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Stability Bounds for Learning-Based Adaptive Control of Discrete-Time
Multi-Dimensional Stochastic Linear Systems with Input Constraints

Seth Siriya, Jingge Zhu, Dragan Nesié, and Ye Pu

Abstract— We consider the problem of adaptive stabiliza-
tion for discrete-time, multi-dimensional linear systems with
bounded control input constraints and unbounded stochastic
disturbances, where the parameters of the system are unknown.
To address this challenge, we propose a certainty-equivalent
control scheme combining online parameter estimation with
saturated linear control. We establish the existence of a high
probability stability bound on the closed-loop system, under
additional assumptions on the system and noise processes.
Numerical examples are presented to illustrate our results.

I. INTRODUCTION

Adaptive control (AC) is concerned with the design of con-
trollers for dynamical systems whose model parameters are
unknown. When deploying these algorithms in the real world,
it is important that actuator saturation is accounted for during
design, since ignorance of such issues may result in failure to
achieve stability. Moreover, systems are sometimes subject
to rare, large, disturbances — often modelled by additive,
unbounded stochastic noise — which can degrade control
performance and potentially cause instability. This motivates
the need to develop provably stabilizing adaptive control
algorithms that simultaneously handle input constraints and
additive, unbounded, stochastic disturbances.

Discrete-time (DT) stochastic AC has recently seen inter-
est in the form of online model-based reinforcement learning
— especially for the online linear quadratic regulation (LQR)
task, which aims to minimize regret with respect to the
optimal LQR controller on an unknown, linear system with
additive, sub-Gaussian disturbances (see [1], [2]). These re-
sults have been extended to handle state and input constraints
[3], but only when disturbances are bounded. DT extremum
seeking (ES) AC results have also shown promise for sta-
bilizing unstable DT systems ([4], [5]), but do not account
for input constraints. Despite the history of DT stochastic
AC, tracing back to classic linear results such as [6], [7], the
control of non-strictly stable systems subject to hard input
constraints has not garnered attention. Other nonlinear DT
stochastic AC problems have been considered, such as dead-
zone nonlinearities [8], and linearly parameterized nonlinear
systems [9]. On the other hand, control constraints have been
studied for the stabilization of unknown, DT output-feedback
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linear systems with bounded disturbances in [10], [11], but
unbounded disturbances are not supported. Recently, mean
square boundedness of a learning-based adaptive control
scheme for at-worst marginally stable, scalar, linear systems,
with Gaussian disturbances and bounded controls, was es-
tablished in [12], by combining results from non-asymptotic
system identification [13] with input-constrained stochastic
control [14]. However, multi-dimensional results are missing.

Motivated by our previous scalar result [12], we move
towards filling the gap in the multi-dimensional setting.
In particular, we aim to develop a method for adaptive
stabilization of unknown, multi-dimensional linear systems,
subject to additive, i.i.d. sub-Gaussian zero-mean stochastic
disturbances, and hard, positive upper bound constraints on
the control magnitude. Our main contributions are twofold.

Firstly, we propose a certainty-equivalence (CE) adaptive
control scheme to address the problem. It consists of a
saturated linear controller based on parameter estimates
obtained via ordinary least squares (OLS) online, which has
been intentionally excited by a bounded noise to facilitate
parameter convergence. The saturation level and exciting
noise level can be jointly selected to satisfy the control input
constraint. Moreover, we do not assume prior knowledge of
any bounds on the system parameters.

Secondly, we prove the existence of a high probability
stability bound which holds on sub-sampled states of the
closed-loop system, under the assumption that the system is
controllable, || A|| < 1, the saturation level of the controller is
sufficiently large for the given disturbance and exciting noise
processes, and that a persistency of excitation-like condition
holds on the state-input data sequence. To achieve this, we
first establish an upper bound on the parameter estimation
error that holds over time with high probability using recent
results on non-asymptotic system identification [13]. Then,
we derive a probabilistic upper bound on the norm of
the sub-sampled states which relies on a given estimation
error bound. These two results are subsequently combined
to derive a parameterized family of high probability upper
bounds on the norm of the sub-sampled states. Our main
result then follows.

