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Abstract— We address the problem of synthesizing distort-
ing mechanisms that maximize infinite horizon privacy for
Networked Control Systems (NCSs). We consider stochastic
LTI systems where information about the system state is
obtained through noisy sensor measurements and transmitted
to a (possibly adversarial) remote station via unsecured/public
communication networks to compute control actions (a remote
LQR controller). Because the network/station is untrustworthy,
adversaries might access sensors and control data, and estimate
the system state. To mitigate this risk, we pass sensor and con-
trol data through distorting (privacy-preserving) mechanisms
before transmission and send the distorted data through the
communication network. These mechanisms consist of a linear
coordinate transformation and additive-dependent Gaussian
vectors. We formulate the synthesis of the distorting mecha-
nisms as a convex program where we minimize the infinite
horizon mutual information (our privacy metric) between the
system state and its optimal estimate at the remote station for
a desired upper bound on the control performance (LQR cost)
degradation induced by the distortion mechanism.

I. INTRODUCTION

Recently, control systems have become increasingly dis-
tributed and networked. Networked Control Systems (NCSs)
involve closing control loops over real-time communication
networks. This allows controllers, sensors, and actuators to
be connected through multipurpose networks, providing ben-
efits such as increased system flexibility and ease of instal-
lation and maintenance. However, when estimation/control
tasks in NCSs are performed by third parties, information
sharing might result in private information leakage [1]- [4].

In NCSs, information about the plant state is obtained
through sensor measurements and sent through communica-
tion networks to a remote station to perform computations,
e.g., estimation or control. Shared information is correlated
with private variables that carry sensitive information, e.g.,
the state itself (as it can reveal private system trajectories or
it could be used to launch state-dependent attacks [5]), and
references (as they can reveal manufactured products specs,
tracked trajectories, and visited locations). If communication
networks and/or the remote station are untrustworthy, ad-
versaries might access the sensor and actuator signals and
estimate the system state. To avoid this, we randomize the
disclosed data before transmission using additive-dependent
Gaussian random vectors and transmit the distorted data.

Using additive random noise is a common practice to
enforce sensitive data privacy. For privacy of databases, a
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popular approach is Differential Privacy (DP) [6], where
random noise is added to the queries’ response to avoid
leaking the database’s private information. DP has also been
applied to estimation and control problems [6], [7]. There
are also techniques addressing privacy in dynamical systems
from an information-theoretic perspective, see [8], [9]. In
this line of work, privacy is characterized using information-
theoretic metrics, e.g., mutual information. For information-
theoretic methods, if the data to be kept private follows
continuous probability distributions, the problem of finding
the optimal additive noise to maximize privacy is difficult
to solve [8]. This issue has been addressed by assuming the
data to be kept private is deterministic [8]. However, for
cyber-physical systems, the inherent system dynamics and
unavoidable system and sensor noise lead to stochastic non-
stationary data, and existing tools do not fit this problem.

Data privacy fundamentally differs between static data,
such as databases, and dynamically correlated data, e.g., in
feedback control systems. In networked control architectures,
information flows bidirectionally between the remote station
and the plant. The necessity of privacy masks for informa-
tion flow directions is demonstrated in [2] by identifying
the infinite horizon privacy consequences of bidirectional
information flow in feedback control. To the best of our
knowledge, no privacy-preserving design tools are offered
for MIMO feedback control systems that minimize infinite
horizon bidirectional information flow while maintaining a
desired closed-loop control performance. There are works
addressing information-theoretic infinite-horizon privacy [2],
[10] for SISO systems. Also, in [11], [12], the infinite
horizon privacy is considered for MIMO feedback control
systems, but considering one direction of information flow.

