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Abstract— In this paper, we address the problem of safe and
robust stabilization for a class of uncertain nonlinear systems.
The key idea is to employ the disturbance observer (DOB)
to a nominal safety-critical controller designed for the control
Lyapunov-barrier function (CLBF). The DOB estimates and
compensates the lumped disturbance that represents all the
effect of model uncertainty and disturbance to the system
approximately but as accurately as possible. As a result, only
a small perturbation remains in the control loop, which can be
dealt with as long as the nominal closed-loop system is input-to-
state safe (ISSf) in a sense. To ensure the ISSf property without
restriction on the CLBF, we propose a modified version of the
Sontag’s universal formula as a nominal controller. This prelim-
inary study verifies the validity of the proposed approach for
2nd-order nonlinear systems, but with mathematical analysis
and simulations for the inverted pendulum on a cart.

I. INTRODUCTION

As modern control systems such as quadrotors and in-
telligent robots usually operate in a complex and uncertain
environment together with other objects or humans, safety
has received a tremendous amount of attentions in the control
society. A widely-used approach to ensuring the safety is
to employ a Lyapunov function-like measure that represents
how the system is safe, which is termed a barrier function
(BF). The BF is used to characterize a set of unsafe states,
on which the BF is set to have a specific sign or be infinitely
large.

As a safety analogue of the control Lyapunov function
(CLF), a lot of research efforts have been made for the
control barrier function (CBF) [1]–[3]. Similar to the CLF,
the CBF suggests an inequality condition for the control
input, under which the system remains safe. When it comes
to achieving both stability and safety simultaneously, some
researchers have made several attempts to combine the CBF
with the CLF, mainly in two directions. The first approach is
to formulate an optimization problem (usually in the form of
quadratic programming (QP)) for computing a control input,
where the CLF- and CBF-related inequalites are added as
hard constraints in the optimization [1], [2]. On the other
hand, the authors of [3]–[6] directly sum the CLF and the
CBF in a way that the resulting function has positive sign on
the unsafe region, and the equilibrium point to stabilize is
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the (global) minima of the function: such a function is called
the control Lyapunov-barrier function (CLBF). In the latter
approach, the safe stabilization problem of a system is rein-
terpreted as the problem of enforcing the CLBF to decrease
(which is similar to the conventional stabilization problem),
which can be simply done by the Sontag’s universal formula
(SU) [4]–[7].

A remarkable point is that safety of a control system is
fundamentally fragile against model uncertainties and un-
known disturbances incurred by aging of machine, temporal
physical effects or unexpected situations, etc. Despite its
significance, however, relatively less attentions have been
paid to the robustness issue of the safety, except some
recent works [2], [8], [9]. In this stream of research (es-
pecially following the CLBF-based approach), we in this
paper propose a CLBF-based robust stabilizing controller
with safety guaranteed for a class of uncertain nonlinear
systems. The underlying idea is to attach the inverse model-
based disturbance observer (DOB) in [10] to the control
loop with a modified version of the SU-based controller. As
the DOB estimates and compensates a lumped signal that
represents the effect of model uncertainty and disturbance to
the plant, the inner loop containing the DOB behaves like
a disturbance-free nominal model. It should be emphasized
that compensation of the uncertain factors by the DOB
is inherently approximate. It means that, possibly small
but non-vanishing perturbation still affects the control loop,
which requires the input-to-state safety (ISSf) of the SU-
based controller [9]. A conventional way of ensuring the
ISSf is to assume that the CBF has a quadratic Lyapunov
function-like property, which may make the controller design
too complicated. Alternatively, in this work we present a
modified Sontag’s universal formula (MSU) by adding a
negative quantity to the conventional SU. In doing so, the
CLBF with the MSU have the same desired property without
any restriction on its structure, by which the ISSf is obtained
and thus the overall safety (and also stability) is recovered.

It is important to note that, the idea of employing a robust
control technique to the safety-critical controller is recently
introduced in [8]. In the paper, the authors developed a QP-
based robust safety-critical control law, in which the estimate
of a disturbance is utilized in the CLF- and CBF-related
constraints. While the controller presented in [8] is easier-
to-implement than ours, it is not straightforward to prove
whether or not safety and stability are achieved simultane-
ously, as a slack variable used to resolve the feasibility issue
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may perturb the CLF-related constraint. Compared with [8],
with the help of CLBF and the modification of the SU, we
provide a mathematical analysis for safe and robust stabi-
lization of the system, provided that the uncertain quantities
are (bounded but) arbitrarily large. For ease of explanation,
we restrict ourselves to the class of the 2nd-order nonlinear
affine systems, while extension of the proposed approach to
the higher-order system seems not that difficult and will be
presented in the upcoming journal paper.