Notation: For x € R", |x| denotes its Euclidean norm.
For any z € R™ and y € R™, (z,y) stands for [z " yT]T.
Given a matrix M € R™ ™, ||M]|| is its induced 2-norm,
Omax (M) and opmin (M) denotes its maximum and minimum
singular values respectively, B, (M) denotes the 2-norm open
ball of radius > 0 centered at M and B,.(M) denotes its
closure, and M1 denotes its Moore-Penrose inverse. Given
M € R™ ™, p(M) denotes its spectral radius, and if it is
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symmetric, Amin(M) denotes its minimum eigenvalue, and
Amax(M) denotes its maximum eigenvalue. For r > 0,
we define the saturation function sat, : RY — R? by
sat,(x) := x if |z| < r, and sat,(z) = ra/|z| if |z] > r.
For any A € R™"*™ and B € R™*™, define R.(4, B) :=
[B AB A1 B] as the corresponding k-step reach-
ability matrix. The identity matrix is denoted by I. Denote
the unit sphere embedded in R? by S?~!. Given sets A
and B, A€ denotes the complement of A, A N B denotes
the intersection of A and B, and A U B denotes their
union. Consider a probability space (€2, F, P), and a random
vector X : Q — R% an event A € F, and a sub-sigma-
algebra G C F, defined on this space. The expected value
of X is denoted by E[X]. We define the indicator function
14:9 — {0,1} as 14 := 1 on the event A, and 14 := 0
on the event A€. For scalar X, we say X is o2-sub-Gaussian
if E[e?X] < e?*t*/2 for all t € R. For vector X, we say X is
o2-sub-Gaussian if E[X] = 0, and " X is o2-sub-Gaussian
for any u € S41.

II. PROBLEM SETUP

Consider the following stochastic linear system:

X1 =AXy + BU+ W, t €Ny, Xg=um9, (1)

where the random sequences (Xi)ieng, (Ut)ien, and
(Wi)ien, are the states, controls, and disturbances, taking
values in R”, R™, and R respectively, o € R" is the initial
state, and A € R™"*™ and B € R™*™ are the true, unknown,
system matrices. For convenience, 6, = [A B] denotes the
true system parameter. This is in contrast to 0., denoting the
estimated parameter at time ¢, and will be formally defined
later. We make the following assumptions on (1).

Assumption 1. The disturbance (Wi)ien, is an ii.d. se-
quence that has an unbounded support, is mean-zero and
o%-sub-Gaussian, with a covariance matrix Sy .

Assumption 2. The matrix A is full rank, satisfies || Al <
1, and (A, B) is k-step reachable with k < n, that is,
rank(R. (A, B)) = n. For ease of notation, we denote
R+ =Rx(4, B).

Remark 1. Note that Assumption 1 is broad enough to handle
many different types of disturbance with an unbounded
support, including Gaussian distributions. We assume 1i.i.d.
sequences to simplify the exposition, but our analysis can
be extended to martingale difference sequences. Full rank
A is required in Assumption 2 to establish the perturbation
bounds for our saturated linear controller introduced later.
It is satisfied in many systems, such as linear systems dis-
cretized with zero-order hold. Moreover, we assume || A| <
1 and (A, B) reachable, for which in the non-adaptive
case there exist bounded control policies rendering such
systems mean square bounded with unbounded stochastic
disturbances [15]. This gives us hope that stabilizing adaptive
control is possible. In contrast, when p(A) > 1, [14] showed
that mean square boundedness is impossible with unbounded
disturbances and bounded controls. Although the plants we

consider are marginally stable in the deterministic setting
and hence bounded, they exhibit unbounded behaviour in the
stochastic setting. For example, the scalar system X;;; =
X; + W, with Xg = 0 and W, S N(0,1) has variance
Var (X;) = t, which exhibits unbounded growth.

Our goal is to formulate an adaptive control policy
(7¢)ten, such that 7 is a mapping from current and past state
and control input data (Xo, ..., X, Uy, ..., U;—1) and a ran-
domizaton term V; to R™ for ¢t € Ny. Here, (V})ten, taking
values in R™ is an i.i.d. random sequence whose purpose
is to excite the system in order to facilitate convergence of
parameter estimates. The overall policy needs to be designed
so that |U;| < Upax holds where Uy, > 0 is the control
magnitude constraint, whilst provably achieving stochastic
stability guarantees on the closed-loop system states (X;):en
with Uy = m(Xo, ..., X:, U, ..., Us—1,V;). Moreover, we
require in our design that 7; does not depend on 6.,.