This manuscript presents an optimization-based frame-
work for synthesizing privacy-preserving Gaussian mecha-
nisms that maximize privacy but keep distortion on control
performance bounded. The proposed privacy mechanism
consists of a coordinate transformation and additive Gaussian
vectors that are designed to hide the private state of the
plant [9]. We distort disclosed data in both information flow
directions: the measurement data in the uplink direction that
is transmitted from the plant to the remote station and the
control data in the downlink direction from the remote station
to the plant. We show that using coordinate transformations
in the privacy mechanism (combined with additive Gaussian
vectors) can significantly reduce information leakage in com-
parison with only adding stochastic vectors. When designing
the privacy mechanisms, we also consider the trade-off
between privacy and control performance degradation. As
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performance metric, we use the LQR control cost of the
system when operating on distorted privacy-preserving data.
We follow an information-theoretic approach to privacy. As
privacy metric, we use the mutual information [13] between
the system infinite state sequence x∞ = (x1, ..., x∞) and
its optimal estimate x̂∞ = (x̂1, ..., x̂∞) obtained by Kalman
filtering given the infinite sequence of distorted disclosed
data. Mutual information I(x∞; x̂∞) between the two jointly
distributed infinite-dimensional vectors, x∞ and x̂∞, is a
measure of the statistical dependence between them. We
design the privacy mechanisms to minimize I(x∞; x̂∞) for
a maximum level of control performance degradation of the
closed-loop infinite horizon LQR control cost. We prove
that the problem of finding sub-optimal additive random
vectors covariance matrices and coordinate transformations
can be cast into a constrained convex program (convex
cost with LMI constraints). This work provides privacy-
preserving design tools for MIMO feedback control systems
to minimize infinite horizon bidirectional information flow
by optimally distorting disclosed data while maintaining
prescribed control performance. Providing infinite-horizon
privacy is important for dynamical systems as adversaries
can infer private information from disclosed data over time.

II. PROBLEM FORMULATION

A. System Description

We consider the networked control architecture shown in
Fig. 1. The dynamics of the plant is described as follows:

P :=


xk+1 = Axk +Buk + wk,

yk = xk + hk,

uk = Kyk

(1)

with time-index k ∈ N, state xk ∈ Rnx , measurable output
yk ∈ Rny , controller uk ∈ Rnu with control feedback
gain K, and matrices (A,B,K) of appropriate dimensions,
nx, ny, nu ∈ N. The state and output disturbances wk

and hk are multivariate i.i.d. Gaussian processes with zero
mean and covariance matrices Σw, Σh > 0, respectively.
The initial state x1 is a Gaussian random vector with zero
mean and covariance matrix Σx

1 := E[x1x
⊤
1 ] > 0. wk, hk,

and x1 are mutually independent. We assume that matrices
(A,B,Σx

1 ,Σ
w,Σh,K) are known, and (A,B) is stabilizable.

We consider the setting where the local plant is controlled
by a remote station. The user who owns the plant transmits
yk to the remote station through an unsecured/public com-
munication network to compute control actions (a remote
LQR controller). Then, the control signal uk is sent back
to the user through the network. To characterize control
performance for some given positive definite matrices Q and
R, we introduce the associated infinite horizon LQR cost:

C∞(x, u) := lim sup
N→∞

1

N + 1

N∑
k=0

E
(
x⊤
k Qxk + u⊤

k Ruk

)
,

(2)
where E(·) denotes expectation. For privacy reasons, a full
disclosure of the state xk, k ∈ N is not desired. We aim to

prevent adversaries from estimating xk accurately. To this
end, the user randomizes yk before disclosure and requests
the remote station to randomize control signals, uk, before
transmission to protect against inference at the network and
remote station. The idea is to distort yk and uk through
random affine transformations of the form:

M :=

{
ỹk = Gyk + vk,

ũk = uk + zk,
(3)

where G ∈ Rny×ny is a linear transformation, and vk and
zk are zero mean i.i.d. Gaussian processes with covariance
matrices Σv and Σz . The distorted vectors ỹk and ũk are
transmitted over the network, see Fig. 1. Then, the closed-
loop dynamics with privacy mechanism (3) is given by

P̃ :=


x̃k+1 = Ax̃k +Bũk + wk,

ỹk = Gx̃k +Ghk + vk,

ũk = KGx̃k +KGhk +Kvk + zk.