Notations: The notation, LfV (x), is used for the Lie
derivative ∂V (x)

∂x f(x) of V (x) along the vector field f(x).
For a square matrix P = P⊤, λm(P ) and λM(P ) denote the
smallest and largest eigenvalue of P , respectively. Given a set
D, denote the boundary of D by ∂D and the closure of D by
cl(D), respectively. For a vector x, ∥x∥D := infy∈D ∥y−x∥
represents the set distance between x and D.

II. PROBLEM FORMULATION

Consider a 2nd-order nonlinear affine system

ẋ1 = x2 (1a)
ẋ2 = f(x) + g(x)(u+ d) (1b)

where x = (x1, x2) ∈ R2 is the state that is measurable, u ∈
R is the input, and d ∈ R is the disturbance. The set of the
initial state is defined by X0 ⊂ R2. We assume that both X0

and the region of interest X ⊃ X0 are compact and contain
the origin. The functions f(x) and g(x) are sufficiently
smooth and are not exactly known: that is, the system (1)
has model uncertainty. Particularly, it is supposed that the
size of the model uncertainty and external disturbance can
be arbitrarily large, while their bounds are known.

Assumption 1: There exist positive constants lf , lg,m, lg,M
and ld such that

∥f(x)∥ ≤ lf∥x∥, 0 < lg,m ≤ g(x) ≤ lg,M,

∥(d(t), ḋ(t))∥ ≤ ld

hold for all (t, x) ∈ R≥0 ×X . □
Suppose that we in this work are interested in enforcing

the state x(t) not to belong to an open set D ⊂ X of unsafe
states, which satisfies 0 ̸∈ D. A formal definition of the
safety of a system is stated below.

Definition 1: Given a system (1) and a set of unsafe states
D, the system is said to be safe if the state x(t) satisfies

x(t) /∈ cl(D), ∀t ≥ 0. (2)

□
We are ready to introduce the problem that we will deal

with in this work.
Problem of Interest: For the uncertain nonlinear system

(1) and the set D of unsafe states, find a control input u such
that

• (Stability) the origin x = 0 of the closed-loop system
is practically stable with ϵ-bound: that is, there exists
t⋆ > 0 such that ∥x(t)∥ < ϵ for all t ≥ t⋆.

• (Safety) x(t) satisfies (2). □

(a) Block diagram of the overall system consisting of the plant (1), the
(qa, qb)-dynamics (21), the modified Sontag’s universal formula (19), and
the composite control law (26). Pn is nominal model for P , which uses
a constant g instead of gn(x).

(b) Block diagram of the nominal closed-loop system: Here
gn(x)/g is pre- and post-multiplied in the input channel for
technical reasons, which does not affect the resulting output.

Fig. 1. Block diagrams of (a) the overall system and (b) the nominal
closed-loop system

Remark 1: In this proof-of-concept work, we restrict our-
selves to the class of single-input single-output, and 2nd-
order nonlinear systems. At the expense of losing generality,
this conference paper will focus on presenting the underlying
principle of the proposed control scheme in a comprehensive
manner, together with a rigorous analysis for stability and
safety. Extension of the main results to the multi-input multi-
output and higher-order systems is left to future works. □

III. CONTROLLER DESIGN

In this section, we propose a robust safety-critical control
law for the uncertain system (1) that solves Problem of Inter-
est stated in the previous section. The key idea is to robustify
a (less robust) safety-critical control law constructed for the
disturbance-free nominal model for (1):

ẋ = Fn(x) +Gn(x)u =

[
x2

fn(x)

]
+

[
0

gn(x)

]
u, (3)

where fn(x) and gn(x) are nominal counterparts of f(x) and
g(x), which do not have any uncertain factor. Notice that
the plant (1) to be controlled can be viewed as a perturbed
system

ẋ = Fn(x) +Gn(x)u+∆(t, x, u)

of (3) with a perturbation term ∆(t, x, u) which includes
disturbance d(t) and uncertainty of f(x), g(x). With this
in mind, we employ the disturbance observer (DOB) that
estimates the perturbation ∆ approximately but as accurately
as we desire, and that compensates ∆ by subtracting the
estimate ∆̂ of ∆ to the control input. If the quantity of the
remaining perturbation ∆ − ∆̂ is small enough, safety and
stability of the system can be ensured with a simple static

6520



control law constructed for the nominal model (3) with little
consideration on robustness issue. In design of such a static
control law, the control Lyapunov-barrier function (CLBF)
plays a key role. The overall configuration of the proposed
controller is depicted in Fig. 1(a), and each component will
be presented in the following subsections.