III. METHOD AND MAIN RESULT

For controller design, we require knowledge of some w
satisfying Assumption 2. Although we can have Kk < n in
many cases when systems have multiple inputs, if it is only
known that (A, B) is controllable, x = n is always a valid
choice. Our control strategy is summarized in Algorithm 1.

Algorithm 1 Stochastic Adaptive Input-Constrained Control

1: Inputs: Upax > 0, C € (0,Unax), Ao € R™", By €
Rnxm’ K S n

20 D+ Upax — C

3740

4: Measure X

5: for 7=0,1,... do

6:  Sample Vir, ..., Vi(r41)—1 satisfying Assumption 3

7. Compute U, following (2)

8

9

for t =r7,...,6(1+1)—1do
Extract U; from U, following (2)
10: Apply U; to (1)
11: Measure X;41 from (1)
12:  end for
13:  Compute 6, following (3)
14: end for

We now describe our strategy in greater detail. For all
T € Ny, our sub-sampled control sequence (U;)ren, is

Uk(r+1)-1 Vie(r+1)-1
: =satp(—g(A,, B;)Xr) + 2)
Ukr Vier
0.

where g(A,B) = R.(A B)I(A)~ for [A B] €
RnX(n+m) - and V; is an additive excitation term sampled
so that Assumption 3 is satisfied.

Remark 2. When the true system parameter is used for
control, such that satp(—g(A, B)x) is our control law, the
policy can be viewed as a saturated deadbeat controller
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for the dynamical system obtained when (1) is sampled
with periodicity x. A similar controller structure was shown
to achieve mean square boundedness in [15], except the
saturation and and linear gain is switched. We opt for our
order since our CE control strategy involves using estimates
(A, B;) rather than (A, B), and our estimates can be
unbounded leading to unbounded gain. Applying saturation
afterwards guarantees our controls satisfy Upx.

Assumption 3. The random sequence (V;)ien, taking values
in R™ is i.i.d. Additionally, |V;| < C holds, and Vi, W; are
independent for all i,j € Ny.

Remark 3. Assumption 3 restricts the magnitude of the
additive noise V4, which is required for satisfying control
input constraints. We denote its covariance matrix by Xy .

Let (ét)teN taking values in R™*("*+™) be the sequence
of estimates of 6, via OLS estimation:

t
LEs 9€R$1(2+m) ; 1 sl 3)

where (Z;)sen taking values in R™™™ is the state-input
data sequence, i.e. Z; = (X;_1,Us_1). Let (6;)ren be the
sequence of sub-sampled parameter estimates satisfying 6, =
0,7, and let (A,),cn, (By)ren, be the sub- sampled estimates
of A and B respectively, satisfying [A; B;| = 6.. Note,
the initial parameter estimate (Ag, By) is not computed via
OLS, but instead freely chosen by the designer in R™*™ x
R™*™_Additionally, C is a user-specified excitation constant
satisfying 0 < C' < Upax Which determines the size of the
excitation term, and D = Up,, — C' is the magnitude of the
certainty-equivalent component of the control policy.

Under this control strategy, the sub-sampled state sequence
(X, )ren,, satisfying X, = X,., evolves via

X‘r-&-l = AXH(T+1)—1 + BUK(T+1) 1+ Wfi(‘l’-‘rl)
= A"X, 4+ R,satp(— (AT,B ) X)) + Ve + W (4)
for all 7 € Ny, where V, = R,[ T+1 e VT
and W, = 72,@(14,I)[VVK(H_1 LW Next we let

My, = In(E[e!"-1]), and My = ln(E[ IV ~1]), whose exis-
tence are guaranteed from Assumptions 1 and 3. We assume
they relate to D and R, as follows.

Assumption 4. The saturation level D, My, and My,

satisfy |\RT i > My + My,
Remark 4. The term T 75”‘ in Assumption 4 can be inter-

preted as the influence of ‘the control strategy on the system.
Conversely, My, and My, are statistics that can be viewed
as the influence of the exciting noise and disturbance on
the system. Roughly, they characterize the variance of the
noise. Assumption 4 ensures the controls can overpower
the disturbance/noise stochastically, allowing us to invoke
Lyapunov-type arguments for stability analysis. For any D,
it is satisfied so long as My, and My, are sufficiently small.

We define the block martingale small-ball (BMSB) condi-
tion, and assume the state-input data sequence satisfies it.