(4)

with distorted state x̃ ∈ Rnx . Here, we seek to synthesize
G, Σv , and Σz , to make estimating the infinite horizon state
trajectory x̃k, k ∈ N, as “hard” as possible from the disclosed
data, (ỹk, ũk), k ∈ N. We assume the adversary uses a
steady-state Kalman filter designed to estimate the state in
the absence of privacy mechanisms, and the adversary has
prior knowledge of the system dynamics (A,B,Σx

1 ,Σ
w,Σh)

but does not have knowledge about the privacy mechanism
(matrices (G,Σv,Σz). This creates an asymmetry we seek
to exploit to increase privacy. The filter has this structure:{

x̂k|k−1 = Ax̂k−1 +Buk−1,

x̂k = x̂k|k−1 + L
(
ỹk − x̂k|k−1

)
,

(5)

with estimated state x̂k ∈ Rnx and gain L ∈ Rnx×ny . The
adversary designs the filter for the distortion-free system (1).
Let ρk denote the estimation error in the absence of the
privacy distortions: ρk := xk − x̂k. The observer gain L
is designed to minimize the asymptotic covariance matrix
Σρ := limk→∞ E

(
ρkρ

⊤
k

)
[14]. As the system is observable,

Σρ always exists. Now let ek denote the estimation error in
the presence of privacy distortions, i.e., ek := x̃k−x̂k. Given
the distorted dynamics (4), privacy mechanisms (3), and the
estimator (5), the estimation error dynamics is governed by:

x̃k+1 = (A+BKG)x̃k +BKṽk +Bzk + wk,

ek|k−1 = Aek−1 +Bzk−1 + wk−1,

ek = (I − L)ek|k−1 − L(G− I)x̃k − Lṽk,

(6)

where ṽk := Ghk + vk.
B. Problem Formulation

The aim of our privacy scheme is to make the estimation
of the infinite horizon state sequence, x̃∞ := (x̃1, . . . , x̃∞),
from the disclosed distorted data, ỹ∞ := (ỹ1, . . . , ỹ∞) and
ũ∞ := (ũ1, . . . , ũ∞), as hard as possible without degrading
the control performance excessively. Hence, when designing
the distorting variables (G,Σv,Σh), we need to consider the
trade-off between privacy and performance.

As privacy metric, we use the mutual information rate
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I∞(x̃; x̂) [13] between x̃∞ and the infinite sequence of
estimates x̂∞ := (x̂1, ..., x̂∞) obtained by Kalman filtering:

I∞(x̃; x̂) := lim sup
N→∞

1

N + 1
I(x̃N ; x̂N ), (7)

where I(x̃N ; x̂N ) denotes standard mutual information [13].
We use the LQR cost in (2) to quantify control perfor-

mance in the absence of attacks. To quantify the effect of
the privacy mechanism (3) on the control performance, we
introduced the associated distorted LQR control cost:

C̃∞(x̃, ũ) := lim sup
N→∞

1

N + 1

N∑
k=0

E
(
x̃⊤
k Qx̃k + ũ⊤

k Rũk

)
.

(8)
We aim to minimize I∞(x̃; x̂) subject to a constraint

on the LQR cost increase due to the privacy mechanism,
C̃∞(x̃, ũ) − C∞(x, u) ≤ ϵ, for a desired maximum control
performance degradation level ϵ ∈ R+, using as synthesis
variables the mechanism matrices G, Σv , and Σz . In what
follows, we present the problem we seek to address.
Problem 1 Given the system dynamics (1), distortion-free
control performance (2), distorted control performance (8),
privacy mechanism (3), distorted dynamics (4), Kalman filter
(5), and maximum control degradation level ϵ > 0, find the
privacy mechanism variables, G, Σv , and Σz , as the solution
of the following optimization problem: min

G,Σv,Σz
I∞(x̃; x̂),

s.t. C̃∞(x̃, ũ)− C∞(x, u) ≤ ϵ.
(9)

III. PRIVACY MECHANISM DESIGN

To solve Problem 1, we first need to write the cost function
and constraint in (9) in terms of the design variables.

