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Abstract— Within mobility systems, the presence of self-
interested users can lead to aggregate routing patterns that
are far from the societal optimum which could be achieved by
centrally controlling the users’ choices. In this paper, we design
a fair incentive mechanism to steer the selfish behavior of the
users to align with the societally optimal aggregate routing.
The proposed mechanism is based on an artificial currency
that cannot be traded or bought, but only spent or received
when traveling. Specifically, we consider a parallel-arc network
with a single origin and destination node within a repeated game
setting whereby each user chooses from one of the available arcs
to reach their destination on a daily basis. In this framework,
taking faster routes comes at a cost, whereas taking slower
routes is incentivized by a reward. The users are thus playing
against their future selves when choosing their present actions.
To capture this complex behavior, we assume the users to be
rational and to minimize an urgency-weighted combination of
their immediate and future discomfort. To design the optimal
pricing, we first derive a closed-form expression for the best
individual response strategy. Second, we formulate the pricing
design problem for each arc to achieve the societally optimal
aggregate flows, and reformulate it so that it can be solved with
gradient-free optimization methods. Our numerical simulations
show that it is possible to achieve a near-optimal routing whilst
significantly reducing the users’ perceived discomfort when
compared to a centralized optimal but urgency-unaware policy.

I. INTRODUCTION

This paper delves into the challenges confronting present
mobility systems, including traffic congestion, environmental
pollution, and user dissatisfaction. The advent of cutting-
edge technologies such as the internet of things and au-
tonomous driving is ushering in a transformative era in the
way we conceptualize mobility, providing an unprecedented
opportunity to tackle these challenges. Nonetheless, a funda-
mental issue is the inherent misalignment between individual
objectives, such as minimizing travel time, and societal goals,
such as reducing the overall congestion and pollution, which
can result in inefficient aggregate routing patterns [1].

To address this challenge, this paper employs an incentive
scheme, initially proposed in [2], [3], based on an artificial
currency, Karma, which is designed to align the routing
decisions of self-interested users with the socially-optimal
aggregate routing while taking into account their temporal
individual needs. This innovative framework operates on a
currency that can neither be purchased nor traded but can
only be gained or expended while traveling. Specifically,
we consider a parallel-arc network with a single origin and
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Fig. 1: Single origin-destination network of n arcs.

destination node, which is illustrated in Fig. 1, whereby
each user chooses from one of the available arcs to reach
their destination on a daily basis. It empowers users with an
equal opportunity to choose between being self-interested
and selecting the fastest path for a price or being altruistic
and choosing a slower path for a reward.

Related work: The toll design problem, which dates back
to Pigou’s work [4], has been extensively studied [5], [6].
However, designing tolling mechanisms that account for user
sensitivity distribution is a challenging task, for which some
results have also been proposed [7], [8]. Moreover, monetary
schemes are intrinsically unfair, as they discriminate against
users with lower incomes [9].

To address this issue, significant attention has been given
to the use of artificial currencies to align the aggregate
behavior of self-interested users with the system’s opti-
mum [2], [10]–[12]. Nevertheless, these works focus on
auction mechanisms forcing users to submit bids every time
they desire to use a resource, which may lead to decision
fatigue. Moreover, users are never guaranteed whether they
will be able to use the resource or whether they are going
to be outbidden. Our approach deviates significantly from
these mechanisms: We propose simple payment transactions
where each itinerary has a fixed cost or reward, thus requiring
no bidding whilst accounting for the users’ urgency by
endowing them with freedom of decision as long as they
have enough Karma to pay for the desired resource. In this
context, we carried out work for the particular case of two
arcs between common origin and destinations nodes in [3]
and, using a reinforcement learning approach, for two and
three arcs in [13]. Nevertheless, to the best of the author’s
knowledge, no mechanism has been proposed to cope with
the more general n parallel arcs scenario.
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Statement of contributions: The pivotal contributions in
this paper are threefold: Focusing on a repeated game setting
with n parallel arcs, we first derive a closed-form solution
for the best response strategy of a user, enabling an explicit
analysis of the repeated game dynamics. Second, we model
the aggregate Karma level dynamics under a stationary
aggregate routing pattern as an aggregate of Markov chains,
bridging the gap between the pricing policy and the aggregate
routing pattern. Third, building on the two previous results,
we propose a numerical pricing design procedure driving the
aggregate decisions to the system’s optimum.

