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Abstract— A data-driven approach for stochastic optimiza-
tion should preferably offer a finite-sample performance guar-
antee as well as asymptotic optimality. However, existing
approaches that enjoy both, mostly based on distributionally
robust optimization (DRO), are often difficult to use as they
require an ambiguity set containing the true distribution of
uncertainty with confidence, which is difficult to obtain. The
main contributions of this paper are two-fold. First, we propose
a data-driven stochastic optimization approach that offers
a finite-sample guarantee and asymptotic optimality without
resorting to an ambiguity set. The core idea of our approach is
to minimize an approximation to the true expected cost function
derived using only a half of the sample data, and compute an
upper confidence bound for the true expected cost using the
other half. Second, we identify a case in which the proposed
approach is tractable and accordingly design an algorithm for
it. Simulation results demonstrate that our approach can be
less conservative than existing DRO methods in terms of not
only the finite-sample guarantee but also the true expected cost
for a wide range of frequently used confidence levels.

I. INTRODUCTION

The ultimate goal of many practical decision-making prob-
lems under uncertainty is to obtain a high-quality solution to

inf
x∈X

µ (x) := Eξ∼P [f (x, ξ)] (1)

where x, X , ξ, P, f : X ×Ξ→ R, and µ : X → R represent
a decision vector, the feasible set of x, a random vector, the
true distribution of ξ, a cost function, and the true expected
cost function, respectively. We denote by Ξ and R the support
of ξ and the real number set, respectively. Solving (1) is not
easy regardless of the conditions for X and f , as P is mostly
unknown in practice. To address (1) under the obscurity of
P, various data-driven approaches have been developed.

The sample average approximation (SAA) is one of the
easiest data-driven approaches to understand and implement,
which replaces P in (1) with an empirical distribution [1],
[2]. Since it is consistent with solving (1) asymptotically as
the sample size approaches infinity under mild assumptions,
SAA has been extensively studied in numerous application
domains. However, SAA generally fails to provide a proba-
bilistic performance guarantee for finitely many samples.

Preferably, data-driven approaches for (1) should be con-
sistent with solving (1) and offer a finite-sample performance
guarantee. If a method is inconsistent, then it is implied that
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the method does not exploit data effectively to minimize the
true expected cost and may yield solutions too far from any
optimum no matter how many data are considered by the
method. Moreover, if no performance guarantee is made for
a finite number of samples, we may incur unexpectedly high
costs arbitrarily often when there are only a few samples.1

Data-driven approaches for (1) offering a finite-sample
guarantee while asymptotically consistent with solving (1)
include distributionally robust optimization (DRO), or more
specifically, Wasserstein DRO [3]–[6] and robust SAA [7].
The basic concept of DRO is to minimize the worst-case
expected cost over a family of distributions of uncertainty,
called an ambiguity set. Performances of DRO greatly de-
pend on how an ambiguity set has been constructed. Al-
though there is an extensive body of research on DRO with
different ambiguity sets (e.g., [8]), we introduce only [3]–[7],
focusing on the two properties of our interest: a finite-sample
performance guarantee and asymptotic consistency.

In [3], an ambiguity set is defined as a ball, referred to as
a Wasserstein ball, in the space of probability distributions
centered at an empirical distribution of uncertainty. The
distance from a distribution to its center is calculated using
the Wasserstein metric. The authors also proved the existence
of a Wasserstein ball’s radius that acquires both finite-
sample and asymptotic performance guarantees. However,
computing such a radius is a challenging task in practice.

To obtain a theoretically valid radius of a Wasserstein ball
in a less demanding way, explicit formulae presented in [4]
and [5, Proposition 24] may be used. However, the former
is often too conservative [9], while the latter requires an
assumption on the dimension of uncertainty and the order
of the Wasserstein metric. [6] designs a better structured
ambiguity set with the Wasserstein metric. However, it is
effective only for multiple independent uncertainties.

Meanwhile, robust SAA [7] defines an ambiguity set as a
family of all distributions that pass a goodness-of-fit (GoF)
test, which examines the hypothesis that a set of sample
data is drawn from a distribution. If a statistic associated
with a GoF test, which depends on both the sample data
and the hypothetical distribution, is greater than a threshold
called a critical value, then the hypothesis is rejected. The
critical value is defined as a quantile of the statistic for the
true distribution. As such, an ambiguity set for robust SAA
contains the true distribution with probability encoded by the
critical value. The authors showed that this approach leads to

1Throughout the paper, we adopt the frequentist interpretation of proba-
bility in discussing and analyzing any property of a data-driven stochastic
optimization approach.
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the two performance guarantees for a wide class of problems.
However, obtaining a critical value is burdensome unless it
is distribution-free. Furthermore, a critical value should be
computed via simulations in general, whose precision can
affect the quality of a robust SAA problem.