Definition 1. (Martingale Small-Ball [13, Definition 2.1])
Given process (Z;)¢>1 taking values in RY, we say it satisfies
the (k, Ty, p)-block martingale small-ball (BMSB) condition
for k € N, ng>-0 and p > 0, if, for any ( € S%!

J 203 30 PUCT Zil 2 VTG | ) 2 p holds
(Fi)i>1 is any filtration which (T Z;);>1 is adapted to.

Assumption 5. The constants k > 0, Iy, = 0, and p > 0
are such that the state-input data sequence (Z;)ien satisfies
the (k,Tg,p)-BMSB condition.

Remark 5. The BMSB condition in Definition 1 can be
used to establish that persistency of excitation holds, which
is important for deriving high probability bounds on the
estimation error (see [16]). By supposing (Z;):en satisfies
the BMSB condition in Assumption 5, conditioned on past
Z, the averaged distributions of future Z; are sufficiently
spread. We proved this holds in the scalar case [12] using
exciting noise, and leave the vector case to future work.

We now present the main result on the existence of a high
probability stability bound for our control scheme.

Theorem 1. Suppose Assumptions 1-5 hold. There exist \ €
(0,1), N1, N3 > 0, and strictly increasing function N :
R>o — Rx>q such that

| X+ | < In(Na(l2ol)(2/6)™ AT + N3) +1n(2/8)  (5)

holds with probability at least 1 — § for all xo € R™, § €
(0,1) and T € Ny.

Theorem 1 says that, for any initial state zo € R",
sub-sampled time 7 € Ny, and failure probability § €
(0,1), with probability at least 1 — §, X, will be in a ball
around the origin with size equal to the right hand side of
(5). In particular, we can interpret the result as a stability
bound since the right hand side is uniformly bounded by
In(No(|zo|)(2/6)M 4+ N3) + In(2/68) over all 7 € Ny, and
will asymptotically converge to In(N3) + In(2/§) regardless
of 2. Although the structure of this bound is non-standard, it
can show up when bounding systems which converge to a set
linearly, rather than exponentially. Moreover, the right hand
side increases as d approaches zero. This reflects the fact that
more conservative bounds can assert statements with greater
confidence, and is a common phenomenon in the statistical
learning literature.

IV. PROOF SKETCH OF MAIN RESULT

We now build towards the proof of Theorem 1. Firstly, in
Section IV-A, we establish a high probability upper bound on
the parameter estimation error in the form of Proposition 1.
Next, in Section IV-B, we provide Lemmas 1 and 2, which
are used to obtain Proposition 2 — a probabilistic upper
bound on the norm of the sub-sampled states which relies
on a given estimation error bound. This result is subsequently
combined with Proposition 1 to derive a family of high
probability stability bounds in Theorem 2. Theorem 1 then
follows after simplification. Although we provide sketches of
the key ideas behind these results here, we defer the formal
proofs to the supplementary materials on Arxiv [17].
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A. Estimation Error Bound

Under Assumptions 1, 2, 3, and 5, we provide Proposition
1 — a high probability error bound on our parameter
estimates from (3). In particular, it says that, with probability
at least 1 — ¢, the function e(T,d,z) will bound the
estimation error |07 — 6,|| uniformly over all T greater
than T(0, z¢). We derive this result by making use of [13,
Theorem 2.4], which provides high probability upper bounds
on the estimation error for parameter estimates obtained by
applying OLS to a general time-series with linear responses,
and can successfully be applied when the BMSB condition in
Definition 1 is satisfied, and high-probability upper bounds
on Zle 7,7, can be found. One key difference between
Proposition 1 and [13, Theorem 2.4] is the latter holds at
any sufficiently large 7' with high probability, rather than
with high probability over all T' > Ty (0, xo).