Organization: This paper is organized as follows. Sec-
tion II states the mechanism design problem. In Section III,
the best response strategy of each individual user is an-
alyzed and a closed-form solution is derived, whilst we
model the aggregate behavior resulting from the microscopic
users’ decisions in Section IV. In Section V, we devise
a pricing design method, whose performance is assessed
in Section VI resorting to numerical simulations. Finally,
Section VII presents the main conclusions of this paper.

Notation: Throughout this paper, we denote the identity
and null matrices, both of appropriate dimensions, by I
and 0, respectively. The vectors of ones and zeros, both of
appropriate dimensions, are denoted by 1 and 0. The ith
component of a vector v ∈ Rn is denoted by vi. The vector
ei denotes a column vector whose entries are all set to zero
except for the ith one, which is set to 1. We denote [·]yx as the
saturation function with lower bound x ∈ R and upper bound
y ∈ R. The cardinality of a set A is denoted by |A|. The
expected value of a random variable X is denoted by E[X].

II. PROBLEM STATEMENT

This section states the mechanism design problem, which
closely follows the formulation in [3]. Three different per-
spectives are of interest, each corresponding to a subsec-
tion: i) the macroscopic perspective of the central operator,
aiming to minimize the societal costs that result from the
routing patterns; ii) the microscopic perspective of each self-
interested user, who desires to minimize their daily perceived
discomfort; and iii) the mesoscopic overarching perspective
of the incentive mechanism design framework to align these
two seemingly opposing objectives.

Consider the mobility network with a single origin and
destination node connected by n ∈ N distinct itineraries
depicted in Fig. 1. We consider a repeated game setting
whereby each user chooses from one of the available arcs
to reach their destination at each discrete time t ∈ N.

The incentive mechanism that is employed is based on
an artificial currency—Karma. In this framework, taking a
particular itinerary comes at a cost of Karma. Let p ∈ Rn

denote the prices of the itineraries, i.e., choosing arc j comes
at a cost pj . Users are not allowed to buy or trade Karma,
and they can only select arcs that maintain their Karma-
level non-negative. It is, hence, crucial that certain (more
uncomfortable) arcs are assigned negative prices, which
means that users are awarded Karma for taking them.

From a microscopic perspective, denote the route choice of
a user i at time instant t by the binary vector yi(t) ∈ {0, 1}n,
whose entry j is given by yi

j(t) = 1 if the user i chooses
arc j at time t, and yi

j(t) = 0 otherwise. Since each user
may not travel at time t we can have yi(t) = 0. Therefore,
it follows that 1⊤yi(t) ≤ 1. Let ki(t) ∈ R≥0 denote the
amount of Karma that a user i owns at time t. Following
a routing choice the Karma level is updated according to
ki(t+ 1) = ki(t)− p⊤yi(t).

From a mesoscopic perspective, let x(t) ∈ [0, 1]n denote
the fraction of users crossing each arc at time t. Given a
scenario with M users, it is defined as x(t) = 1

M

∑M
i=1 y

i(t).
To account for non-traveling users, it is assumed that each
user has a constant probability Phome ∈ ]0, 1] of not traveling.
Conversely, the probability for a user to travel is Pgo = 1−
Phome and E

[
1⊤x(t)

]
= Pgo.

A. Central Operator’s Problem

From the macroscopic perspective of the central operator
of the mobility network, the flows across each arc cause a
societal cost. Let c : [0, 1]n → Rn

≥0 denote the societal cost
function. It models the societal cost of each arc j per user,
cj(xj(t)), which is assumed to be monotonically increasing
with the fraction xj(t) of users taking it. The desire of the
central operator is that the aggregate flows minimize the total
societal cost C(x) := c(x)⊤x, which is formulated in the
following problem:

Problem II.1 (Central Operator’s Problem). The central
operator aims at routing customers so that the aggregate
flows are

x⋆ ∈ arg min
x∈[0,1]n

C(x)

s.t. 1⊤x = Pgo.