A. Construction of Control Lyapunov Barrier Function

We begin by introducing the basic notion of the control
Lyapunov function (CLF) and control barrier function (CBF)
from [3], [5], [11].

Definition 2: For a nonlinear affine system (3) and a set
of unsafe states D,
(a) a proper and positive definite Vn : R2 → R is called a

CLF if it satisfies

LFnVn(x) < 0, ∀x ∈ {x ∈ R2 \ {0} : LGnVn(x) = 0}.
(4)

(b) a function Bn : R2 → R is called a CBF if it satisfies

Bn(x) > 0, ∀x ∈ D (5a)
LFnBn(x) ≤ 0, ∀x ∈ {x ∈ X \ D : LGnBn(x) = 0}

(5b)
CB := {x ∈ X : Bn(x) ≤ 0} ≠ ∅. (5c)

□
The CLBF proposed in [5] has mixed properties of the

CLF and the CBF in Definition 2, as stated below.
Definition 3: For a nonlinear affine system (3) and a set of

unsafe states D, a proper and lower-bounded function Wn :
R2 → R is called a CLBF if

Wn(x) > 0, ∀x ∈ D (6a)
LFnWn(x) < 0, (6b)

∀x ∈ {x ∈ X \ (D ∪ {0}) : LGnWn(x) = 0}
CW := {x ∈ X : Wn(x) ≤ 0} ≠ ∅ (6c)
cl(X \ (D ∪ CW )) ∩ cl(D) = ∅. (6d)

□
From now on, we construct a CLBF for the nominal model

(3) by following the procedure of [5]. To this end, it is needed
to select a CLF and a CBF sequentially. Notice that since
the system (3) is feedback linearizable, a quadratic function

Vn(x) =
1

2
xTPx (7)

can serve as a CLF for (3), in which P = PT > 0 is the
solution of the Lyapunov equation

ATP + PA = −Q, A =

[
0 1

−K1 −K2

]
(8)

for some Q = QT > 0 and K1 > 0, K2 > 0. This can
be readily seen by applying the feedback linearization-based
control law

u = kFL(x) := −g−1
n (x)(Kx+ fn(x)) (9)

with K = [K1 K2] ∈ R1×2 to the nominal model (3). It
readily follows that

1

2
λm(P )∥x∥2 ≤ Vn(x) ≤

1

2
λM(P )∥x∥2 (10a)

∂Vn

∂x
(Fn(x) +Gn(x)kFL(x)) ≤ −1

2
λm(Q)∥x∥2 (10b)∥∥∥∥∂Vn

∂x

∥∥∥∥ ≤ λM(P )∥x∥. (10c)

On the other hand, for a future use we make the following
assumption on the CBF:

Assumption 2: There exists a CBF Bn : R2 → R for the
nominal model (3) that is twice continuously differentiable
and satisfies

Bn(x) = −ϕ, ∀x ∈ X \ D+ (11)

for a compact subset D+ ⊃ D that does not contain 0 with
a constant ϕ > 0. □

It is remarked that, under mild conditions, one can always
refine a pre-chosen CBF so that the resulting CBF satisfies
Assumption 2. (For a constructive design, the readers are
referred to [1], [3], [5], [6]).

Finally, combining the CLF Vn(x) and the CBF Bn(x)
in Assumption 2 as in [5], we construct the CLBF for the
nominal model (3) and the set D of unsafe states as follows:

Wn(x) = Vn(x) + ϑBn(x) + κ (12)

where ϑ and κ are selected such that

ϑ >
c2c3 − c1c4

ϕ
, κ = −c1c4

with

c1 =
1

2
λm(P ), c2 =

1

2
λM(P ),

c3 = max
x∈∂D+

∥x∥2, c4 = min
x∈∂D

∥x∥2.
(13)

A direct consequence of selecting the parameters in Wn is
[5, Eq. (24)]:

D ⊂ D̂ := {x : Wn(x) > 0} ⊂ D+. (14)

This implies that, if Wn(x(t)) ≤ 0 is satisfied for all t ≥ 0,
then the system (1) is safe.

B. Modified Sontag’s Universal Formula

Once a CLBF Wn(x) is selected as in (12), the well-known
Sontag’s universal formula suggests a stabilizing control law

u = kSU
(
LFnWn, LGnWn; γ

)
(15)

where the function kSU is defined as

kSU(a, b; γ) :=

−a+
√

a2 + γb4

b
, if b ̸= 0

0, otherwise
, (16)

where γ > 0 is a design parameter. It is well-known
that, as long as Wn(x(0)) < 0, the system (3) with u =
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kSU(LFnWn, LGnWn; γ) is safe and its origin x = 0 is
asymptotically stable, because

∂Wn

∂x

(
Fn(x) +Gn(x)kSU

(
LFnWn, LGnWn; γ

))
< 0,

∀x ∈ X \ {0}.