Proposition 1. Suppose Assumptions 1, 2, 3, and 5 hold.
Consider the sequence of parameter estimates (0;)icN from
(3). Fix § € (0,1), and zo € R™. Then,

107 — 0.2 < e(T,6,x0) for all T > Ty(5, o)
holds with probability at least 1 — §, where

o(T, 5, 30) = 20TW (@Min(T) " (n

272
+ (n 4+ m)In(10/p)) + Indet (T;;

x (4)zo]? +2(D? + tr (Zv)) + 4(|| B||*(D? + tr (Zv))

) o

1
= min{T} e N|T > pif (z(n +m) In(10/p)

+tr (Sw)T2 + Anae( T )T ) + I (
TO(57 IO)

2T2
+1ndet(”25 (4]zo|? + 2(D? + tr (Zy))

+4(||B|2(D? + tr (Zv)) + tr (Zw)) T2+
i 2)) foral T>T.. (D)

T

Amwc(l_‘sb))Fs_bl> + In ( 2

We describe the key ideas for proving Proposition 1.
Firstly, we establish that an estimation error bound holds
at any specific time T with probability 1 — ¢’ (where ¢’ is
the failure probability) by verifying the conditions for [13,
Theorem 2.4], treating Z; < (X;_1,U;_1) as the covariates
and Y; < X, as the response. BMSB holds by Assumption
5, and P(Y.._, ZZ] # TT) < & is established with
T « (1/8)(4]zo|*> + 2(D? + tr (Zv)) + 4(|| B||*(D?
tr (Zv)) + tr (Ew))T? + Amax(Ts)). We move from the
specific T bound, to Proposition 1 that holds with probability
1 — § (where § is the failure probability) uniformly over
all sufficiently large T, by replacing &' < 26/(w2T?), and
invoking a union bound argument.

B. Stability Bound

We state Lemma 1 on perturbation bounds for the CE com-
ponent of the controls as a function of parameter estimation
error and saturation level D.

Lemma 1. Suppose Assumption 2 holds. There exist
myg, My > 0 such that for all D > 0 and ¢ € [0,m,),

|satp(—g(A, B)z) —satp(—g(A, B)x)| < M, - D - ¢
holds for all A € B.(A), B € B.(B), and x € R™

The result in Lemma 1 follows from a perturbation bound
we derive on the controller saturation error using matrix
analysis, which is convex in e over a half-open interval. Of
note in the proof, is the perturbation bound holds uniformly
over all states. Intuitively, this is because after fixing D and ¢
sufficiently small, we can find a compact set .S of = such that
on S¢, both satp(—g(A, B)r) and satp(—g(A, B)x) are
saturated, so the CE error will not grow with |z|. Although
the CE error will grow with |z| within S, we obtain a uniform
bound based on the worst |z|.

We make use of Lemma 1 to derive Lemma 2. It bounds
the expected value of an exponential function of the states of
a family of systems that evolve similar to (4), but are instead
parameterized by deterministic estimates of 6, that are used
for the controller. This bound holds uniformly over estimates
in a sufficiently small ball around 6,.

Lemma 2. Suppose Assumptions 1, 2, and 3 hold. Let
mq, Mg > 0 satisfy Lemma 1. Fix € € [0,m,]. Consider

a family of random sequences (Z2P),.cn, parameterized

by A € B.(A),B € B.(B) that evolve according to the
closed-loop system:

Zfﬁf —A"ZAB 4 Rosatp(—Re(A,
+ V, + W,

)TAKZA B)

Sfor T € No, where:
1) (WT)TeND and (VT)TeNO are Li.d. random sequences
with the same distribution as (W) en, and (V;)ren,
respectively;
2) Z{;"B = Zforall A € B.(A) and B € B.(B), where Z
is a random variable with distribution u(-);
3) (WT)TGNO, (VT)TEN()’ Z are all independent.
Then,

]E[ |ZAB\|ZAB ]< )\T

||+ﬂ z/\rlk

k=0

®)

forall A € B.(A), B € B(B), T € Ny, and z in the support

of u(-), where

IR+ ||-Mg-D-et+—=2—+ My + My
Ae) :=e e iRy YT 9)

B(e) == el Rxll-Mq-D-e+My + My, (10)

We describe the key ideas for proving Lemma 2. Assuming
A € B.A) and B € B.(B), we can bound |Z{*5|
based on the dynamics of the nominal sub-sampled closed-
loop system (where the true parameter A, B is used for
the controller), and the CE error, which is upper bounded
using Lemma 1. This implies E[e‘zf“B‘ | Zo = 2] <

E[e\A”z#»R*satD(fRiA”z)|+1b[‘7+MW+HR*HMqDe | Zy = 2]
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holds, which is upper bounded by A(e) when z € {z |
IRIA%z| > D}, and B(e) when 2 € {z | |[RIA%z| <
D}. The conclusion in (8) follows via a modification of
[18, Proposition 1] for systems exhibiting instability, with
V() el

Remark 6. The bound in (8) always provides upper bounds
on the conditional expectation of e‘Zf ’B‘, and varies contin-
uously as a function of the estimation error €. However, if
e > 0 is sufficiently small such that \RTH + || R || MyDe +
My + My, < 0 holds, then A(e) € e 1) will hold (under
Assumption 4). In this scenario, the upper bound in (8)
will asymptotically converge towards a constant, and can be
qualitatively interpreted as a stability bound.