B. Individual User’s Problem

From the microscopic perspective of each user, taking an
itinerary j comes with a discomfort. Let d : [0, 1]n → Rn

≥0

denote the user’s discomfort function. It models the dis-
comfort that stems from taking arc j per user, dj(xj(t)),
which is assumed to be monotonically increasing with the
fraction of users taking it, xj(t). In contrast to well-known
monetary tolling schemes [6], the individual users’ complex
behavior cannot be captured within a static setting: From
their self-interested view-point, the users are assumed to
make choices in order to minimize their traveling discomfort
without reaching a negative level of Karma. Thus, the users
are playing against their future selves when deciding whether
to spend or receive Karma. Furthermore, the perception of
discomfort of a user varies daily. The urgency of a user i at
time t is denoted by si(t), which is a weighting factor of the
daily discomfort. The urgency instances si(t) are assumed to
be i.i.d. extractions (w.r.t. i and t) of a common probability
density function ρ : [smin, smax] → [0, 1] with support set
[smin, smax] ⊆ R≥0 and expected value s̄ ∈ R≥0. Hence-
forth, we assume that the discomfort function and urgency
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distribution are centrally known. In practice, these have to
be identified beforehand. To capture this complex behavior,
the users are assumed to be rational and to minimize a com-
bination of their immediate discomfort, weighted by their
immediate urgency, and the average discomfort encountered
for a time period T into the future, weighted by their average
urgency. Such quantification of future discomfort is rather
simple, but is motivated by the users’ bounded rationality.
Additionally, we assume each user i to be conservative in
terms of Karma, i.e., they will make the route decisions
so that their Karma at the end of the horizon will not fall
below a reference value kiref ∈ R≥0. For example, a user may
choose a reference value of p1 to ensure that they can still
afford to travel in arc 1 at the end of the horizon. It, thus,
depends on the pricing policy p. Herein, we will assume it to
be time-invariant and randomly distributed among the users
according to the distribution θp : R≥0 → R≥0. Formally, we
obtain the following individual user’s problem:

Problem II.2 (Individual User’s Problem). At time t ∈ N,
given the flows x and prices p a single traveling user with
Karma level k ≥ 0, reference kref , and urgency s will choose
their route as y⋆ resulting from

(y⋆, ȳ⋆) ∈ argmin
y∈Y, ȳ∈Ȳ

sd(x)⊤y + T s̄d(x)⊤ȳ

s.t. k − p⊤y − Tp⊤ȳ ≥ kref

p⊤y ≤ k,

with Y = {y ∈ {0, 1}n : 1⊤y = 1} and Ȳ = {y ∈ [0, 1]n :
1⊤y = 1} is the set of the average future decisions. Non-
traveling users have y⋆ = 0.

C. Mechanism Design Problem

Similar to [3], we consider a non-atomic game framework,
which corresponds to the limit case where users form a
continuum with M → ∞. To describe an infinite-user popu-
lation, let ηt : R≥0 × R≥0 → R≥0 denote the instantaneous
distribution of the Karma level and reference in the popu-
lation at time t, where

∫∞
0

∫∞
0

ηt(k, kref) dk dkref = 1. For
the infinite-user setting, the Nash and Wardrop Equilibrium
(WE) are identical [14] and can be defined as follows:

Definition II.1 (Wardrop Equilibrium). xWE(t) ∈ [0, 1]n

satisfying 1⊤xWE(t) = Pgo is a WE at time t, if

xWE(t) =∫ ∞

0

∫ ∞

0

∫ smax

smin

y⋆(xWE(t), s, k, kref) ρ(s) ηt(k, kref) dsdk dkref ,

where y⋆ is a best response strategy that follows from
Problem II.2.

At each time t the aggregate choices of the users are
modeled by the WE xWE(t). Fig. 2 depicts a scheme of
a time-step of the overall model. The mechanism design
problem is then to select the arc prices, so that the daily
WE converges to the system optimum x⋆, as stated in the
problem below:

Wardrop equilibrium

Fig. 2: Schematic representation of one time-step of the
overall model.

Problem II.3 (Pricing Problem). Given a desired system
optimum x⋆, select p ∈ Rn so that limt→∞ xWE(t) = x⋆.