In essence, although Wasserstein DRO [3]–[6] and robust
SAA [7] can provide both performance guarantees, they may
be hard to implement in practice. Thus far, the rules pre-
sented for constructing a theoretically meaningful ambiguity
set are either limitedly applicable depending on the true
distribution of uncertainty or overly conservative.

To resolve this issue, we present a novel data-driven
approach for (1) without resorting to an ambiguity set. The
proposed approach consists of two steps. As the first step,
we construct an approximation to µ using a half of the
sample data and minimize it. The data-driven approximation
builds on an existing confidence bound on the tails of the
difference between the true and sample means of a random
variable. By design, the minimization problem we solve is
asymptotically consistent with (1) under mild assumptions
on X , Ξ, and f . In the second step, we compute an upper
confidence bound (UCB) for the true expected cost of the
minimizer, utilizing the other half of the sample data. Further,
if there exists a decision with a lower UCB of confidence
1, we employ it as our decision, disregarding the minimizer
obtained at the first step. In this way, we can be offered a
finite-sample performance guarantee. As we assume nothing
about P except boundedness of Ξ, we can straightforwardly
formulate the optimization problem in the first step, unlike
with DRO. Nonetheless, the proposed approach admits an
interpretation as an approximate solution method for a DRO
problem concerning the distributional uncertainty of the cost
as a random variable. Thus, it is distributionally robust as
well.

Unfortunately, however, the minimization problem to solve
in the first step is non-convex and intractable in general. To
obtain a solution to it, we introduce additional assumptions
on X , Ξ, and f , including the monotonicity of the cost
function with respect to each random variable. Subsequently,
we design a tractable algorithm for the problem, which
consists of solving finitely many linear programs (LPs).
Using two test problems in different application areas, we
numerically show that our approach can be less conservative
compared to the DRO methods [4], [5], and [7].

Our main contributions are summarized as follows:
• We propose a data-driven approach for (1) that offers

a finite-sample guarantee, asymptotic consistency, and
distributional robustness without using an ambiguity set.

• We identify a case where the novel approach is tractable
and correspondingly design an algorithm for it.

The remainder of this paper is organized as follows.
In Section II, we describe in detail the two steps of the
proposed approach for (1). In Section III, we analyze the
three theoretical properties of the proposed approach. In
Section IV, we present a tractable algorithm for the proposed
approach. In Section V, we discuss the simulation results. In
Section VI, we provide concluding remarks.

II. PROPOSED METHOD

In this section, we explain the proposed data-driven
stochastic optimization method for (1). It builds on the
following mild assumption about X , Ξ, and f .

Assumption 1: First, X and Ξ are non-empty compact sets
in Rn and Rm, respectively. Second, f is continuous.

Assumption 1 implies that f (x, ξ) attains the maximum
and minimum in terms of ξ ∈ Ξ for any x ∈ X . Further,
we observe that f (x, ξ) is a random variable on the same
probability space as ξ for any x ∈ X . The support of f (x, ξ)
is denoted by F (x) := [l (x) , u (x)] ⊂ R, where

l (x) := min
ξ∈Ξ

f (x, ξ) and u (x) := max
ξ∈Ξ

f (x, ξ) .

We also assume that N > 1 samples ξ1, . . . , ξN of
ξ are available. Let ξ(1) := (ξ1, . . . , ξM ) and ξ(2) :=
(ξM+1, . . . , ξ2M ) where M := ⌊N/2⌋. For any x ∈ X ,
we denote the sample means of f (x, ξ) for ξ(1) and
ξ(2) by µ̂

(1)
M (x) := 1

M

∑M
i=1 f (x, ξi) and µ̂

(2)
M (x) :=

1
M

∑M
i=1 f (x, ξM+i), respectively.

