2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

Resilient Projection-based Distributed Leader-Follower Consensus
Against Integrity Cyberattacks

Mahdieh S. Sadabadi

Abstract— This paper focuses on the problem of distributed
leader-follower consensus in multi-agent systems in which
some agents are subject to adversarial attacks. We develop a
resilient distributed leader-follower control strategy subject to
integrity attacks, where agents’ updates of their states can be
compromised by injecting false signals to control inputs. Under
such a threat model, we design a resilient distributed leader-
follower framework for agents with continuous-time dynamics
to resiliently track a reference state propagated by a leader.
In the design of the resilient framework, projection-based
operators are used as dynamic controllers to estimate the
dynamics of uncertainties on the control inputs of each agent.
By use of the properties of projection operators and Lyapunov
stability theory, the uniform ultimate boundedness of the closed-
loop multi-agent system in the presence of integrity attacks is
guaranteed. The proposed resilient distributed scheme does not
impose any limitations on the maximum tolerable number of
cyberattacks and does not require high network connectivity.
The effectiveness of the proposed resilient distributed consensus
algorithm is verified by a numerical example.

I. INTRODUCTION

Distributed leader-follower consensus algorithms have re-
ceived significant attention over the last few decades, driven
by their numerous wide applications. Their recent applica-
tions include frequency synchronization in distributed gen-
eration units [1], voltage regulation in DC networks [2],
mobile sensor networks [3], and vehicle platoon control [4].
A distributed leader-follower consensus scheme is composed
of multiple autonomous agents called followers, which are
spatially distributed and communicate over a network to
achieve a common goal, provided by a set of agents, called
leaders.

Although a distributed algorithm offers several benefits
compared to centralized algorithms, in terms of scalability
and robustness to a single point of failure, their reliable oper-
ations depend on the reliable functionality of cyber resources,
particularly sensing, actuating, and communication networks.
However, cyber resources in such algorithms are exposed to
the risk of remote interference such as cyberattacks.

Ensuring the resilient operation of multi-agent systems to
cyberattacks and adversarial misbehavior is essential in sev-
eral critical applications such as electrical power systems [5].
As part of this need, resilient features must be included in the
distributed algorithms for multi-agent systems. Hence, the
development of a resilient consensus algorithm is required. In
a resilient consensus problem in multi-agent systems, agents
seek to reach an agreement on the reference value of a set
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of leaders in the presence of cyberattacks whose properties
are unknown [6].

In recent years, several resilient leader-follower consensus
approaches were developed in the literature such as the works
in [6]-[11] and references therein. In [7] and [8], resilient
leader-follower consensus algorithms were proposed without
requiring any assumptions on attackers’ behavior. However,
these methods restrict the maximum number of compromised
agents and/or the connectivity of communication networks.
The work in [6] focuses on the problem of resilient leader-
follower consensus of multi-agent systems with discrete-time
dynamics and develops a sliding window mean-subsequence-
reduced-based algorithm. Nevertheless, this work does not
consider the case of continuous-time dynamics and also
restricts the number of arbitrarily attacked agents. Resilient
cooperative control approaches for the leader-follower con-
sensus problem, based on the introduction of a virtual layer
and virtual states, are proposed in [9]-[11]. However, the
resilience of the proposed algorithms in these papers depends
on a parameter that requires to be extremely large to ensure
resilient consensus in the presence of cyberattacks. The large
value of this parameter might adversely impact the transient
response of followers (agents) in multi-agent systems.

This paper focuses on the problem of resilient distributed
leader-follower consensus in continuous-time multi-agent
systems in the presence of false data injection (FDI) integrity
cyberattacks. The paper develops a novel resilient distributed
algorithm, which ensures that agents’ states converge closely
to a reference state provided by a leader, even under unknown
but bounded attacks on both the agent’s update of its local
state and its control inputs. The proposed resilient algorithm
is based on projection-based control, which is a robustness-
based augmentation technique that bounds the outputs of a
controller in sector-bounded sets while conforming to the
Lyapunov stability rules [12].

Specifically, the paper provides the following contribu-
tions:

1) We propose a novel resilient projection-based dis-
tributed algorithm, which ensures that all agents’ states
converge closely to reference states propagated by a
leader.

2) The proposed resilient distributed consensus scheme
guarantees the uniform ultimate boundedness of the
closed-loop multi-agent system in the presence of
bounded FDI integrity attacks on control input channels
and asymptotic stability for the case of time-invariant
FDI attacks.

3) The proposed algorithm does not impose any limitations
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on the maximum tolerable number of cyberattacks and
does not require high network connectivity.