To ensure the well-posedness of the pricing problem,
the following key assumptions are made on the existence,
uniqueness, and convergence of a WE. Given that the best
response strategy cannot be formulated in a static setting, and
a mixed user strategy is not meaningful, these assumptions
are, by no means, obvious. Future research endeavors will
focus on the intricacies of the game-theoretic framework,
whereas, in this paper, the focus is on the pricing design
framework.

Assumption II.1 (Existence and uniqueness of WE). Given
a Karma level distribution ηt : R≥0 × R≥0 → R≥0, a WE
xWE(t) exists and is unique.

Assumption II.2 (Convergence of WE). For a given
pricing strategy p, a stationary WE exists, i.e.,
xWE
∞ := limt→∞ xWE(t), irrespective of the initial Karma

level distribution η0 : R≥0 × R≥0 → R≥0.

III. BEST RESPONSE STRATEGY

In this section, we focus on the individual user’s problem.
Specifically, we examine its properties and derive a closed-
form solution of the best response strategy, which we will
prove to be of paramount importance to the pricing design
procedure proposed in this paper. The following result details
necessary and sufficient conditions for the feasibility of
Problem II.2.

Lemma III.1. Consider a traveling user with Karma k,
urgency s, Karma reference kref , and prices p. Problem II.2
is feasible if and only if k ≥ max(0, kref + (minj pj)(T +1)).

Proof. The proof can be found in the extended version of
this paper [15].

To derive a closed-form solution to Problem II.2, we
follow a divide-and-conquer approach. In a first instance,
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in the following theorem, we establish an equivalence be-
tween the solutions of Problem II.2 and a reduced best
response problem whose discomforts and prices can be
strictly ordered. More specifically, we make three statements
about Problem II.2. First, if, for a given arc j, there exists
an arc i with strictly lower discomfort and cost, then arc
j is unreasonable, in the sense that it is never chosen.
Second, the discomforts and cost of the reduced set of
arcs that are not unreasonable and have distinct discomfort
values can be strictly ordered. Third, all integer solutions of
Problem II.2 can be obtained by the solutions to a reduced
best response problem, whose discomforts and prices can be
strictly ordered. These statements are presented with rigor in
the following theorem.

Theorem III.1. Consider a traveling user with Karma
k, urgency s, and Karma reference kref , aggregate flow
x, and prices p. Assume, without loss of generality, that
the itineraries are numbered, so that d1(x1) ≤ . . . ≤
dn(xn) is satisfied. Then, under the feasibility conditions
of Lemma III.1:
i) j⋆ /∈ Ju, where y⋆ = ej⋆ and Ju := {j ∈ {1, . . . , n} | ∃i ∈
{1, . . . n} : pi ≤ pj ∧ di(xi) < dj(xj)};
ii)∀i, j∈{1, . . . , n}\(Ju∪Je) j<i =⇒ pj>pi∧dj(xj)<di(xi),
where
Je :={j∈{1, . . . , n} | ∃i∈{1, . . . n} :

di(xi)=dj(xj) ∧ (pi < pj ∨ (pi = pj ∧ i < j))} .

iii) if (eq, ȳq), q = 1, . . . , Q are all the solutions to Prob-
lem II.2 for reduced aggregate flows {xj}j∈{1,...,n}\(Ju∪Je),
and reduced prices {pj}j∈{1,...,n}\(Ju∪Je), then y⋆ = ej⋆
with

j⋆ ∈
{
j ∈ {1, . . . , n}|∃q ∈ {1, . . . , Q} : dj(xj) = dq(xq)∧

k ≥ pj ∧ k − pj − T
∑

i∈{1,...,n}\(Ju∪Je)
piȳ

q
i ≥ kref

}
are all the integer solutions to Problem II.2.

Proof. The proof can be found in the extended version of
this paper [15].

A few remarks are in order regarding Theorem III.1. First,
depending on the prices and discomforts at a given time,
there may be arcs that are not chosen for any urgency or
Karma level. Second, if two arcs have the same discomfort,
albeit possibly different prices, both are equally fit for a
sufficiently high level of Karma. Third, even though similar
equivalence conditions could have been stated for the non-
integer component of the solutions, they were omitted for
the sake of brevity. In a second instance, in the following
theorem, a closed-form solution is presented for the afore-
mentioned reduced problems.