The proposed approach comprises two steps. The first step
is to minimize an approximation to µ, which is derived using
ξ(1). Specifically, we solve

min
x∈X

µ
(1)
M (x) := µ̂

(1)
M (x) +

√
1

2M
log

1

1− γ
D (x) , (2)

where γ ∈ (0, 1) denotes a user-defined parameter and
D (x) := u (x)−l (x). The role of γ becomes clear in Section
III-A. Problem (2) always has an optimal solution due to
Assumption 1. Let x(1)∗

M and µ
(1)∗
M denote any solution and

the optimal value of (2), respectively. In the second step of
our approach, we compute µ

(2)
M (x

(1)∗
M ), where

µ
(2)
M (x) := µ̂

(2)
M (x) +

√
1

2M
log

1

1− γ
D (x) ,

and solve
min
x∈X

u (x) . (3)

Let xr∗ and u∗ denote any solution and the optimal value of
(3), respectively. Then, we define our data-driven solution to
(1) as

x∗
N :=

{
x
(1)∗
M if µ

(2)
M

(
x
(1)∗
M

)
≤ u∗

xr∗ otherwise

and let
µ∗
N := min

{
µ
(2)
M

(
x
(1)∗
M

)
, u∗

}
.

In the following section, we analyze the theoretical prop-
erties of x∗

N and µ∗
N .

III. THEORETICAL PROPERTIES

In this section, we prove that the proposed approach has
the two desirable properties of our interest, i.e., a finite-
sample guarantee and asymptotic consistency. Furthermore,
we show that our approach is also distributionally robust.
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A. Finite-Sample Performance Guarantee

Ideally, a data-driven approach for (1) should allow the
true expected cost to be bounded above with confidence
for any finite number of samples. This is because we may
incur unexpectedly high costs arbitrarily often otherwise. For
example, SAA is unreliable as it lacks such a guarantee
and often underestimates the true expected cost [3]. In this
subsection, we prove that our approach offers a finite-sample
guarantee, which is a corollary to the following theorem.

Theorem 1: For any x ∈ X , we have

Pr
[
µ (x) < µ

(2)
M (x)

]
≥ γ.

Proof: Fix any x ∈ X . As f (x, ξ) − µ (x) can be
considered as a D (x) /2-subgaussian random variable, it
follows from [10, Corollary 5.5] that

Pr
[
µ (x) ≥ µ̂

(2)
M (x) + α

]
≤ exp

[
− 2Mα2

D (x)
2

]
∀α ≥ 0.

We have the result by letting α =
√

1
2M log 1

1−γD (x).
Corollary 1 (Finite-sample performance guarantee):

The true expected cost µ (x∗
N ) of x∗

N is bounded above
by µ∗

N with confidence at least γ for any N < ∞, i.e.,
Pr [µ (x∗

N ) < µ∗
N ] ≥ γ.

Proof: We have µ (xr∗) ≤ u∗ by the definitions of xr∗

and u∗. By the theorem and the law of total probability, we
also have

Pr
[
µ
(
x
(1)∗
M

)
< µ

(2)
M

(
x
(1)∗
M

)]
≥ γ.

Hence, the statement holds.
The finite-sample guarantee can also be enjoyed in theory

by the DRO approaches [3]–[7] using an ambiguity set that
contains P with confidence. However, constructing such an
ambiguity set is usually a cumbersome task, which might
even require the identification of P. Thus, the confidence
level associated with our approach can be tuned more
straightforwardly than that associated with a general DRO
method. Furthermore, [4] provides a rule to build a theoret-
ically valid ambiguity set without making an assumption on
P beyond the boundedness of Ξ, which is worth comparing
to our approach. We numerically investigate the relationship
between our approach and this DRO method in Section V.

B. Asymptotic Consistency

It is also crucial for a data-driven approach for (1) to be
asymptotically consistent with solving (1). Otherwise, we
cannot be assured that sample data are efficiently exploited
to achieve our ultimate goal of minimizing the true expected
cost. For example, a DRO method with an ambiguity set
based on moment conditions [11], which does not satisfy
this property, may not reach an optimum even when many
samples are used [7]. The following theorem shows that our
approach is asymptotically consistent with solving (1).

Theorem 2 (Asymptotic consistency): Let µ∗ andM∗ de-
note the optimal value and the set of solutions of (1),
respectively. We have that d (x∗

N ,M∗)→ 0 a.s. as N →∞,

where d (x∗
N ,M∗) := infy∈M∗∥x∗

N−y∥2 denotes a distance
between x∗

N and M∗, and µ∗
N → µ∗ a.s. as N →∞.