When model uncertainty and external disturbance come into
the picture as in (1), however, this attractive property of kSU
is not enough to deal with such a (even small) perturbation.
For example, when the same control law is applied to the
perturbed system ẋ = Fn(x) +Gn(x)u+∆ of (3), we have
only

∂Wn

∂x
(Fn(x) +Gn(x)kSU +∆) <

∂Wn

∂x
∆.

It means that, we cannot conclude that Wn(x(t)) decreases
near the unsafe region D, and thus the safety may not be
guaranteed in some cases.

A remedy to overcome this difficulty is to guarantee that

∂Wn

∂x
(Fn(x) +Gn(x)u) < −ρ∥x∥2, ∀x ∈ X \ {0} (17)

for some ρ > 0, With this kept in mind, we propose a
modified version of the Sontag’s universal formula (16), by
adding −ηb to the conventional structure (16) as follows:
that is,

u = kMSU

(
LFnWn, LGnWn; γ, η

)
(18)

where γ > 0 and η > 0 are design parameters, and

kMSU(a, b; γ, η) :=

−a+
√
a2 + γb4 + ηb2

b
, if b ̸= 0

0, otherwise
.

(19)

The following theorem says that such a modification helps
to obtain the desired property.

Theorem 1: For a system (3) and a CLBF Wn in (12),
the modified Sontag’s universal formula (19) with

√
γ < η

satisfies

∂Wn

∂x

(
Fn(x) +Gn(x)kMSU

(
LFnWn, LGnWn; γ, η

))
≤ −ρ∥x∥2, ∀x ∈ X \ {0}

where

ρ := min

(
λm(Q)

2
, η

(
λm(Q)

2β

)2
)
.

with a constant β > 0 such that |uFL(x)| ≤ β∥x∥. □
For clarity of explanation, we provide the proof of The-

orem 1 in Subsection IV-A. We instead remark that, as a
byproduct of adding −ηb to kSU, one can readily conclude
that the origin of the nominal model (3) controlled by (18)
turns out to be exponentially stable, not just asymptotically
stable.

C. Disturbance Observer and Composite Control Law

As a tool for robustifying the modified Sontag’s universal
formula kMSU in (18), we employ the DOB for (1). The main
role of the DOB is to compensate the mismatch between the
actual plant (1) and its nominal model (3) (usually called the
lumped disturbance in the literature) approximately but with
arbitrarily small size, so that the modified Sontag’s universal
formula in (18) can easily handle the remaining (possibly
small) effect of the mismatch in the end. It is also pointed
out that, since x(t) is assumed to be measurable in our work,
the proposed DOB here will be constructed in an easier-to-
implement manner than the conventional ones.

As similar to the conventional approach, we construct the
DOB with two low-pass filters called the Q-filters, and the
inverse of a nominal model. (It is noted in advance that the
configuration of the DOB can be found in Fig. 1(a).) For
the former, it is enough to utilize the simplest low-pass filter
(that has the DC gain as 1 and has the relative degree 1)

Qa(s) = Qb(s) =
1

τs+ 1
(20)

as the Q-filter in the DOB structure, in which τ > 0 is a
design parameter and remains undetermined yet. In the state
space, each of Qa and Qb are represented as

q̇a = −1

τ
qa +

1

τ
u, yq,a = qa (21a)

q̇b = −1

τ
qb +

1

τ
x2, yq,b = qb (21b)

where (qa, qb) is the state of the Q-filters. Without loss
of generality, it is assumed that the initial condition
(qa(0), qb(0)) of (21) is located in a compact set Q0.

Next, we present the inverse of a nominal model P n

used in Fig. 1(a). Note first that gn(x) in (3) is allowed to
be dependent of x. Thus, direct use of the inverse of (3)
possibly makes both design and analysis complicated. As an
alternative with no restriction on gn(x), we here will pre-
and post-multiply gn(x)/g in the nominal model (3) with a
constant g > 0. (See Fig. 1(b) for the conceptual description.)
The key idea is to rewrite (3) with a new (auxiliary) input
variable v := (gn(x)/g)u as

ẋ1 = x2, ẋ2 = fn(x) + g

(
gn(x)

g
u

)
= fn(x) + gv

where (x1, x2) and u are states and inputs of P n, respec-
tively. By regarding v as output, its inverse model P n can
be expressed as

v =
1

g

(
ẋ2 − fn(x)

)
. (22)

Finally, replacing x = (x1, x2) and ẋ2 with the measurement
x = (x1, x2) and the estimate q̇b, respectively, we have

v̂n =
1

g

(
q̇b − fn(x)