Theorem III.2. Consider a traveling user with Karma k,
urgency s, and Karma reference kref , an aggregate flow x,
and prices p. Assume that d1(x1) < . . . < dn(xn) and
p1 > . . . > pn. Let k(j1, j2) := kref + pj1 + Tpj2 ,

ĵa := argmin
i∈{1,...,n}\{a}

k≥min(k(j,a),k(j,i))
k≤max(k(j,a),k(j,i))

di(xi)− da(xa)

pa − pi
,

ȳ⋆(j, a) :=
(k − k(j, ĵa))ea − (k − k(j, a))êja

T (pa − pĵa
)

,

â := argmin
a∈{i,...,n}

k≥min(k(j,a),k(j,ĵa))

k≤max(k(j,a),k(j,ĵa))

d(x)⊤ȳ⋆(j, a),

ȳ⋆
j :=

{
ȳ⋆(j, â), k < k(j, 1)

e1, k ≥ k(j, 1)
,

γi,j :=

{
Td⊤(x)(ȳ⋆

i −ȳ⋆
j )

dj(xj)−di(xi)
, k ≥ min(0, k(i, n))

+∞, otherwise
,

γ
j
:=

{
maxi∈{j+1,...,n} γj,i j < n

−∞ j = n
,

γ̄j :=

{
mini∈{1,...,j−1} γi,j j > 1

+∞ j = 1
,

γj(k, kref ,p,d(x)) :=


smin/s̄, j = n

[γ̄j+1]
smax/s̄
smin/s̄

, γ̄j+1 ≥ γ
j+1

γj+1, γ̄j+1 < γ
j+1

smax/s̄, j = 0,

where the dependence on k, kref , p, and d(x) was dropped to
alleviate the notation. Then, under the feasibility conditions
of Lemma III.1, an optimal response strategy that follows
from Problem II.2 is y⋆ = ej⋆ , if and only if γ̄j⋆ ≥ γ

j⋆
and

γj⋆ ≤ s/s̄ ≤ γj⋆−1.

Proof. The proof can be found in the extended version of
this paper [15].

Fig. 3: Best response strategy of Problem II.2 for aggregate
flows x⋆, prices p⋆, and kref = 0.

A few remarks are in order. First, an example of a
decision landscape generated by the closed-form solution in
Theorems III.1 and III.2 is depicted in Fig. 3. Second, note
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that there is an attractive invariant Karma set contained in
[0, ki

ref +(T +1)maxj pj −minj pj ]. Third, the best response
strategy is invariant on a positive scaling of k, kref , and p,
i.e., ej⋆ is a best response strategy for k, kref , and p if and
only if it is also for αk, αkref , and αp, with α ∈ R>0.
Finally, notice that in contrast to the n = 2 arcs problem
analyzed in [3], the best response strategy explicitly depends
also on the quantitative discomfort levels.

IV. MESOSCOPIC AVERAGE BEHAVIOR

Now that we have analyzed the behavior of the individual
user’s response, we can step back and take a mesoscopic
point of view, i.e., model the aggregate behavior resulting
from the microscopic decisions.

A. Aggregate Decision

At each time t, given Karma levels and reference probabil-
ity distribution ηt(k, kref), the probability of a traveling user
with Karma level k choosing arc j ∈ {1, . . . , n} is denoted
by P (j|k, kref ,p,xWE(t)) and is, under the conditions of
Theorem III.2, given by

P (j|k, kref ,p,xWE(t)) =

γj−1(k,kref ,p,d(xWE(t)))∫
γj(k,kref ,p,d(xWE(t)))

ρ(s) ds .

Thus, the discrete-time evolution of the Karma level density
function can be written as
ηt+1(k, kref) = Phomeηt(k, kref)

+ Pgo

n∑
j=1

P
(
j|k + pj , kref ,p,x

WE(t)
)
ηt(k + pj , kref),

for k, kref ∈ R≥0, and t ∈ N. Moreover, the definition of the
WE equilibrium in Definition II.1 can be rewritten as

xWE
j (t)=Pgo

∞∫
0

∞∫
0

P (j|k, kref ,p,xWE(t))ηt(k, kref) dk dkref , (1)

j = 1, . . . , n.
It is important to point out two key aspects. First, note

that only in the strict ordering conditions of Theorem III.2,
it is possible to write a closed-form deterministic expression
for P (j|k, kref ,p,xWE(t)). If they are not satisfied, it is only
known that P (j|k, kref ,p,xWE(t)) is such that the aggregate
decisions reconstruct the aggregate flows at the WE, which
is portrayed in (1). Second, remark the discrete nature of
the evolution of the Karma level density function, which
is a linear combination of the previous density function
shifted by n fixed values that correspond to the arcs’ prices.
Thus, although continuous Karma levels were considered
up to this point, a user i with a given initial Karma level
k0, can only evolve to Karma levels that are of the form
k = k0 +