Using Lemma 2, we derive a probabilistic bound on
the norm of the sub-sampled states X, of the closed-loop
system in (4) in Proposition 2. Note that the upper bound
here depends on the function h, which is an arbitrarily
chosen function over 7 representing an upper bound on the
estimation error for the sub-sampled parameter estimates
6. that holds after time step (. The probability that this
bound holds depends on the probability that the sub-sampled
estimation error is bounded by h between 7 and 7.

Proposition 2. Suppose Assumptions 1, 2, and 3 hold, and let
mg, My > 0 satisfy Lemma 1. Suppose xo € R". Consider
any function h : {ro,70 +1,...,7 — 1} — [0,mq] with
70 € N. Fix 7 > 79 and v € (0,1). Then,

|X,| <In (i) —Hn( H A(h
+Zﬁ H AR )

J=i+1
holds with at least probability 1 — v — P(U::To{éi 4
Bh(iy(0x)}), with X, B defined in (9) and (10) respectively.

We  describe  the  key
Proposition 2. Define the events
Bh(m)(e*), ey 9"'i1 S 7Bh(7 1) (? )} and
£ = (ed¥ < SERSIIIILM06) +
Dimr B T[40 AR(G)))} for v € (0,1). By
employing an induction argument and making use of Lemma
2, we establish E[1g2elX71] < ]E[e‘Xm']HZ:_TlO A(h(i)) +
Z:_Tlo B(h(i) [T;= llﬂ/\(h(j)). This result and Markov’s
inequality imply P(S ) > 1 — «. The conclusion follows

from P(|X,| < In(2) + In([E[eX~][TIZ0 Ah(i) +

1=T0

S BhG) TTZ jﬂx(h(j))])) > P(£NE?), and lower
bounding P (& 1 M &?) using a union bounding argument.

Combining Propositions 1 and 2, we are now ready
to provide our main stability bound result in Theorem 2.
It says, that given a failure probability 6 and an esti-
mation error parameter €, we have a corresponding high
probability upper bound on the sub-sampled states if € is
sufficiently small. Note from Remark 6 that when ¢ €
(0, min(mg, (| R.|M, D)~ My — My))). A(e) €

ideas  for  proving

& = {6, €

(HR*H

(0, 1) holds, and therefore the right hand side of (11) is upper
bounded by In(2/0) + K(¢,6/2,2z0) + In(5 (6() )) over all

7, and asymptotically converges to In(2/4) + In(5 8 E\e()e)) as

T — 00. Thus, it can be viewed as providing a parameterized
(in €) family of high probability stability bounds.

Theorem 2. Suppose Assumptions 1, 2, 3, 4, and 5 hold,
and let my, M, > 0 satisfy Lemma I. Suppose :1:0 E R™.
Fix 6 € (0,1) and € € (0, min(m,, (| R«||M,D)~* (-2

My — Myyr))). Then,

IR

X, < (?) +In (K(e,a/Q,xo)x(e) + %) (1)

holds with probability at least 1 — § for all T > 0, where
K(e b,x0) :=e
70(€,8,20) := min{r € N | k7 > Tp(6, zo),
e(ki,d,x9) < e€foralli> T},

71— _ _ ’ P
|zo] (eHR* | D+My+Myy 1)7'0(6757‘1,'0)7

with Ty, e, A\, B defined in (7), (6), (9), (10) respectively.