A. Cost Function: Formulation and Convexity

Mutual information I
(
x̃N ; x̂N

)
as used in (7) can be

written in terms of uplink I
(
x̃N → x̂N

)
(plant to the remote

station) and downlink I
(
x̃N ← x̂N

)
(remote station to the

plant) directed information flows [15]:

I
(
x̃N ; x̂N

)
= I

(
x̃N → x̂N

)
+ I

(
x̃N ← x̂N

)
. (10)

Then, the mutual information rate can be written as

I∞(x̃; x̂) := lim sup
N→∞

1

N + 1

(
I
(
x̃N → x̂N

)
+ I

(
x̃N ← x̂N

))
. (11)

The decomposition of I
(
x̃N ; x̂N

)
in terms of uplink and

downlink directed information is essential in enabling to
express mutual information as a stage additive function of
covariance matrices. This allows writing I∞(x̃; x̂) in terms
of the solution of Lyapunov equations/inequalities, which
enables a convex reformulation of cost. In Lemma 1, we
write the resulting expression of I

(
x̃N ; x̂N

)
in terms of the

design variables. Then, I∞(x̃; x̂) can be obtained by taking
the limit in (11). Please refer to the proof of Lemma 1 for
a step-by-step derivation of I

(
x̃N ; x̂N

)
.

Fig. 1: System configuration.

Lemma 1 Mutual information I
(
x̃N ; x̂N

)
can be written in

terms of G, Σv , and Σz , as follows:

I
(
x̃N ; x̂N

)
=

N∑
k=1

(
1

2
log det

(
LGΣe

k|k−1G
⊤L⊤ + LΣṽL⊤

)
− 1

2
log det

(
LΣṽL⊤)− 1

2
log det

(
BΣzB⊤ +Σw

)
+

1

2
log det

(
BKΣṽK⊤B⊤ +BΣzB⊤ +Σw

))
,

(12)
with covariance matrices Σe

k|k−1 := E(ek|k−1e
⊤
k|k−1) and

Σṽ := GΣhG⊤ +Σv .

Proof : See Appendix A in [16]. ■

Note that Σv only appears in the expression for Σṽ . Given
(G,Σṽ), matrix Σv is fully determined and vice versa. That
is, (G,Σṽ)→ (G,Σv) is an invertible transformation. There-
fore, we can pose Problem 1 in terms of either Σṽ or Σv .
Casting the problem in terms of Σṽ allows us to formulate a
convex cost and a convex constraint. Hereafter, we pose the
problem in terms of (G,Σṽ). Once we have found optimal
(G,Σṽ), we extract the optimal Σv as Σv = Σṽ −GΣhG⊤.
Note, however, that due to the negative term −GΣhG⊤, the
extracted Σv might be negative semidefinite, which is wrong
as Σv > 0. To avoid this, we enforce that the extracted Σv is
always positive definite in the synthesis program by adding
Σṽ−GΣhG⊤ > 0 as an extra constraint. This constraint can
be equivalently written as the following linear inequality in
(G,Σṽ) using Schur complement properties [17]:[

Σṽ G
G⊤ (Σh)−1

]
> 0. (13)

We use inequality (13) later when we solve the complete
optimization problem to enforce that the optimal (G,Σṽ)
leads to a positive definite Σv .

In Lemma 1, we have an expression of mutual information
in terms of the design variables and the estimation error
covariance Σe

k|k−1. Consider the closed-loop dynamics (6),
and define the extended state ζk := col

[
ek|k−1, x̃k

]
, we have

ζk+1 =

[
A(I − L) −AL(G− I)

0 A+BKG

]
ζk

+

[
−AL B I
BK B I

] ṽk
zk
wk

 .

(14)
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Because (ṽk, zk, wk) are all zero mean i.i.d. processes, the
covariance of ζk, Σζ

k := E(ζkζ⊤k ), satisfies the following:

Σζ
k+1 = AΣζ

kA
T + B, (15)

where
A :=

[
A(I − L) −AL(G− I)

0 A+BKG

]
,

B :=

[
−AL B I
BK B I

]Σṽ

Σz

Σw

[
−AL B I
BK B I

]⊤
.