∑n
j=1 mjpj with mj ∈ N0. This observation

suggests that modeling the Karma level evolution of a single
user as a Markov chain is appropriate.

Although there is a bounded attractive Karma level set, as
mentioned earlier, the number of distinct Karma levels cannot
be bounded even if ||p|| is bounded. Henceforth, to prevent

that we consider that p is a vector of integers, i.e., p ∈ Zn.
Nevertheless, it is important to recall that due to the positive
scaling invariance of the prices and Karma levels on the
user’s decision, pointed out in Section III, the precision of the
prices can be chosen to be as high as desired by increasing
||p||, amounting to enforce p ∈ Qn in a computationally
tractable manner.

B. Stationary Markov Chain Model

Consider a single user i and assume that we are in the strict
ordering conditions of Theorem III.2. Starting at a Karma
level k0, if d(x) is held constant, it is possible to propagate
the possible Karma transitions and generate a finite Markov
chain. Let K(k0, k

i
ref ,p,x) = {ki1, . . . , ki|K(k0,ki

ref ,p,x)|
} de-

note the state space of the chain and A(k0, k
i
ref ,p,x) ∈

R|K(k0,k
i
ref ,p,x)|×|K(k0,k

i
ref ,p,x)| the corresponding transition

matrix in column-stochastic form, whereby the states are or-
dered by their corresponding Karma level. For the remainder
of this subsection, the dependence of γj , K, and A on k0,
kiref , p, and x are dropped to alleviate the notation.

The entries of A can be expressed in closed-form by

Auv = PhomeI+


0, ∄j : kiv−kiu = pj

Pgo

γj−1∫
γj

ρ(s) ds, ∃j : kiv−kiu = pj
.

Since Phome > 0, the Markov chain is aperiodic. Note,
however, that it is not necessarily irreducible, since there may
exist more than one communication class. By the Perron-
Frobenius Theorem [16, Theorem 2.12], it follows that the
eigenvalue λ = 1 is dominant but not necessarily simple.
Denote the eigenvector associated with the eigenvalue λ = 1
that corresponds to the stationary Karma distribution over K
of the Markov chain initialized in k0 by π∞(k0, k

i
ref ,p,x).

Notice that it corresponds to the limit of the power iteration
of A initialized at the Karma level distribution with all
probability concentrated in k0. Finally, define the station-
ary arc selection matrix P(kref ,p,x) ∈ Rn×|K| as the
matrix whose entry (u, v) is given by Puv(kref ,p,x) =
P (u|kiv, kref ,p,x).

C. WE as an Aggregate Markov Chain

In the previous subsection, we modeled the stationary be-
havior of a single user under the conditions of Theorem III.2
as a Markov chain. Now, we analyze the aggregate of the
Markov chains that model the stationary behavior of each
user. More specifically, given that this model is distinct only
for distinct kref , the aggregate over the Karma reference
distribution is taken. In that regard, on the Assumption II.2,
in steady-state, (1) can be rewritten as

xWE
∞ =

Pgo

∞∫
0

P(kref ,p,x
WE
∞ )π∞(k0, kref ,p,x

WE
∞ )θp(kref) dkref .

(2)
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V. PRICING DESIGN PROBLEM

The pricing design problem, formulated in Problem II.3,
is now tackled on the following assumption:

Assumption V.1. Assume that, at the system optimum, there
is an arc ordering such that d1(x

⋆
1) < . . . < dn(x

⋆
n) is

satisfied.