)
=

1

g

(
−1

τ
qb +

1

τ
x2 − fn(x)

)
(23)

which represents the very P
−1

n in Fig. 1(a).
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The last ingredient for the DOB design is a saturation
function s that is sufficiently smooth and satisfies

s(w) = w, ∀w ∈ [w⋆
m, w

⋆
M],∣∣∣∣ ∂s∂w

∣∣∣∣ ≤ 1, s(w) is bounded for all w ∈ R
(24)

where w⋆
m and w⋆

M are some constants such that

{w⋆ in (25) : x ∈ X , |d| ≤ ld} ⊂ [w⋆
m, w

⋆
M]

with

w⋆ := d+
1

g(x)
(f(x)− fn(x)) +

(
1

g
− 1

)
gn(x)

g(x)
kMSU.

(25)
Summarizing so far, the composite control law consists

of the modified Sontag’s universal formula (19) and the q-
dynamics (21) in the DOB structure such as

u =
gn(x)

g
kMSU − s

(
1

g

(
−1

τ
qb +

1

τ
x2 − fn(x)

)
− qa

)
.

(26)

IV. MATHEMATICAL ANALYSIS

In this section, we prove that the proposed robust safety-
critical control law (26) guarantees that the uncertain system
(1) under (18) is robustly safe and stable against disturbance
and uncertainty in Assumption 1. The following assumption
is required to make the origin x = 0 reachable.

Assumption 3: For the CLBF Wn(x) in (12), the set

Ĉ := X \ D̂ =
{
x ∈ X : Wn(x) ≤ 0

}
is connected. □

Our main result is summarized in the following theorem,
while its proof will be presented in Subsection IV-C.

Theorem 2: Suppose that Assumptions 1–3 hold, and
Wn(x(0)) < 0. Then for any ϵ > 0, there exist τ⋆ > 0
and t⋆ > 0 such that for all 0 < τ < τ⋆, the solution
(x(t), q(t)) of the closed-loop system with (1), (19), (21),
and (26) satisfies the following:
(a) x(t) ∈ Ĉ for all t ≥ 0;
(b) ∥x(t)∥ < ϵ for all t ≥ t⋆. □

A. Proof of Theorem 1

In this subsection we prove Theorem 1 first. The proof of
the theorem is divided into three parts, in terms of the value
of LGnWn(x). For brevity, let for now

a(x) := LFnWn(x), b(x) := LGnWn(x)

(Case 1: b(x) = 0) From (10b) we have

a(x) + b(x)kMSU = a(x) ≤ −λm(Q)∥x∥2 ≤ −ρ∥x∥2.

(Case 2: |b(x)| ≤ (λm(Q)/2β)∥x∥) Note that, by (10b)
and the definition of β, one has

a(x) ≤ −λm(Q)∥x∥2 + |b(x)|∥kFL(x)∥

≤ −λm(Q)∥x∥2 +
(
λm(Q)

2β
∥x∥
)(

β∥x∥
)

≤ −λm(Q)

2
∥x∥2.

Thus it follows that

a(x) + b(x)kMSU = −
√

a(x)2 + γb(x)4 − ηb(x)2

≤ −|a(x)|+√
γb(x)2 − ηb(x)2

≤ a(x) ≤ −λm(Q)

2
∥x∥2

≤ −ρ∥x∥2

where the last three inequalities come from η >
√
γ and

a(x) < 0 as above.
(Case 3: |b(x)| > (λm(Q)/2β)∥x∥) For sufficiently large

|b(x)|, we have

a(x) + b(x)kMSU = −
√

a(x)2 + γb(x)4 − ηb(x)2

≤ −ηb(x)2 ≤ −η

(
λm(Q)

2β

)2

∥x∥2

≤ −ρ∥x∥2.

Summing up all the cases concludes the theorem.

B. System Description in Singularly Perturbed Form

As the first step to prove the main result, we rewrite the
closed-loop system (1), (19), (21) and (26) into a singularly
perturbed form. To this end, define the following coordinate
change for the state q = (qa, qb) of the DOB that is well-
defined for any τ > 0:

ξ :=

[
ξa
ξb

]
= Φξ(x, q) :=

qa + 1

τg
(qb − x2)

qb

 ∈ R2.