(16)

If A is Schur stable (which is always the case for G = I by
construction), the limit Σζ := limk→∞ Σζ

k, with Σζ
k solution

of (15), exists and coincides with the unique positive definite
solution of the Lyapunov equation:

AΣζAT − Σζ + B = 0. (17)

Moreover, because ζk = col
[
ek|k−1, x̃k

]
, we have

Σx̃ := lim
k→∞

Σx̃
k =

[
0 I

]
Σζ

[
0 I

]⊤
, (18)

Σe := lim
k→∞

Σe
k|k−1 =

[
I 0

]
Σζ

[
I 0

]⊤
, (19)

which leads to Corollary 1 by taking the limit in (11).
Corollary 1 The mutual information rate I∞ (x̃; x̂) in (12)
can be written in terms of G, Σṽ , and Σz , as follows:

I∞ (x̃; x̂) =
1

2
log det

(
LGΣeG⊤L⊤ + LΣṽL⊤)

− 1

2
log det

(
LΣṽL⊤)− 1

2
log det

(
BΣzB⊤ +Σw

)
+

1

2
log det

(
BKΣṽK⊤B⊤ +BΣzB⊤ +Σw

)
,

(20)
with Σe = limk→∞ Σe

k|k−1 as defined in (19).

The cost I∞ (x̃; x̂) in (20) is non-convex in the design
variables. The term LGΣeG⊤L⊤ is quadratic in G and
Σe depends on the solution of the Lyapunov equation (17),
which is quadratic in G. To tackle this, we derive a convex
upper bound on the cost (20) and minimize it. We start with
an upper bound, Σ, on the solution Σζ of the Lyapunov
equation (17). Having Σ and using (19) and monotonicity of
log det(·) allow us to upper bound the first term in (20). We
propose a convex program to find Σ in Lemma 2.
Lemma 2 An upper bound Σ on the solution Σζ of (17)
can be found by solving the following convex program:

min
Σ,Π1,Π2

trace(Σ),

s.t.
[

Σ− B A0Π1 +A1Π2

∗ Π1 +Π⊤
1 − Σ

]
≥ 0,

Π1 =

[
Π11 Π12

0 Π13

]
, Π2 =

[
0 Π21

]
,

(21)

where{
A0 :=

[
A(I − L) AL

0 A

]
, A1 :=

[
−AL
BK

]
. (22)

Proof : See Appendix B in [16]. ■

We defined new variables Π1 and Π2 to convexify the con-
straints in (21). Given (Π1,Π21), matrix G can be extracted
as G = Π21Π

−1
13 (see the proof of Lemma 2 in [16]). We can

pose both cost and constraints in terms of either G or Π21.
Casting the problem in terms of Π21 allows us to linearize
some constraints. Hereafter, we pose the problem in terms
of (Π1,Π21). Once we have found optimal (Π1,Π21), we
extract the optimal G using Π21 = GΠ13.

Lemma 2 allows casting the computation of an upper
bound, Σ, on the solution, Σζ , of the Lyapunov equation
(17) as the solution of an optimization problem. Matrix Σ,
obtained by solving (21), satisfies Σ ≥ Σζ = limk→∞ Σζ

k.
Therefore, given Σ, by (18)-(19), we also have the following
upper bounds on Σx̃ and Σe:

Σx̃ = lim
k→∞

Σx̃
k ≤ Nx̃ΣN

⊤
x̃ ,

Σe = lim
k→∞

Σe
k|k−1 ≤ NeΣN

⊤
e ,

Nx̃ :=
[
0 I

]
, Ne :=

[
I 0

]
.

(23)

In Corollary 1, the mutual information rate is written in
terms of privacy mechanism variables and Σe. Hence, given
(23) and monotonicity of the determinant function, an upper
bound on I∞(x̃; x̂) in terms of Σ can be written as follows:
I∞(x̃; x̂) ≤ 1

2
log det

(
LGNeΣN

⊤
e G⊤L⊤ + LΣṽL⊤)

− 1

2
log det

(
LΣṽL⊤)− 1

2
log det

(
BΣzB⊤ +Σw

)
+

1

2
log det

(
BKcΣ

ṽK⊤
c B⊤ +BΣzB⊤ +Σw

)
.

(24)
So far, we have an upper bound (24) on the cost function
in Problem 1 in terms of the solution Σ of program (21)
and the mechanism parameters. However, (24) is still non-
convex in G and Σ. In Lemma 3, we pose the problem of
minimizing the right-hand side of (24) as a convex program.
This reformulation is achieved using Schur complement
properties, an epigraph reformulation of the minimization
problem, and the monotonicity of the logdet(·) function.
Moreover, as we will later need to combine the program in
Lemma 2 with the convex reformulation of the bound in (24),
we write, in Lemma 3, G in terms of Π2 and Π1 as we do in
Lemma 2 (G = Π21Π

−1
13 , see the discussion below Lemma

2). This is necessary as we have to use the same coordinates
in the reformulation of cost and constraints to be able to later
solve all together as an optimization problem.