The performance and effectiveness of the proposed re-
silient distributed leader-follower consensus algorithm are
verified by a numerical example.

The paper is organized as follows. The problem under
study is stated in Section II. The proposed cyber-resilience
leader-follower consensus scheme is presented in Section III.
Section IV is devoted to the stability analysis of the closed-
loop system augmented with the proposed resilient dis-
tributed consensus approach. The simulation results and
numerical analysis are provided in Section V. Conclusions
are given in Section VI.

Notation: The notation used in this paper is stan-
dard. Specifically, 1,, is an n-dimensional vector of all
ones, AT denotes the transpose of matrix A, and A =
diag(ay,...,a,) € R™ is a diagonal matrix whose diagonal
elements are a; € R. For symmetric matrices, X > 0
(X < 0 and X > 0 (X = 0) respectively indi-
cate positive-definiteness (negative-definiteness) and positive
semi-definiteness (negative semi-definiteness).

Preliminaries on Projection Operators: The following
definition and lemma (Lemma 11.3. in [13]) are used in the
proposed control approach in this paper.

Definition 1 (Projection Operation). Suppose that f(0) :
R™ — R is a scalar-valued continuously differentiable con-
vex function. Let 6(¢) € R™ and y(¢) € R™ be time-varying
piecewise continuous vectors. The Projection Operator Proj :
R™ x R™ — R™ for two vectors §(t) and y(t) are defined as
follows:

y, if f(0) <0,
orif f(#) =0 and y? V() <0,

PRI0V=Y g revsm)
— Wyf(@), otherwise.
(1)
where Vf(0) = [252 .. 2LO|T ¢ 7,

From the definition of projection operators, starting from
any initial condition (0) = 6y within a convex set Sp =
{6 € R"| f(0) < 0}, the system trajectory 6(¢) will remain
in the set Sp = {0 € R"| f(0) <1}, V¢ > 0.

Lemma 1. For 0* € Sy, the projection operator Proj(0,y)
satisfies the following condition:

(60— 60*)" (Proj(0,y) —y) < 0. )
II. LEADER-FOLLOWER CONSENSUS

Consider a cooperative multi-agent system consisting of
n > 2 agents. The dynamics of the agent i, i € {1,...,n},
are represented as follows:

(1) = ua(t), 3)

where x;(t) € R is the state and u;(t) € R is the control
input of the agent . We consider o € R as the state of a
leader, which is assumed to be constant. Note that in several

real-world applications, such as frequency synchronization
in electrical power systems [14], zo is constant.

Given the dynamics of the agents in (3), the main objective
is to design u;(t) so that the agents reach a consensus, i.e.,

Jim zi(t) = xo 4)

fori=1,...,n.

It is assumed that xg is not accessible to all agents and
only a subset of agents have access to it. Hence, to ensure
(4), each agent is required to design w;(¢) and update its local
state x;(t) in a distributed manner according to the following
update rule:

i(t) = wi (@i (1), (25(t)jen:) (5)

where N; is the neighbor set of agent ¢ and () is the state
of the neighboring agent.

Remark 1. In a multi-agent system whose agents’ dynam-
ics are described by a heterogeneous nonlinear or linear
system, if the individual dynamic system of agents is input
passivity-short (or can become input passivity-short by a
local feedback controller), then it is shown that the dynamic
behaviors at the network level and network control design
can equivalently be transformed to the first-order integral
dynamics in (3) [15]. Therefore, the focus of the remainder
of this paper is on the first-order integral dynamics of agents
given by (3).

A. Conventional Leader-Follower Consensus

It is assumed that the information flow among the agents
is modeled by an undirected graph G = (V(G),£(G)) with a
node set V(G) and an edge set £(G). Furthermore, we make
the following assumption on the communication graph.

Assumption 1. The undirected graph is connected.

Under Assumption 1, the conventional distributed control
approach for achieving the leader-follower consensus in (4)
relies on the following control law [16]:

wit) = =Y ai; (@i(t) — 2;(8)) — as(:(t) — x0), (6)
JEN;

for ¢ = 1,...,n, where a;; > 0 and a;; # O if the agent

1 receives information from the agent j € N;; otherwise,

ai; = 0, Vj ¢ N;. In (6), a; > 0 is a pinning gain and

«; # 0 if the agent 7 receives information from the leader;
otherwise, «; = 0.