Under Assumptions II.1, II.2, and V.1, the problem
amounts to finding p = p⋆ such that (2) is satisfied for
xWE
∞ = x⋆. Notice that without Assumption V.1, neither

P(kref ,p,x
WE
∞ ) nor π∞(k0, kref ,p,x

WE
∞ ) would be deter-

ministic, which follows from the analysis in Section IV-A.
It is important to point out that first, the integer nature of p,
i.e. p ∈ Zn, makes it challenging to solve (2). Second, the
Karma reference distribution θp(kref) depends on the pricing
policy p. Third, not only do the entries of P(kref ,p,x

WE
∞ )

and π∞(k0, kref ,p,x
WE
∞ ) in (2) depend nonlinearly on p,

but also the dimensions of the matrix and vector themselves
change with p.

To find the optimal prices, we enforce 1⊤x⋆ = Pgo, which
via (2) only enforces one constraint on p. The additional
constraints stem from the fact that, at steady-state, the
expected Karma level remains constant, hence p⋆⊤x⋆ = 0,
and from the fact that the best response strategy is invariant
on a positive scaling of prices and Karma distributions.
Whilst these constraints were sufficient to design the optimal
static prices for the 2-arc setting [3], for the general n-arc
case under consideration we still need to find the optimal p⋆

satisfying (2) with xWE
∞ = x⋆, which, as mentioned above, is

highly nonlinear and non-smooth. To the best of the authors’
knowledge, these features make the derivation of a closed-
form solution not feasible.

A. Numerical Design Method

We leverage the structure of the problem to overcome the
aforementioned difficulties and reframe the pricing design
problem thoughtfully so that it can be solved efficiently.
In this regard, we introduce three considerations to enable
the numerical solution of (2) for p with xWE

∞ = x⋆. First,
θp(kref) has to be bounded and discrete to be numerically
tractable. Note that this is a reasonable assumption since
there is an attractive invariant Karma set and the Karma
levels are discrete because p ∈ Zn. Second, since p ∈ Zn,
the equality in (2) will not be achieved exactly. Instead,
one may attempt to minimize the deviation of the cost
of the right-hand term w.r.t. the optimal aggregate flows.
Nevertheless, the larger ||p|| is allowed to be, the closer is
the equality. Third, the constraint (p⋆)⊤x⋆ = 0 may not
be satisfied exactly if the entries of x⋆ are irrational or if
||p|| is bounded. Thus, one can substitute it with a quantized
approximation x⋆

quant.
Therefore, the proposed pricing design optimization prob-

lem becomes:

Problem V.1 (Numerical Pricing Design). Given a desired

system optimum x⋆, select p as the solution to

min
p∈Zn

C

Pgo

krefmax∑
kref=krefmin

P(kref ,p,x
⋆)π∞(k0, kref ,p,x

⋆)θp(kref)


s.t. p⊤x⋆

quant = 0

pj > pj+1, j = 1, . . . , n− 1

p1 > 0

pn < 0,

(3)

where krefmin
and krefmax

are the minimum and maximum
values of the support of θp, respectively.

Such a problem can be efficiently solved with gradient-
free methods, as shown in Section VI below. Furthermore, a
useful particularity of Problem V.1 is that the minimum of
the objective function is known and given by C(x⋆). Thus,
it is easy to evaluate the suboptimality bound and stop the
numerical method whenever it reaches a given threshold.

VI. NUMERICAL RESULTS

In this section, numerical results are presented for an
illustrative case study with n = 5. We consider M = 1000
users of which, on average, Phome = 5% do not travel
every day. Their daily urgency is sampled from a uniform
distribution on the interval [0, 2] and their prediction horizon
is T = 4. We model the discomfort as a travel-time Bureau
of Public Roads (BPR) function [17]

dj(xj) = d0
j

(
1 + α(xj/κj)

β
)
,

with α = 0.15, β = 4, and d0 and κ were generated
randomly which, rounded to four decimal places, are given
by d0 = [0.5001 0.5734 0.7085 0.6512 0.8602]⊤ and
κ = [0.0923 0.1863 0.3968 0.3456 0.5388]⊤, ordered
according to the arc ordering in Assumption V.1. We consider
distribution of the reference values θp to be a discrete uni-
form distribution with support {0,p1, . . . ,pn} ∩ N0, which
corresponds to users having the possibility of saving Karma
to afford traveling through an arc with a positive price at
the end of the horizon. The system’s cost is considered
to be a weighted sum of the travel-time in each link,
i.e., cj(x) := c0jdj(xj), whose weights were randomly
generated and, rounded to four decimal places, are given
by c0j = [0.7096 0.8426 0.9391 0.6022 0.5137]. This can
correspond to the weighted minimization of, for example,
sound pollution.