Proof: Since xr∗ and u∗ are invariant with respect to
the sample data, it is enough to show that

d(x
(1)∗
M ,M∗)→ 0 a.s. (4)

and
µ
(2)∗
M (x

(1)∗
M )→ µ∗ a.s. (5)

We first prove (4). Let D := maxx∈X D (x), which is finite.
According to [1, Proposition 8], the sequence of functions
{µ̂(1)

M } uniformly converges to µ a.s. as M → ∞. This
implies that, for any ε > 0, there exists a natural number
M1 > D

2

2ε2 log
1

1−γ such that

sup
x∈X
|µ̂(1)

M (x)− µ (x)| < ε a.s.

for any M > M1. Thus, there exists a natural number M2 >
M1 such that

sup
x∈X
|µ(1)

M (x)− µ (x)| < ε a.s.

for any M > M2. This indicates that µ
(1)
M uniformly

converges to µ a.s. as M → ∞. The same holds for µ
(2)
M .

Further, we observe that µ is continuous due to Assumption
1 [1, Proposition 1]. Thus, according to [1, Theorem 9], we
have µ

(1)∗
M → µ∗ and d(x

(1)∗
M ,M∗)→ 0 a.s. as M →∞.

Next, we prove (5). From the proof of (4), we observe the
almost sure uniform convergence of µ

(1)
M and µ

(2)
M to µ as

well as the almost sure convergence of µ
(1)∗
M to µ∗. Thus,

for any ε > 0, there exists a natural number M3 such that

sup
x∈X

∣∣∣µ(2)
M (x)− µ (x)

∣∣∣
+ sup

x∈X

∣∣∣µ(1)
M (x)− µ (x)

∣∣∣+ ∣∣∣µ(1)∗
M − µ∗

∣∣∣ < ε a.s.

for any M > M3. Since we have∣∣∣µ(2)
M

(
x
(1)∗
M

)
− µ∗

∣∣∣ ≤ sup
x∈X

∣∣∣µ(2)
M (x)− µ (x)

∣∣∣
+ sup

x∈X

∣∣∣µ(1)
M (x)− µ (x)

∣∣∣+ ∣∣∣µ(1)∗
M − µ∗

∣∣∣
for any (ξ(1), ξ(2)), (5) holds and the proof is complete.

C. Distributional Robustness

As the name suggests, DRO methods for (1) are distribu-
tionally robust, i.e., robust against misspecifications of P as
well as changes in P. This is another advantageous quality
of a data-driven stochastic optimization method, since it can
mitigate the optimizer’s curse [3] and the data-generating
distribution P might vary over time. In this subsection, we
show that our approach is also distributionally robust.

To this end, we first define

h
(2)
M,θ (x) := max

Q∈Q(2)
M,θ(x)

Ef(x,ξ)∼Q [f (x, ξ)] (6)

for any x ∈ X . Let Q (x) and δ(·) denote the family
of all probability distributions supported on F (x) and the
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Dirac distribution, respectively. In (6), Q(2)
M,θ (x) ⊆ Q (x)

represents the 1-Wasserstein ball of radius θ > 0 centered at
the empirical distribution Q(2)

M (x) := 1
M

∑M
i=1 δf(x,ξM+i) of

f (x, ξ) for ξ(2), defined with the 1-norm as the metric on
F (x). That is, we let

Q(2)
M,θ (x) :=

{
Q ∈ Q (x) : dw

(
Q,Q(2)

M (x)
)
≤ θ

}
,

where dw denotes the Wasserstein metric of order 1 defined
with the 1-norm for two probability distributions supported
on F (x), i.e., for any Q1,Q2 ∈ Q (x),

dw (Q1,Q2) := inf
π∈Π(Q1,Q2)

∫
F(x)×F(x)

|y1−y2|π (dy1, dy2) .

Here, Π(Q1,Q2) denotes the set of joint distributions sup-
ported on F (x) × F (x) with marginals Q1 and Q2. Thus,
h
(2)
M,θ (x) represents the worst-case expected cost of decision

x over the decision-dependent Wasserstein ball Q(2)
M,θ (x).

Subsequently, we present the following theorem, which
implies a relationship between the proposed approach and
the minimization of h(2)

M,θ for a specific choice of θ.
Theorem 3: For any x ∈ X , we have

h
(2)

M,θM (x)
(x) = min

{
µ
(2)
M (x) , u (x)

}
,

where θM (x) :=
√

1
2M log 1

1−γD (x).