We describe the key ideas for proving Theorem 2. Firstly,
from the dynamics (4), Assumption 2, and satp(-) < D, we
have for all 7 > 0, E[e/X-] < el@ol(elR+lID+My+My 7
holds, which after applying Markov’s inequality implies
1X,| < 1n(%e'“’“'(e“R*“DJrMV*MW)T) with probability
at least 1 — v for all v € (0,1). For the case where
7 < T74(€,0,20), it can subsequently be deduced that
|X-| < In(2/6) + In(K (e, 6/2)A7(e) + 12¢5) holds with
probability 1 — §/2 after setting v <« 0/2 and some
simplification, which implies that it holds with probabil-
ity at least 1 — §. For the case where 7 > T7)(e€, 4, zg),
let h(i) = e(wi,d/2,29). Using Proposition 1, we have
PUL_ 1 (e,5/2, IO){G & Bpi)(0+)}) < 6/2. After combining
this with Proposition 2 where we set 79 + 74(€, 9, 20),
and then bounding E[e/X~0!] using our earlier mentioned
anytime bound on E[el**l], we find that |X,| < In(2/6) +
In(K(e,6/2)\"(€) + 1’8(;()6)) holds with probability 1 — §
after simplification. The conclusion follows by combining
both cases.

Finally, we establish Theorem 1 by showing that under the
Assumptions in Theorem 2, for all € > 0, there exist L; > 0
and a strictly increasing function Ly : R>g — Rx>( such
that 74(e, ) < La(|zo|) + L11n(1/0) for all zp € R™ and
d € (0,1). This result is then applied to simplify Theorem 2
and yield Theorem 1. We defer the formal proof to the
supplementary materials.

V. NUMERICAL EXAMPLES

We demonstrated the effectiveness of our strategy by
testing it on three different plants where W, * N0 (0,1):

| cos(m/4)  sin(m/4) ~ 9.
1) A= _Silg(ﬁ/;;)) cos'(7T(/4)]/’2)B1 B L], 03
2) Ay = —sin(—m/2) COS(_W/Q)} b= [_0'5 ,
_ | 0.8cos(m/4)  0.8sin(w/4) 0.5
D As=|_s sin(m/4) 0.8 COS(”/‘“] = 1o }
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Fig. 1: Median and 90th percentile of | X;| over 100 trials.

The algorithm parameters were also fixed to Upax ¢ 1,
C + 0.4, k < 2, with V; "% Uniform(—C, C) and (4o, Bo)
randomly selected (but fixed across all trials). We addition-
ally simulated system (A4;, B1) when it is uncontrolled (i.e.
U; = 0). The plots of the median and 90th percentiles of
| X:| over 100 trials are shown in Fig. 1a. It can be seen that
in all tests where Algorithm 1 is applied, at both the median
and 90th percentile, | X;| seems to exhibit stable behaviour in
the sense of boundedness, which is consistent with Theorem
1. This is in contrast to the case with no controls, where the
median and 90th percentile plots have unbounded growth.

Secondly, we tested Algorithm 1 using the same algorithm
parameters on (A;, By) again, but with Xy = 0.1 and
varying xo. The plots are shown in Figure 1b. We see that
regardless of the initial state, both the median and 90th
percentile converge. In particular, if we focus individually
on either the median or 90th percentile plots, and vary xg,
it appears that convergence occurs to the same steady state.
Moreover, this convergence seems linear. This is consistent
with the trends of the upper bound in Theorem 1.

VI. CONCLUSION

We proposed an excited CE control scheme for adaptive
control of multi-dimensional, stochastic, linear systems sub-
ject to additive, i.i.d. unbounded stochastic disturbances, with
positive upper bound constraints on the control magnitude.
Moreover, we established a high probability stability bound
on the x-sub-sampled states of the closed-loop system. The
stability of our strategy is verified in numerical examples.

This work can be extended in several directions. As-
sumption 2 can potentially be relaxed to linear systems
where (A, B) are stabilizable, p(A) < 1, and eigenvalues
of A on the unit circle have equal algebraic and geometric
multiplicity, since the existence of mean square stabilizing
controllers has been demonstrated [15]. However, controller
design based on [15] involves a similarity transformation
T(A) that takes A to real Jordan form. Algorithm 1 could
be modified to support such controllers, however, stability
analysis would require inspection of the continuity properties
of T(A), and so we forgo the more general case in this
work to simplify the exposition. Another interesting direction
is output-feedback problems, since we only address the
full-state feedback setting. Overcoming Assumption 4 is of

interest, since in the non-adaptive setting, arbitrarily small
controls are sufficient for stochastic stability [14]. Lastly, a
more refined derivation of stability bounds than Theorems 2
and 1 is of interest, enabling a detailed analysis of the system
behaviour beyond the trends observed here — for example,
it may take into consideration the convergence of parameter
estimates. We leave this to future work.
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