Rounded to four decimal places, employing [18],
x⋆ = [0.0877 0.1309 0.0000 0.3053 0.4261]⊤ and
d(x⋆) = [0.5611 0.5943 0.7085 0.7107 0.9106]⊤, which is
in accordance with Assumption V.1. The optimization prob-
lem (3) is solved using a standard genetic algorithm
method subject to ||p||∞ ≤ 100 in less than 500 wall-
clock seconds in a standard laptop, whose solution is
p⋆ = [79 63 39 13 − 45]⊤. We considered k0 = p1 and
x⋆
quant resulting from rounding x⋆ to three decimal places.
The daily simulations are carried out by computing the

Nash equilibrium that follows from the decisions of each
user to Problem III, which approximate the WE as M → ∞.
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(a) Evolution of aggregate flows.

(b) Evolution of Karma level.

(c) Evolution of the relative cost difference.

(d) Evolution of the relative urgency and discomfort deviation.

Fig. 4: Numerical simulation results.

The Karma values were initialized randomly according to
a discrete uniform distribution with support {25p1, 25p1 +
1, . . . , 50p1}. Figs. 4a–4c depict the evolution of the ag-
gregate flows, Karma level, and relative cost difference in
relation to the system optimum, respectively, throughout
the simulation. We denote the average and the standard

deviation of the users’ Karma level at time t by k̂(t) and
σk(t), respectively. First, since the initial Karma levels are
very high, the users act as if the pricing scheme were not
implemented. This can be seen in the initial plateau in Fig. 4c
which is associated with the constant aggregate flows visible
in Fig. 4a. Nevertheless, as the users’ Karma is depleted,
as shown in Fig. 4b, the users can no longer afford every
link and the pricing mechanism drives the aggregate flows
to the system-optimal flows. Second, it is important to point
out that, despite all the assumptions made to tackle the
intractability of the pricing design problem and enable a
numerical solution, the prices that were designed get very
close to the system optimum, as visible in Fig. 4c, with
an average relative difference in relation to the theoretical
optimum of 0.15% only over the last 50 instants of the
simulation. In fact, the steady-state aggregate flows of the
numerical simulation closely match x⋆, as visible in Fig. 4a.
Third, we analyze i) the relative difference of the average
perceived discomfort w.r.t. a scenario in which the users are
centrally allocated to the optimal flows randomly, i.e. without
taking into account their urgency, which is given by

∆d̄(t) :=

∑M
i=1 s

i(t)d(x)⊤yi(t) + s̄d(x)⊤yi(t)∑M
i=1 s̄d(x)

⊤yi(t)
;

and ii) the relative deviation of the average
urgency in relation to the expected urgency, i.e.,
∆s̄(t) := (1/M)

∑M
i=1(s

i(t)− s̄)/s̄. Fig. 4d depicts
the evolution of these two quantities. It is noticeable that, at
steady-state, the perceived discomfort is roughly 8% lower
in comparison to an optimal but urgency-unaware policy.

Due to space limitations, some details regarding the
numerical pricing design and the simulation were omit-
ted. Nevertheless, a MATLAB implementation as well as
additional simulation results, are openly available in an
open source repository at https://fish-tue.github.

io/single-origin-destination-routing.

VII. CONCLUSION

In this paper, we explored a fair incentive mechanism
based on artificial currencies to tackle routing problems
whilst accounting for the daily urgency of the users. We
modeled the system as a repeated game and we obtained
a closed-form solution for the user’s daily strategy, which
enables a numerical solution of the arc-pricing design prob-
lem. We showed that by employing a simple static payment-
transaction scheme, our approach steers the aggreggate flows
towards the societally optimal flows, achieving the minimum
societal cost. On top of that, the simulation results indicated
that the proposed scheme allows for a significant reduction
of the users’ perceived discomfort in relation to an optimal
but urgency-unaware policy.

In the future, we aim to apply this scheme to an intermodal
mobility network and to electric vehicle charging problems.
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