Now, differentiating ξa in t along with (1) and (21), we have

ξ̇a = q̇a +
1

τg
(q̇b − ẋ2)

= −1

τ
qa +

1

τ
u

+
1

τg

(
−1

τ
qb +

1

τ
x2 −

(
f(x) + g(x)(u+ d)

))
= −1

τ
ξa +

1

τ

(
1− g(x)

g

)
u− 1

τg
(f(x) + g(x)d)

On the other hand, the composite control input u in (26) can
be represented in the (x, ξ)-coordinate as follows:

u =
gn(x)

g
kMSU − s

(
−ξa −

1

g
fn(x)

)
. (27)

Applying (27) to ξ̇a above gives

τ ξ̇a =− ξa −
(
1− g(x)

g

)
s

(
−ξa −

1

g
fn(x)

)
(28a)

+

(
1− g(x)

g

)
gn(x)

g
kMSU − 1

g
(f(x) + g(x)d),

τ ξ̇b =− ξb + x2. (28b)

which is the fast subsystem with sufficiently small τ in the
overall system.
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According to the singular perturbation theory, the fast
variable ξ := (ξa, ξb) approaches to the boundary layer
(ξa, ξb) = (ξ⋆a , ξ

⋆
b ) quickly, where (ξ⋆a , ξ

⋆
b ) is the solution

of (28) with τ = 0 while (t, x) regarded as being fixed or
frozen: in other words, (ξ⋆a , ξ

⋆
b ) is the solution of

0 = −ξ⋆a −
(
1− g(x)

g

)
s

(
−ξ⋆a − 1

g
fn(x)

)
(29a)

+

(
1− g(x)

g

)
gn(x)

g
kMSU − 1

g
(f(x) + g(x)d),

0 = −ξ⋆b + x2. (29b)

Following the same procedure of [12] with the properties of
the saturation function s, one can conclude that the solution
of (29) is uniquely determined as

ξ⋆a =

(
1

g(x)
− 1

g

)
(fn(x) + gn(x)kMSU)

− 1

g(x)
(f(x) + g(x)d), (30a)

ξ⋆b = x2. (30b)

We now define the error variable for ξ as

ξ̃ =

[
ξ̃a
ξ̃b

]
=

[
ξa − ξ⋆a
ξb − ξ⋆b

]
, (31)

and compute the overall error dynamics (which is expressed
in a singularly perturbed form) as

ẋ = Fn(x) +Gn(x)kMSU +

[
0

g(x)δ̃w(t, x, ξ̃)

]
(32a)

τ
˙̃
ξa = −ξ̃a +

(
1− g(x)

g

)
δ̃w(t, x, ξ̃)− τ ξ̇⋆a (32b)

τ
˙̃
ξb = −ξ̃b − τ ξ̇⋆b (32c)

where

δ̃w(t, x, ξ̃) := −s(−ξ̃a − w⋆)− w⋆

and w⋆ is defined in (25) and satisfies

w⋆ = −ξ⋆a − 1

g
fn(x).

Note that w⋆ ∈ W⋆ so that w⋆ = s(w⋆). This implies that

0 ≤ ξ̃aδ̃w(t, x, ξ̃) ≤ ∥ξ̃a∥2 (33)

for any ξ̃a ∈ R, which will be used in the analysis to come.

C. Proof of Theorem 2

For the analysis of the overall error dynamics (32), we
define a CLBF-like function

W (x, ξ̃) = Wn(x) + Va(ξ̃a) + Vb(ξ̃a) (34)

where Wn(x) is the CLBF in (12), and Va and Vb are defined
as

Va(ξ̃a) :=
1

2
ξ̃2a , Vb(ξ̃b) :=

1

2
ξ̃2b .

Conceptually, we prove Theorem 2 by showing that
• Wn(x(t)) ≤ 0 for all t ≥ 0, and

• W (x(t), ξ̃(t)) converges (approximately) to W (0, 0) =
Wn(0) = ϑBn(0) + κ as time goes on, by which one
can say that Vn(x(t)) converges to 0.

For both items, we will observe that Ẇ < 0 in the entire
time for sufficiently small τ , while additional attention needs
to be paid for the first item. Indeed, even though Wn(x(0))
is negative, W (x(0), ξ̃(0)) can be positive, and even become
larger as τ gets smaller. This means that Ẇ < 0 does not
imply the first item directly.

We tackle this issue by dividing the entire time interval
[0,∞) into two parts: the transient period [0, t1) and the
steady-state period [t1,∞). Suppose Wn(x(t)) = −ς , and
here t1 > 0 is selected such that

Wn(x(t)) ≤ −1

2
ς, ∀t ∈ [0, t1] (35)

holds for any value of τ . Such a t1 always exists because

Ẇn =
∂Wn

∂x
ẋ =

∂Wn

∂x
(f(x) + g(x)(u+ d))

must be bounded with τ -independent bounds, due to As-
sumption 1 and the saturation function s.

The following lemma says that, ξ̃(t) converges to ξ̃ = 0
quickly in the transient period [0, t1), so that W turns out to
be negative at the end of the transient.

