w∗∥2M0
+ ∥wk −wk−1∥2M1

. (14)

With this in mind, we prove Theorem 1 as follows. By
the equation ∥wk+1 −w∗∥2M0

= ∥wk −w∗∥2M0
−∥wk+1 −

wk∥2M0
+ 2⟨wk+1 −wk,wk+1 −w∗⟩M0

, we have

V k+1 = V k − ∥wk −wk−1∥2M1
+ ∥wk+1 −wk∥2M1

(15)

− ∥wk+1 −wk∥2M0
+ 2⟨wk+1 −wk,wk+1 −w∗⟩M0

for V k in (14). Then, Lemma 4 and Lemma 5 in [29] yield

V k+1 ≤ V k − ∥wk −wk−1∥2M1
+ ∥wk+1 −wk∥2M1

− ∥wk+1 −wk∥2M0
+ 2⟨wk+1 −wk,wk+1 −w∗⟩M0

+
∑

i∈N
L

f2
i

2 ∥xk+1
i − xk

i ∥2 +
∑

l∈QG

L
g2
l

2 ∥yk+1
l − ykl ∥2

− 2⟨wk+1 −wk,wk+1 −w∗⟩M0

+ ∥uk+1 − uk∥2(I−Φ−1)Φ−1Γ−1

+
1

2
∥yk+1 − yk∥2LG2−Q+B⊤Θ−1(I−Φ)2ΓB

+
1

2
∥yk − yk−1∥2LG2+Q +

1

2
∥uk − uk−1∥2ΘΓ−1(Φ−1)2

−
(
L(xk+1,yk+1,u∗)− L(x∗,y∗,u∗)

)
= V k − ∥wk+1 −wk∥2M2

−
(
L(xk+1,yk+1,u∗)− L(x∗,y∗,u∗)

)
,

for any Θ ≻ 0. Consequently, from this inequal-
ity, Lemmas 1 and 2 in [29] and L(xk+1,yk+1,u∗) −
L(x∗,y∗,u∗) ≥ 0, we obtain limk→∞ ∥wk+1 −wk∥2M2

=
0 and limk→∞(L(xk+1,yk+1,u∗) − L(x∗,y∗,u∗)) = 0.
Then, By ∥wk+1 −wk∥2M2

→ 0, we have limk→∞(uk+1 −
uk) = 0 Therefore, limk→∞(F (xk) +G(yk)) = (F (x∗) +
G(y∗)) and limk→∞(AWxk +Byk − c) = 0 are achieved.

Moreover, when both A and B are the identity matrix, we
can prove the convergence with fully agent-wise algorithmic
parameters and convergence conditions. In this case, the
agents can independently choose their algorithmic param-
eters without any cooperation.

Theorem 2: Assume that A = B = I . Consider that
in Algorithms 1 and 2, we replace γl, ϕl, and βl by the
diagonal matrices diag(γCl

) ⊗ Id with γ = [γ1, . . . , γn]
⊤ ∈

Rn, diag(ϕCl
) ⊗ Id with ϕ = [ϕ1, . . . , ϕn]

⊤ ∈ Rn, and
diag(βCl

) ⊗ Id with β = [β1, . . . , βn]
⊤ ∈ Rn, respectively.

Additionally, in (3b) and (10b), we replace proxβlgl
(·) with

prox
(diag(βCl

)⊗Id)
−1

gl (·). Assume that Assumption 1 is satis-
fied. Assume that for all i ∈ N and some εi ∈ (0, 2 − ϕi),
the following inequalities are satisfied:

α−1
i ≥ γi|Qi

G |+ Lfi , β−1
i − γi ≥ 0,

γi

(
1− (1− ϕi)

2

2− ϕi − εi

)
Id +Qi ⪰ 3

(
max
l∈Qi

G

Lg2
l

)
Id,

where Qi = (β−1
i − γi)Id. Then, limk→∞(F (xk) +

G(yk)) = (F (x∗) +G(y∗)) and limk→∞(Wxk − yk) = 0
hold.

Proof: We can prove Theorem 2 similarly to Theorem
1 by modifying Lemma 5 in [29]. Due to the space limit,
we omit the proof.