Proof: For any x ∈ X , h
(2)
M,θ (x) is the expectation

of an affine function of the random variable f (x, ξ) with
the bounded support F (x) with respect to worst-case distri-
butions in Q(2)

M,θ (x). Thus, according to [3, Theorem 4.4],
h
(2)
M,θ (x) is equal to the optimal value of the problem

max
qi∈R

µ̂
(2)
M (x) +

1

M

M∑
i=1

qi

s.t.
1

M

M∑
i=1

|qi| ≤ θ

l (x) ≤ f (x, ξi) + qi ≤ u (x) ∀i ≤M.

By imposing non-negativeness on qi for each i = 1, . . . ,M
without loss of optimality, we can rewrite this problem as

max
qi∈R+

µ̂
(2)
M (x) +

1

M

M∑
i=1

qi

s.t.
1

N

M∑
i=1

qi ≤ θ

qi ≤ u (x)− f (x, ξi) ∀i = 1, . . . ,M,

where R+ denotes the set of non-negative real numbers.
Thus, we have

h
(2)
M,θ (x) = min

{
µ̂
(2)
M (x) + θ, u (x)

}
for any θ > 0, and the proof is complete.

By Theorem 3, we can consider the proposed approach
as an approximate solution method for the Wasserstein DRO
problem

min
x∈X

h
(2)

M,θM (x)
(x) ,

whose optimal value is equal to the minimum of µ
(2)∗
M and

u∗. The following corollary describes more specifically the
distributional robustness inherent in our approach.

Corollary 2 (Distributional robustness): The expectation
of f (x∗

N , ξ) as a random variable with respect to any
distribution in Q(2)

M,θ (x
∗
N ) for θ = θM (x∗

N ) is bounded
above by µ∗

N , i.e.,

Ef(x∗
N ,ξ)∼Q [f (x∗

N , ξ)] ≤ µ∗
N ∀Q ∈ Q(2)

M,θM (x∗
N )

(x∗
N ) .

Proof: The result is immediate from the theorem and
the definition (6) of h(2)

M,θ.
Corollary 2 suggests that the proposed approach is robust

against the imperfect representation Q(2)
M (x∗

N ) of the true
distribution of f (x∗

N , ξ). Moreover, even when P is not fixed,
if P varies in such a way that the corresponding distribution
of f (x∗

N , ξ) belongs to Q(2)
M,θ (x

∗
N ) for θ = θM (x∗

N ), then
the true expected cost µ (x∗

N ) is no greater than µ∗
N . In this

sense, our approach is distributionally robust.
Despite its favorable theoretical properties, however, our

approach may not be implementable in practice. This is
mainly because (2) is generally non-convex. We discuss the
implementability of our approach in the following section.

IV. SOLUTION METHOD

To use our approach, we have to solve (2) and (3).
Unlike (3), (2) is usually intractable as D (x) is non-convex
even when, for example, f (x, ξ) is jointly convex. In this
section, we develop a tractable algorithm for (2) under extra
assumptions on X , Ξ, and f . Problem (3) can be easily
rewritten as an LP under the conditions. We introduce the
following assumption, which implies Assumption 1.

Assumption 2: First, X ⊂ Rn and Ξ ⊂ Rm are a
compact convex polytope and a compact m-dimensional
interval, respectively. Second, f can be represented as a
pointwise maximum of J <∞ affine functions over Ξ whose
coefficient vectors and constant terms are affine functions
over X , i.e., f (x, ξ) = maxj≤J a⊤j (x) ξ + bj (x), where
aj : X → Rm and bj : X → R are affine for any
j = 1, . . . , J . Finally, for any x ∈ X , the J affine functions
of ξ ∈ Ξ that constitute f (x, ξ) are either simultaneously
increasing or simultaneously decreasing with any entry of ξ,
i.e., aj (x) ◦ aj′ (x′) ∈ Rm

+ for any (j, j′, x, x′) ∈ J 2 × X 2

where ◦ denotes the entrywise product of two vectors.
With Assumption 2 holding for the rest of this section, we

first explain how to solve (2). Problem (2) is rewritten as

min
x∈X ,

ηi,η,η∈R

1

M

M∑
i=1

ηi +

√
1

2M
log

1

1− γ

(
η + η

)
s.t. ηi ≥ a⊤j (x) ξi + bj (x) ∀i ≤M,∀j ≤ J

η = max
ξ∈Ξ,j≤J

a⊤j (x) ξ + bj (x)