Lemma 1: Under the same hypothesis of Theorem 2 and
(35), there exists τ1 such that for all 0 < τ < τ1, the solution
(x(t), ξ̃(t)) satisfies

W
(
x(t1), ξ̃(t1)

)
≤ −1

4
ς. (36)

□
Proof: Since Wn satisfies (35), it is enough to show

that
Va(ξ̃a(t1)) + Vb(ξ̃b(t1)) ≤

1

4
ς.

For this, we first compute V̇a as follows:

V̇a(ξ̃a) = −1

τ
ξ̃2a +

1

τ

(
1− g(x)

g

)
ξ̃aδ̃w(t, x, ξ̃)− ξ̃aξ̇

⋆
a .

≤ −1

τ

g(x)

g
ξ̃2a − ξ̃aξ̇

⋆
a

≤ −1

τ

lg,m
g

ξ̃2a − ξ̃aξ̇
⋆
a (37)

where we use (33) for the first inequality. After some
computations, one may have

d

dt

√
Va(ξ̃a(t)) ≤ −1

τ

g

lg,m

√
Va(ξ̃a(t)) + σa

d

dt

√
Vb(ξ̃b(t)) ≤ −1

τ

√
Vb(ξ̃b(t)) + σb,

where

σa =

√
2

2
∥ξ̇⋆a∥∞, σb =

√
2

2
∥ξ̇⋆b∥∞

are bounded above. By applying the comparison lemma [11,
Lemma B.2] to each

√
Va and

√
Vb and by using the fact

that

∥ξ̃a(0)∥ ≤ υ0 +
1

τ
υ1, ∥ξ̃b(0)∥ ≤ υ2
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for some τ -independent constants υi > 0, it is derived that

Va(ξ̃a(t1)) + Vb(ξ̃b(t1))

≤
(
υ0 + (1/τ)υ1√

2
e−

1
τ

lg,m
g t1 + τ

g

lg,m
σa

)2

+

(
υ2√
2
e−

1
τ t1 + τσb

)2

.

Note that the right-hand side term of the inequality above
decreases as τ gets smaller, which completes the proof of
the lemma.

We now show that in the steady-state period [t1,∞),
W (x(t), ξ̃(t)) initiated at W (x(t1), ξ̃(t1)) < 0 will decrease
as long as ∥x(t)∥ ≥ ϵ.

Lemma 2: Under the same hypothesis of Theorem 2, there
exists τ2 such that for all 0 < τ < τ2, the solution (x(t), ξ̃(t))
satisfies

Ẇ (x(t), ξ̃(t)) ≤ −2ρ

(
Vn(x(t))−

1

2
λm(P )ϵ2

)
(38)

for all t ≥ t1.
Proof: The time derivative of Wn along with (1) whose

input is u = kMSU is calculated as

Ẇn ≤ −ρ∥x∥2 +
∥∥∥∥∂Wn

∂x

∥∥∥∥ |g(x)||δ̃w|
≤ −ρ∥x∥2 + µ∥ξ̃a∥

where µ := lg,M ·maxx∈X ∥∂Wn/∂x∥ < ∞. From this and
(37), we have with the Young’s inequality that

Ẇ ≤ −ρ∥x∥2 + µ∥ξ̃a∥+ V̇a(ξ̃a) + V̇b(ξ̃b)

≤ −ρ∥x∥2 − 1

τ

lg,m
g

∥ξ̃a∥2 −
1

τ
∥ξ̃b∥2

+ (µ+
√
2σa)∥ξ̃a∥+

√
2σb∥ξ̃b∥

≤ −2ρVn + τ
( g

lg,m
(µ+

√
2σa)

2 + 2σ2
b

)
.

Thus if τ is sufficiently small, (38) is true.
It is obtained from (38) that W (x(t), ξ̃(t)) decreases

unless Vn(x(t)) < (1/2)λm(P )ϵ2. We note that, with ϵ small
enough (which does not lose the generality of the proof), x(t)
eventually enters X \ D+ ⊂ Ĉ and does not leave forever,
by which Item (a) of Theorem 2 is obtained. On the other
hand, for given ϵ and τ < τ2 satisfying Lemma 2, there
exists t2 ≥ t1 such that

1

2
λm(P )∥x(t)∥2 ≤ Vn(x(t)) <

1

2
λm(P )ϵ2

for all t ≥ t2. This concludes the proof of the second part
of the theorem.