V. APPLICATION TO CONSENSUS OPTIMIZATION

A. Problem Setting

Now, we consider the following problem:

minimize
x1 ...,xn∈Rd

∑
i∈N

(fi(xi) + hi(xi))

subject to xi = xj ∀{i, j} ∈ E ,
(16)

where fi and hi for i ∈ N are proper, closed, and convex.
When G is connected, the problem (16) can be reformulated
in the form of Problem (1) with Al = −Bl = I|Cl|d, cl = 0,
and

gl(yl) =
∑
j∈Cl

1

|Qj
G |
hj([yl]πl(j)) + δDl

(yl), (17)

where Dl := {yl ∈ R|Cl|d : ∃ξ ∈ Rd s.t. yl = 1|Cl| ⊗ ξ} for
l ∈ QG , and δDl

(yl) is the indicator function for Dl, i.e.,
δDl

satisfies δDl
(yl) = 0 for yl ∈ Dl and δDl

(yl) = ∞ for
yl /∈ Dl. This can be verified by Proposition 4.2 in [9].

For the gl in (17) and Dl, the following proposition states
that the proximal mapping of gl in (17) is proximable if that
of (
∑

j∈Cl

1

|Qj
G |
hj)(·) is proximable.

Proposition 2: Assume that the functions rj : Rd →
R, j ∈ Cl are proper, closed, and convex functions. Let

300



r̄l : Rd → R ∪ {+∞} and sl : R|Cl|d → R ∪ {+∞} be
r̄l(z) =

∑
j∈Cl

rj(z) for z ∈ Rd and

sl(xCl
) =

∑
j∈Cl

rj(xj) + δDl
(xCl

),

respectively. Then,

proxsl(xCl
) = 1|Cl| ⊗ prox 1

|Cl|
r̄l

(
1

|Cl|
(1|Cl| ⊗ Id)

⊤xCl

)
holds for r̄l and any xCl

∈ R|Cl|d.
Proof: From the definition of Dl, we have

proxsl(xCl
) = argminv∈R|Cl|d{ 1

2∥xCl
− z∥2 + sl(v)} =

argminξ∈Rd{
∑

j∈Cl

1
2∥xj − ξ∥2 + r̄l(ξ)}. Then, we obtain

ξ∗ ∈ argminξ∈Rd{
∑

j∈Cl

1
2∥xj − ξ∥2 + r̄l(ξ)} ⇔ 0 ∈

|Cl|{ξ∗ − 1
|Cl|
∑

j∈Cl
xj +

1
|Cl|∂r̄l(ξ

∗)} ⇔ 1
|Cl|
∑

j∈Cl
xj ∈

(I + 1
|Cl|∂r̄l)(ξ

∗) ⇔ ξ∗ ∈ (I + 1
|Cl|∂r̄l)

−1( 1
|Cl|
∑

j∈Cl
xj),

where I is the identity operator. Therefore, Proposition 2
follows from Proposition 16.44 in [30].

B. Numerical Experiment
Through a numerical experiment, we demonstrate the

effectiveness of the proposed CL-ADMM and CL-FLiP-
ADMM.

Consider a multi-agent system with n = 50 agents.
Assume that the communication network G is given as a
connected time-invariant undirected graph, where each edge
is generated with a probability of 0.1. We consider that
the multi-agent system solves the consensus optimization
problem in (16) with

fi(xi) =
1

2
∥Ψixi − bi∥2, hi(xi) = λi∥xi∥1, (18)

where Ψi = Id + 0.1Ωi ∈ Rd×d, bi ∈ Rd, i ∈ N , and λi =
λ = 0.001 for all i ∈ N . For all i ∈ N , each entry of Ωi

and bi is generated by the standard normal distribution. Note
that fi in (18) is λmax(Ψ

⊤
i Ψi)-smooth, and the functions gl

in (17) is proximable for hi in (18).
Now, to verify the effectiveness of the proposed clique-

based algorithms, we conduct simulations for the CL-
ADMM with QG = Qmax

G , CL-ADMM with QG = E ,
CL-FLiP-ADMM with QG = Qmax

G , CL-FLiP-ADMM with
QG = E , and PG-EXTRA [2], given as follows:

xk+1 = proxηλ∥·∥1
((Wm ⊗ Id)x

k − η∇F (xk)− vk)

vk+1 = vk +
Ind −Wm ⊗ Id

2
xk,

where Wm ∈ Rn×n is a mixing matrix of G. Note that when
G is connected, ∩l∈QG{x ∈ Rnd : xCl

∈ Dl} = {x ∈
Rnd : x1 = · · · = xn} is satisfied for QG = Qmax

G from
Proposition 4.2 in [9], and hence an optimal solution can
be obtained by the CL-ADMM and CL-FLiP-ADMM with
QG = Qmax