Lemma 3 Consider the solution of the convex program:

min
Π13,Π21,Π3,Π4,Σṽ,Σz,Σ

(
−1

2
logdet(Π3)−

1

2
logdet (Π4)

−1

2
logdet(LΣṽL⊤)− 1

2
logdet

(
BΣzB⊤ +Σw

))


s.t. 2I −Π4 ≥
(
BKΣṽK⊤B⊤ +BΣzB⊤ +Σw

)[
2I −Π3 − LΣṽL⊤ LΠ21

∗ Π13 +Π⊤
13 −NeΣN

⊤
e

]
≥ 0.

(25)
The resulting Σ, Σṽ , Σz , and G = Π21Π

−1
13 minimize the
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upper bound on I∞(x̃; x̂) in (24).

Proof : See Appendix C in [16]. ■
By Lemma 1, Lemma 2, and Lemma 3, a minimal upper

bound on the cost I∞(x̃; x̂) can be achieved by solving the
convex programs in (21) and (25). Then, if the constraints
on positive definiteness of Σv (13) and control performance,
C̃∞(x̃, ũ)−C∞(x, u) ≤ ϵ, can be written as convex functions
of the decision variables, we can find optimal distorting
mechanisms efficiently using off-the-shelf optimization al-
gorithms. Regarding (13), it can be verified (see Appendix
D in [16]) that (13) can be written in terms of (Π13,Π21), the
new decision variables, instead of the original G, as follows:[

Σṽ Π21

∗ Π13 +Π⊤
13 − Σh

]
≥ 0. (26)

We will add this (26) as a new constraint in the synthesis
program. It remains to reformulate the control constraint.

B. Control Performance: Formulation and Convexity

Lemma 4 The constraint on the LQR control cost:

C̃∞(x̃, ũ)− C∞(x, u) ≤ ϵ, (27)

can be formulated as the following set of LMIs:
tr
(
QΣx̃

)
+ tr (Π5)

+ tr
(
K⊤RKΣṽ +RΣz

)
≤ C∞(x, u) + ϵ,[

Π5 R1/2KΠ21

∗ Π13 +Π⊤
13 − Σx̃

]
≥ 0,

(28)

with new matrix variable Π5 to be designed.

Proof : See Appendix E in [16]. ■
In Lemma 1 - Lemma 4, an upper bound on the cost
function I∞(x̃; x̂) and the distortion constraint C̃∞(x, ũ) −
C∞(x, u) ≤ ϵ are written in terms of convex functions of
the design variables. We have, however, two cost functions in
Lemma 2 and Lemma 3. The latter leads to a multi-objective
optimization problem that can be solved by scalarizing the
costs, i.e., introducing a single objective that represents a
compromise between both of them. To this aim, we introduce
α ∈ R, α > 0, as a weighting parameter and define a new
cost as the weighted sum of the original ones (see (29)).
Since our goal is to achieve a minimal mutual information
rate characterizing information leakage, we seek the α that
minimizes I∞(x̃; x̂) by performing a line search over α
subject to all constraints in Lemma 1 - Lemma 4. In what
follows, we pose the complete nonlinear convex program to
find a sub-optimal solution for Problem 1 (sub-optimal as
Lemma 3 minimizes an upper bound on the actual cost).
Theorem 1 Consider the system dynamics (1), distortion-
free control performance (2), distorted control performance
(8), privacy mechanism (3), distorted dynamics (4), Kalman
filter (5), and maximum control degradation level ϵ > 0, and
matrices in (16), (22), and (23). For a fixed α > 0, given
the solution of the convex program in (29), the mechanism
variables G, Σv , and Σz , that minimize the upper bound on
I∞(x̃; x̂) in (24) subject to the control performance degra-



min
Π1,Π2,Π3,Π4,Π5,Σṽ,Σz,Σ

α(−1

2
log det(Π3)

1

2
log det(LΣṽL⊤)− 1

2
log det(Π4)