The cooperative multi-agent system with the agent dy-
namics in (3) and the conventional leader-follower consensus
control protocol in (6) can be written in a compact form as
follows:

x(t) = —(L+ A)(x(t) — 1nz0) @)

where x(t) = [z1(t),...,2,(t)]" € R™ is the closed-
loop state vector, £L € R™ " is the Laplacian matrix
associated with the communication graph G, and A =
diag(aq, ..., ) € R™ ™ is a pining gain matrix. Assuming
that a; # 0 for at least one agent ¢ € V(G) and Assumption 1
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holds, —(L£ + A) is a Hurwitz matrix [16]. Hence, it can
be shown that the conventional distributed controller in (6)
guarantees the leader-follower consensus objective given in

.

B. Integrity Attack Modeling

The conventional leader-follower consensus control
scheme in (6) assumes ideal cyber conditions where sens-
ing, network communication, computation, and actuating are
under normal conditions. However, they might be subject to
uncertainties due to cyberattacks. Among the different types
of attacks, false data injection (FDI) is one of the major types
of cyberattacks, where the attacker aims to compromise the
integrity of cyber information.

In this paper, we consider a malicious adversary capable
of injecting false data to agents’ update rules of its local
estimate (computational node) and control input channels
(actuating node). FDI attackers insert erroneous data into
these nodes leading the multi-agent system to generate false
control inputs applied to agents.

To provide a mathematical model of such FDI cyberat-
tacks, let us define S3;(t — T;), which is a step function that
characterizes the cyberattack time profile with 7; > 0 being
the unknown cyberattack occurrence time. The function 53;(t)
operates as 3;(t —T;) = 0, Vt < T; and B;(t — T;) = 1,
Vvt > T;. The FDI cyberattack on agent 7’s update of its state
and/or control inputs can be modeled as

where w;(t) is the control output, @;(t) is the compromised
signal applied to the actuator of the agent 4, and J;(t) is the
unknown false data injected to the actuator of the agent 4.
Note that in the normal situation (no attack case), u;(t) =

Assumption 2. It is assumed that the false data injection
3:(t) in (8) and its rate of change are unknown but bounded.

It is worth mentioning that Assumption 2 is not restrictive,
as a worst-case actuator uncertainty is actuator amplitude
saturation in practice. This implies that even if the FDI
attacks on control inputs are unbounded, due to actuator
saturation, their impact becomes bounded.

Assumption 3. In addition to Assumption 2, it is assumed
that the false signal §;(t) in (8) is state-independent and does
not depend on the state of the agent i, i.e., x;(t) or other
agents’ state.

To characterize the resilient consensus in the presence of
aforementioned integrity attacks, we use a formal definition
of resilient consensus as follows:

Definition 2 (Resilient Consensus). If for any possible
sets and behaviors of misbehaving agents under attacks, the
following condition is satisfied, then the multi-agent system
is said to reach a resilient consensus:

lim x;(t) —xzo |<e€ Vie{l,...,n} 9)

t—o00

where € is a small non-negative scalar.

The main objective of this paper is to modify the con-
ventional distributed leader-follower consensus in (7) and to
enhance its resilience against FDI cyberattacks modeled by

(8).
C. Problem Statement

In the following, the research problem that we seek to
address in this paper is stated.

Problem 1. Given the dynamics of the multi-agent system
in (3), the integrity attack model in (8), and under Assump-
tion 1, design u;(¢) so that the resilience consensus objective
in (9) is met for all FDI attacks on control inputs satisfying
Assumption 2 and Assumption 3.

In the next section, a solution to Problem 1 is provided
that ensures the resilience consensus objective in (9).

III. PROPOSED RESILIENT LEADER-FOLLOWER
CONSENSUS

This section provides a resilient distributed consensus
algorithm to address Problem 1.

A. Adaptive Leader-Follower Consensus Control

In the presence of FDI attacks on control inputs, as
modeled by (8), the leader-follower consensus controller in
(7) is modeled as :

X(t) = =(£+ A)(x(t) — Tnzo) + d(t),

where d(t) = [d1(t),...,d,(t)]" € R™ indicates the impact
of attacks on control inputs and agents’ update rule, i.e.,
d;(t) = 0;(t) in the presence of attacks on w;(t) and
d;(t) = 0 in the absence of attacks on u;(t) fori =1,...,n.
Based on Assumption 2, it is assumed that ||d(t)||> < d and
[d(t)||2 < d; t > 0, where the upper bounds d and d are
unknown.