η = −min
ξ∈Ξ

max
j≤J

a⊤j (x) ξ + bj (x) ,

(7)

where ηi, η, and η represent f (x, ξi), u (x), and −l (x),
respectively. Since the sign of each entry in aj (x) is invariant
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Algorithm 1 LP method for (2) under Assumption 2
Input: Samples ξ1, . . . , ξM and confidence level γ ∈ (0, 1)

Output: Solution x
(1)∗
M

for k ← 1 to J do
Solve (9) and obtain (x(1)k, µ(1)k) ▷ LP

end for
k∗ ← argmink≤J µ(1)k and x

(1)∗
M ← x(1)k∗

with x ∈ X and Ξ is a box, (7) is rewritten as

min
x∈X ,

ηi,η,η∈R

1

M

M∑
i=1

ηi +

√
1

2M
log

1

1− γ

(
η + η

)
s.t. ηi ≥ a⊤j (x) ξi + bj (x) ∀i ≤M, ∀j ≤ J

η ≥ a⊤j (x) ξ+ + bj (x) ∀j ≤ J

η ≥ min
j≤J
−a⊤j (x) ξ− − bj (x)

(8)

with ξ+ := argmaxξ∈Ξ σ⊤ξ and ξ− := argminξ∈Ξ σ⊤ξ.
Here, σ ∈ {1,−1}m denotes a vector such that σ ◦ aj (x) ∈
Rm

+ for any j = 1, . . . , J and x ∈ X , whose existence is due
to Assumption 2. We address (8) by solving the LP

min
x∈X ,

ηi,η,η∈R

1

M

M∑
i=1

ηi +

√
1

2M
log

1

1− γ

(
η + η

)
s.t. ηi ≥ a⊤j (x) ξi + bj (x) ∀i ≤M, ∀j ≤ J

η ≥ a⊤j (x) ξ+ + bj (x) ∀j ≤ J

η ≥ −a⊤k (x) ξ− − bk (x)

(9)

for each k = 1, . . . , J . Let x(1)k and µ(1)k denote a solution
corresponding to x and the optimal value of (9), respectively.
By definition, x(1)k∗

for any k∗ ∈ argmink≤J µ(1)k is a
solution to (8). As a solution can be obtained by solving J
LPs, (2) is tractable. We provide a pseudocode for (2) in
Algorithm 1. Meanwhile, (3) is rewritten as the LP

min
x∈X

η s.t. η ≥ aj (x) ξ
+ + bj (x) ∀j ≤ J. (10)

Thus, our approach can be employed by solving (J + 1) LPs.
In the following section, we numerically show that the

proposed approach can be less conservative than existing
DRO methods for a broad range of confidence levels.

V. NUMERICAL EXAMPLES

In this section, we examine the performances of the pro-
posed approach using numerical experiments. Specifically,
we compare our approach against two Wasserstein DRO
methods with ambiguity sets whose radii are set using the
explicit formulae in [4] (DROa) and [5, Proposition 24]
(DROb), respectively, as well as a robust SAA method
(DROc) in terms of the UCBs associated with the finite-
sample guarantees and the true expected costs. The GoF test
for DROc is based on linear-convex ordering [7, Theorem
16]. We test the four methods on two decision-making prob-
lems that meet Assumption 2: the newsvendor problem and
the farm management problem. We explain the simulation
scheme in the following subsection.

A. Simulation Scheme
For each problem, we first randomly generate N =

10, 100, 1000 sample data according to the true distribution.
After obtaining a solution and its associated UCB of each
method for confidence γ = 0.05, 0.1 . . . , 0.95, we estimate
the true expected cost using SAA with another 100,000
randomly generated samples. For statistical robustness, we
repeat this process 1,000 times with independent sample
datasets. We then compare the average UCBs and the average
true expected costs of the methods. For reference, we also
estimate the minimum true expected cost, using SAA with
another 1,000,000 randomly generated samples. Further, we
compute the average true expected costs incurred by SAA.
The source code of the simulations is available online.2

We describe the details of each problem in the following
subsection.