V. SIMULATION: INVERTED PENDULUM ON A CART

In this section, we perform a simulation to verify the
validity of the proposed control scheme. Consider an inverted
pendulum on a cart in Fig. 2 governed by the (normalized)
dynamics [11, Appendix A.11]

ẋ1 = x2, ẋ2 = a
(
sinx1 + cosx1(u+ d)

)
,

Fig. 2. Inverted pendulum on a cart

Fig. 3. Structure of CBF

K1 = 1 c1 = 0.0660 ϕ = 1 τ = 0.02

K2 = 4 c2 = 1.1840 ϑ = 0.6854 η = 10

c3 =
(
π
2

)2
+ 1 κ = −0.045 γ = 2 for kMSU

c4 =
(
π
6

)2
γ = 2 + η2 for kSU

TABLE I
DESIGN PARAMETERS USED FOR SIMULATION

where x1 = θ [rad] and x2 = θ̇ [rad/s] are state variables that
are assumed to belong in a compact set X := {(x1, x2) ∈
R2 : −π/2 ≤ x1 ≤ π/2,−1 ≤ x2 ≤ 1} as a physical
constraint. On the other hand, the acceleration u [m/s2] of
the cart serves as the control input, and d [m/s2] represents
an unknown disturbance. The parameter a is determined in
the normalization process and depends on the inertia, length,
and so on. In this simulation, we assume that a is uncertain
and belongs to the set [0.8, 1.2], and its nominal value an is
set as 1.

We now construct the proposed robust safety-critical con-
troller, with the unsafe region set as D := {x ∈ X : π/6 <
|x1| < π/2} to avoid collision between the pole and an
object on the cart. First, take K1 = 1 and K2 = 4 from
which P , c1, and c2 are determined as the solution of (8) and
(13). Next, define D+ := {x ∈ X : π/6− δ < |x1| < π/2}
with δ = π/36, and then c3, c4 and κ can be selected as in
(13). We design a CBF Bn(x) as in the following, in order
to satisfy (5a)–(5c) and Assumption 2 for all x ∈ X :

Bn(x)

=



−b(x1 +
π
2 )

2 + b(−π
6 + π

2 )
2, if − π

2 < x1 < −π
6

p−(x1), if − π
6 ≤ x1 ≤ −π

6 + δ

p+(x1), if π
6 − δ ≤ x1 ≤ π

6

−b(x1 − π
2 )

2 + b(π6 − π
2 )

2, if π
6 < x1 < π

2

−ϕ, otherwise

where b = 10 and p−(x) and p+(x) are cubic polynomials
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(a) Disturbance d(t) (black) and its estimates d̂(t) (red and
blue)
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(b) CLBF Wn(x(t))

0 1 2 3 4 5

-40

-20

0

20

40

(c) x1(t) = θ(t)

Fig. 4. Simulation results controlled by the conventional Sontag’s universal
formula kSU (blue) and with its modified version kMSU (red) with and
without the DOB (dashed and solid, respectively)

to connect the quadratic function and the constant function
x = −ϕ smoothly, as depicted in Fig. 3. Choose ϕ = 1, and
then ϑ can be taken to satisfy (13). The remaining parameters
τ , η and γ used in the DOB and other parts of the controller
are selected as in Table I, satisfying

√
γ < η.

In addition to the proposed controller (26), three types of
control laws are designed for comparison: the conventional
Sontag’s universal formula with and without the DOB, and
the modified Sontag’s universal formula without the DOB.
Simulation results on these four controllers are presented in
Fig. 4. For the simulation, set the initial condition of (1) as
x(0) = (π/6− δ − π/1800, 0), which is close to but not in
D̂. The disturbance d(t) is assumed to be a pulse signal such
that d(t) = 50 for 0.1 ≤ t ≤ 1, and d(t) = 0 otherwise. It
is seen in Fig. 4(a) that the DOBs in both cases capture the
disturbance d(t), which enhances robustness of the Sontag’s
universal formula-based controllers as in Fig. 4(b), (c) as
expected in the analysis. On the other hand, without the DOB
the system turns out to be unsafe as Wn(x(t)) gets larger. It
is also needed to notice that the state x(t) with u = kMSU

converges to the origin faster than that with u = kSU, due
to the modification of the control law.

VI. CONCLUSION

In this paper, we proposed a controller for safe and robust
stabilization of uncertain nonlinear systems, in the presence
of not only model uncertainty and disturbance but also unsafe
regions. The proposed controller consists of two components:
the first is a modified version of the Sontag’s universal
formula, while the other part is the DOB that compensates
disturbances and uncertainty. It can be observed in the
mathematical analysis that the proposed controller enforces
Wn(x(t)) to remain negative and to converge to Wn(0)
as time goes on, by which robust safety and stability of
the closed-loop system is simultaneously guaranteed. Future
works will include extension to a class of n-order nonlinear
systems and application to robotics system.
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