G .
The algorithmic parameters are given as follows. For the

CL-ADMM algorithms with QG = Qmax
G and E , we set

γl = ϕl = βl = 1 for all l ∈ QG , and αi = 1/|Qi
G |

for each i ∈ N . For the CL-FLiP-ADMM algorithms with
QG = Qmax

G and E , we set f1
i (xi) = 0, f2

i (xi) = fi(xi),
g1l (yl) = gl(yl), g2l (yl) = 0, γl = ϕl = βl = 1
for all l ∈ QG , and αi = 1/(λmax(Ψ

⊤
i Ψi) + |Qi

G |) for

Fig. 2: Plot of relative objective residuals |(F (xk)+G(xk))−
(F (x∗) − G(x∗))|/(F (x∗) + G(x∗)) against the number
of iteration under the CL-ADMM and CL-FLiP-ADMM
algorithms with QG = Qmax

G and E , and PG-EXTRA.

Fig. 3: Plot of relative objective residuals |(F (xk)+G(xk))−
(F (x∗) +G(x∗))|/(F (x∗) +G(x∗)) against the number of
iteration under the normal ADMM, normal FLiP-ADMM,
and the CL-ADMM and CL-FLiP-ADMM algorithms with
QG = Qmax

G .

each i ∈ N . For the PG-EXTRA, we set η = 0.9(1 +
λmin(Wm))/λmax(Ψ

⊤Ψ) with Ψ = blk-diag(Ψ1, . . . ,Ψn)
and Wm = In − 1

maxi∈N |Ni|−1LG , where LG is the graph
Laplacian matrix of the graph G.

Fig. 2 plots the relative objective residuals |(F (xk) +
G(xk)) − (F (x∗) + G(x∗))|/(F (x∗) + G(x∗)) versus it-
erations. As shown in Fig. 2, all the methods successfully
converge to an optimal solution with a tiny error, and the CL-
ADMM with QG = Qmax

G outpaces the others. Additionally,
although the CL-FLiP-ADMM with QG = Qmax

G is slower
than the CL-ADMM algorithms, it outperforms the CL-FLiP-
ADMM with QG = E and PG-EXTRA. Moreover, Fig. 2
indicates that handling the consensus constraint on a clique
basis, i.e., setting not QG = E but QG = Qmax

G can enhance
the performance.

For further comparison, we also run the normal ADMM
and FLiP-ADMM algorithms on the same problem, and
Fig. 3 plots the relative objective residual versus iterations
of the normal ADMM and normal FLiP-ADMM with the
results of the CL-ADMM and CL-FLiP-ADMM with QG =
Qmax

G in Fig. 2. Here, the normal ADMM and FLiP-ADMM
correspond to special cases of Algorithms 1 and 2 in which
all the parameters γl, ϕl, βl, and αi are common among
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all l ∈ QG and all i ∈ N . For the normal ADMM, we
set QG = Qmax

G , γl = ϕl = βl = 1 for all l ∈ QG , and
αi = 1/maxi∈N |Qi

G | for all i ∈ N . For the normal FLiP-
ADMM, we set QG = Qmax

G , γl = ϕl = βl = 1 for all
l ∈ QG , and αi = 1/maxi∈N (λmax(Ψ

⊤
i Ψi) + |Qi

G |) for
all i ∈ N . From Fig. 3, the normal ADMM and normal
FLiP-ADMM are much slower than the CL-ADMM and
CL-FLiP-ADMM. This implies that thanks to the localized
algorithmic parameters, the proposed methods are not only
fully distributed but perform better than the normal ADMM
and FLiP-ADMM.

These results highlight the effectiveness of the proposed
methods.

Remark 3: The clique-wise handling of pairwise con-
straints (e.g., the consensus constraint in (16)) tends to
outperform the pairwise one, in particular, when G is not
dense, and the initial value of xk is far from its optimal
value. When the clique-wise handling does not outperform
the edge-based one, the clique-wise coupled framework is
still meaningful because the agents can share a part of their
computation (see Remark 1).

VI. CONCLUSION

This paper addressed a novel framework for distributed
optimization, clique-wise coupled optimization problems. We
proposed a distributed ADMM and FLiP-ADMM algorithms
based on cliques and proved the convergence theorems
with no global parameter. Moreover, we applied the pro-
posed methods to a consensus optimization problem and
demonstrated their effectiveness via numerical experiments.
A future direction is to extend existing methods for pair-
wise coupled distributed optimization/control problems to a
more general framework from the viewpoint of clique-wise
coupling.
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[1] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Automat. Contr., vol. 54, no. 1, pp.
48–61, Jan. 2009.