B. Problem Description
1) Newsvendor Problem: We first consider a single-period

newsvendor problem [12] involving two continuous items
with a combined stock capacity of 176. For each i = 1, 2,
let xi and ξi denote the inventory level and uncertain demand
of item i, respectively. We formulate the problem as

min
x1,x2∈R+

2∑
i=1

cixi + E [max {−piξi + qi(xi − ξi),−pixi}]

s.t. x1 + x2 ≤ 176,

where ci, pi, and qi denote the unit cost, price, and disposal
cost of item i, respectively. We set c1 = 3, p1 = 5, q1 = 2,
c2 = 6, p2 = 10, and q2 = 6. Assuming that ξ1 and ξ2 are
independent random variables, we model the true distribution
of ξ1 (ξ2) as the gamma distribution with shape 1.5 (3) and
scale 20 (40) truncated over [0, 100] ([0, 120]).

2) Farm Management Problem: The second illustrative
problem is a variant of the farmer’s problem depicted in [12],
where a farmer who owns 500 acres of land determines how
much area to allocate to three types of crops, wheat, corn, and
sugar beet, with planting costs of $150, $230, and $260 per
acre, respectively. The farmer may need specific amounts of
wheat and corn after harvesting, represented by independent
random variables ξ1 and ξ2, respectively. Let x1, x2, and x3

denote the areas of land allocated to wheat, corn, and sugar
beet, respectively. We formulate the problem as

min
x1,x2,x3∈R+

150x1 + 230x2 + 260x3 + E [f (x, ξ1, ξ2)]

s.t. x1 + x2 + x3 ≤ 500,

where f (x, ξ1, ξ2) is defined as the optimal value of the LP

min
y1,y2,w1,w2,w3,w4∈R+

238y1 − 170w1 + 210y2

− 150w2 − 36w3 − 10w4

s.t. 2.5x1 + y1 − w1 ≥ ξ1

3x2 + y2 − w2 ≥ ξ2

w3 + w4 ≤ 20x3

w3 ≤ 6000.

(11)

2https://github.com/CORE-SNU/UCB
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Fig. 1. The average UCB for the newsvendor problem.
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Fig. 2. The average UCB for the farm management problem.

The specifics of the decision variables, constraints, and
objective function in (11) can be easily inferred from [12].
Using duality in LPs, we can rewrite (11) in the form
described in Assumption 2 for J = 8. We model the true
distribution of ξ1 (ξ2) as the normal distribution of mean 200
(240) and variance 60 (72) truncated over [0, 400] ([0, 480]).

We discuss the simulation results in the following subsec-
tion.

C. Results

The simulation results are shown in Fig. 1–4. From Fig.
1 and 2, we observe that the proposed approach yields
the lowest UCB on average for any sample size N and
confidence level γ regardless of the problem. Fig. 3 and 4
reveal that it also leads to the lowest true expected cost on
average for any N and γ ≥ 0.55 on both problems. Thus,
we conclude that our approach can be much less conservative
than existing DRO methods under Assumption 2 for a wide
range of commonly used confidence levels.

Meanwhile, our approach reveals a significant gap between
the UCB and the true expected cost, especially when the
confidence level is relatively high. Thus, we may need a
technique to decrease the conservativeness of our approach,
which remains future work. Furthermore, SAA demonstrates
the lower true expected cost on average compared to our
approach for any case. Although SAA does not provide an
effective finite-sample guarantee by itself, it would also be
intriguing to explore additional tactics for our approach to
surpass SAA in terms of the true expected cost.

VI. CONCLUSIONS

We proposed a data-driven approach for stochastic opti-
mization that offers not only asymptotic consistency but also
a finite-sample guarantee. Without relying on an ambiguity
set, our approach can be implemented more straightforwardly
than DRO methods that provide both performance guaran-
tees. The simulation results demonstrated that our approach
can be less conservative than existing DRO methods in terms
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Fig. 3. The average true expected cost for the newsvendor problem.
Subfigure (d) is a magnified view of (c).
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Fig. 4. The average true expected cost for the farm management problem.
The results of DROb and DROc are invariant with N and γ.

of the finite-sample guarantee as well as the true expected
cost. However, our approach is tractable only for a limited
class of problems. In addition, we found numerically that
our approach can result in a large disparity between the
UCB and the true expected cost, with the true expected cost
being higher than that incurred by SAA on average. Thus,
future research directions include improving its tractability
and reducing its intrinsic conservativeness.
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