− 1

2
log det(BΣzB⊤ +Σw)) + (1− α) trace(Σ),

[
2I −Π3 − LΣṽL⊤ LΠ21

∗ Π13 +Π⊤
13 −NeΣN

⊤
e

]
≥ 0,

2I −Π4 ≥
(
BKΣṽK⊤B⊤ +BΣzB⊤ +Σw

)
,[

Σ− B A0Π1 +A1Π2

∗ Π1 +Π⊤
1 − Σ

]
≥ 0,

tr
(
QΣx̃

)
+ tr (Π5)

+ tr
(
K⊤RKΣṽ +RΣz

)
≤ C∞(x, u) + ϵ,[

Π5 R1/2KΠ21

∗ Π13 +Π⊤
13 −Nx̃ΣN

⊤
x̃

]
≥ 0,[

Σṽ Π21

∗ Π13 +Π⊤
13 − Σh

]
> 0, Σz > 0, Σ > 0.

(29)

dation constraint, C̃∞(x, ũ) − C∞(x, u) ≤ ϵ, are given by
Σz , G = Π21Π

−1
13 , and Σv = Σṽ −Π21Π

−1
13 Σ

h(Π21Π
−1
13 )

⊤.

Proof: The expressions for the cost and constraints and
convexity (linearity) of them follow from Lemma 1, Lemma
2, Lemma 3, Lemma 4, and (26). ■

IV. ILLUSTRATIVE CASE STUDY

We illustrate the performance of our tools through a
case study of a well-stirred chemical reactor with a heat
exchanger. We use the discrete-time dynamics of the reactor
introduced in [18] for the illustrative simulation study with
matrices and more details as given in [16]. We implement
the algorithm for two privacy mechanisms: first when the
privacy mechanism is as in (3) and the second when the
privacy mechanism does not include matrix transformation
(G = I), to evaluate the effect of G in privacy mechanisms.

First, we show the effect of the control performance
degradation level ϵ on the (mutual information-based) privacy
cost function. Fig. 2 depicts the evolution of the optimal cost
I∞(x̃; x̂) for increasing ϵ for both with and without matrix
transformation in privacy mechanism cases shown by G and
G = I , respectively. As expected, the objective function
decreases monotonically for the increased maximum allowed
control performance degradation in both cases. Besides,
given that the control cost without privacy distortion is
C∞(x, u) = 4.3615, this figure illustrates that in the case of
with matrix G, the infinite horizon optimal information leak-
age, which is shown by optimal I∞(x̃; x̂), can get very close
to zero by a very small control performance degradation
level (ϵ = 0.07). So, we can minimize the information leak-
age without degrading the control performance excessively.
Hence, the comparison between the information leakage in
these cases indicates that adding matrix transformation in
the privacy mechanism (3) improves privacy by notably
decreasing the information leakage.
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Fig. 2: Evolution of the optimal cost function (information
leakage) based on increasing ϵ for with and without matrix
transformation in the privacy mechanism.

Fig. 3: Comparison between the norm of system state and
its Kalman estimate for ϵ = 0, 0.07.

Then, in Fig. 3, we depict the norm of the system state and
its Kalman estimate with and without privacy distortion. The
accuracy of state estimation based on distorted data (ỹk, ũk)
with ϵ = 0.07 is less than the estimation accuracy without
privacy distortion (ϵ = 0). The mean squared error for
state estimation is 4.1304 and 1.5337 with and without the
proposed privacy solution. Therefore, the proposed privacy
tools can prevent accurate private state estimation.

V. CONCLUSIONS

In this paper, for a class of Networked Control Systems
(NCSs), we have presented a detailed mathematical frame-
work for synthesizing distorting mechanisms to minimize
the infinite horizon information leakage induced by the
use of public/unsecured communication networks. We have
proposed a class of linear Gaussian distorting mechanisms
to randomize sensor and control data before transmission to
prevent adversaries from accurately estimating the system
state. Furthermore, for the class of systems under study, we
have fully characterized an information-theoretic metric to

quantify the information between the system state and its
optimal estimate given the distorted disclosed data at the
remote station for a class of worst-case eavesdropping adver-
saries. Finally, given the maximum allowed level of control
performance degradation (LQR cost), we have provided tools
(in terms of convex programs) to design sub-optimal (in
terms of maximizing privacy) distorting mechanisms.
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