[2] W. Shi, Q. Ling, G. Wu, and W. Yin, “A proximal gradient algo-
rithm for decentralized composite optimization,” IEEE Trans. Signal
Process., vol. 63, no. 22, pp. 6013–6023, Nov. 2015.

[3] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1245–
1260, Apr. 2017.

[4] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method
with network independent step-sizes and separated convergence rates,”
IEEE Trans. Signal Process., vol. 67, no. 17, pp. 4494–4506, Jan.
2019.

[5] P. Latafat, N. M. Freris, and P. Patrinos, “A new randomized block-
coordinate primal-dual proximal algorithm for distributed optimiza-
tion,” IEEE Trans. Automat. Contr., vol. 64, no. 10, pp. 4050–4065,
Oct. 2019.

[6] H. Li, E. Su, C. Wang, J. Liu, Z. Zheng, Z. Wang, and D. Xia,
“A primal-dual forward-backward splitting algorithm for distributed
convex optimization,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 7,
no. 1, pp. 278–284, Feb. 2023.

[7] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, Mar. 2015.

[8] F. Bullo, J. Cortés, and S. Martinez, Distributed Control of Robotic
Networks. Princeton Univ. Press, 2009.

[9] K. Sakurama and T. Sugie, “Generalized coordination of multi-robot
systems,” Found. Trends® Syst. Control, vol. 9, no. 1, pp. 1–170, 2021.

[10] B. Bollobás, Modern Graph Theory. Springer Science & Business
Media, 1998.

[11] D. P. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Prentice-Hall Englewood Cliffs, NJ, 1989.

[12] H. Xu, C. Caramanis, and S. Sanghavi, “Robust PCA via outlier
pursuit,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3047–3064, Jan.
2012.

[13] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” J. ACM, vol. 58, no. 3, pp. 1–37, Jun. 2011.

[14] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D, vol. 60, no. 1, pp. 259–268,
Nov. 1992.

[15] B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang, “An ADMM al-
gorithm for a class of total variation regularized estimation problems,”
IFAC Proc. Vol., vol. 45, no. 16, pp. 83–88, Mar. 2012.

[16] D. Hallac, J. Leskovec, and S. Boyd, “Network Lasso: Clustering and
optimization in large graphs,” in Proc. 21th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Aug. 2015, pp. 387–396.

[17] Y. Zhang and Q. Yang, “An overview of multi-task learning,” Natl.
Sci. Rev., vol. 5, no. 1, pp. 30–43, Sep. 2017.

[18] Y. Watanabe and K. Sakurama, “Accelerated distributed projected
gradient descent for convex optimization with clique-wise coupled
constraints,” in Proc. 22nd IFAC World Congr., 2023, (Accepted).

[19] L. Vandenberghe, M. S. Andersen et al., “Chordal graphs and semidef-
inite optimization,” Foundations and Trends® in Optimization, vol. 1,
no. 4, pp. 241–433, 2015.

[20] Y. Zheng, M. Kamgarpour, A. Sootla, and A. Papachristodoulou, “Dis-
tributed design for decentralized control using chordal decomposition
and admm,” IEEE Transactions on Control of Network Systems, vol. 7,
no. 2, pp. 614–626, 2019.

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Found. Trends® Mach. Learn., vol. 3, no. 1,
pp. 1–122, 2011.

[22] E. K. Ryu and W. Yin, Large-Scale Convex Optimization: Algorithms
& Analyses via Monotone Operators. Cambridge Univ. Press, 2022.

[23] T.-H. Chang, “A proximal dual consensus ADMM method for multi-
agent constrained optimization,” IEEE Trans. Signal Process., vol. 64,
no. 14, pp. 3719–3734, Jul. 2016.

[24] A. Falsone, I. Notarnicola, G. Notarstefano, and M. Prandini,
“Tracking-ADMM for distributed constraint-coupled optimization,”
Automatica, vol. 117, p. 108962, Jul. 2020.

[25] I. Notarnicola and G. Notarstefano, “Constraint-coupled distributed
optimization: A relaxation and duality approach,” IEEE Trans. Control
Netw. Syst., vol. 7, no. 1, pp. 483–492, Mar. 2020.

[26] X. Wu, H. Wang, and J. Lu, “Distributed optimization with coupling
constraints,” IEEE Trans. Automat. Contr., vol. 68, no. 3, pp. 1847–
1854, Mar. 2023.

[27] L. Condat, “A primal–dual splitting method for convex optimization
involving lipschitzian, proximable and linear composite terms,” J.
Optim. Theory Appl., vol. 158, no. 2, pp. 460–479, Aug. 2013.
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