To achieve the resilient consensus in (9) in the face of
integrity cyberattacks modeled by (8), the control law wu,;(t)
in (5) is designed as follows:

wit) ==Y i (wi(t) — 2;(t) — ai(wi(t) — xo)
JEN;
+di(t) 4+ vi(t),

(10)

(1)

where v;(t) is a correction signal aimed to estimate the
uncertainty on the agent ¢’s update rule. The correction signal
v;(t) is designed by

vi(t) = —d;(t) (12)

where d; (t) is an estimate of the uncertainty (false data) d; (t)
on the agent ¢’s update rule and its dynamics are represented
by

di(t) = viProj(di(t), Y aij (wi(t) — a;(t))—ai(ws(t)—o))
JEN;

(13)
with di(O) = cii,o, where 7; is a positive design gain, referred
to as the learning rate [17], and Proj is a projection operation
defined in (1). In the projection-based control law in (13), the
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following continuously differentiable and convex function
f(d;) is used:

d? —d;

2€dbd7,2 max + edi
where d; mer € R is a projection norm bound imposed
on d; and €4, > 0 is a projection tolerance bound. Note
that f(d;) = 0 when d? = d? e and f(d;) = 1 when
df = (di,maz + €4;)*. The projection function f in (14)
is commonly used in adaptive systems [17], [18], and the
references therein. As shown in [17], the choice of f in (14)
results in a bounded estimate d;(t).

Remark 2. Note that the design of u;(t) in (11) and cii(t) in
(13) is di:vtributed, since both (11) and the dynamic update
rule for d;(t) only require the states of neighboring agents
xj(t) for j € N;.
B. Closed-loop Dynamical Systems

Let us define d(t) = [dy(t),...,d,(t)]T € R™ as a vector
of the estimate of uncertainties on agents’ control inputs. The
closed-loop multi-agent system with the proposed update rule
in (11)-(13) is presented in a compact vector form as follows:

(1) = =(£ + A)(x(t) — Lywo) +d (1) - d(1),
d(t) = yProj, (d(t), (£ + A)(x(t) — Lyzo) )

where v =

fd;) = (14)

5)

diag(y1,.-.,v.) € R™™ is a positive-
(A(0), (£ + A)x(t) ~ 1az0) ) €
R whose i-th element is
Proj(di (t), E;E./\L Qi (.%‘l(t> — Xj (t)) — Q5 (xl (t) — 370)) for
1=1,...,n
In the next section, the stability and the uniform ultimate

boundedness of the closed-loop dynamical system in (15) is
analyzed.

definite matrix and Proj,,
R™ is a  vector

IV. STABILITY ANALYSIS

This section analyzes the stability and the uniform ultimate
boundedness of the closed-loop system in (15). To this end,
let us define e(t) = x(t) — 1,20 and d(t) = d(t) — d(¢).
The closed-loop dynamics in (15) are then presented in these
new coordinates by the following equations:

é(t) = —(L+ Ae(t) +d(t),
d(t) = —yProj,, (d(t) = A1), (£ + A)e(t)) +d(2).

The results about the stability of (16) are given in the
following theorem.

(16)

Theorem 1. Let Assumption [-Assumption 3 hold. The
proposed resilient leader-follower consensus scheme in (11)-
(13) ensures the resilient consensus in (9) in the presence
of FDI attacks on control inputs modeled by (8) with the
following ultimate bounds:

Amae (L + A) 1
< 2 2
Iell> < \/Amm(a A R A (C+ A"

a7
3 )\maz
IMBS¢MMWMMA£+Mﬁ+ _ggﬁ,

== dmrm" + J 61 = ( min(ﬁ + A))2

& = W(d + dmam)d and d,,.. € R is a projection
norm bound Le., dmal‘ - max(dl,maxa cety dn,maw)~

Proof: Consider the following quadratic Lyapunov
function:

where 11 = 2—2, 72

V(e(t),d(1) =y ()(£ + Aelt) + 5d" ()y~d()

(18)

Note that as £ > 0 (due to Assumption 1) and A > 0,
Weyl’s inequality [19] implies that (£ + A) > 0. Hence,
V(e(t),d(t)) > 0, ¥(e(t),d(t)) # (0,0), V(0,0) = 0, and
V(e(t),d(t)) is radially unbounded.

The time derivative of the Lyapunov function in (18) along
the closed-loop error dynamics in (16) is given by
V(e(t),d(t)) = — e (t)(L + A)%e(t) + T (t)(L + A)d(t)

— a7 (t)Proj,, (d(t) —d(t), (£ + A)e(t))
+d”(tyy ().
(19)

Taking into account the property of the projection operator
in (2), one can show that

—d”(t) (Proj, (A(1), (1)) = ¥(1)) <0, =0, (0)

where Y(t) = (£ + A)e(t). Thus, one can obtain that
Vie(t),d(t)) < —eT(t)(£ + A)?e(t) +d" (1)y'd(1)
_€I‘|e||%+§27 t> 07
2D
where & = (Amin(L + A)% & = 55 (d + dias)d

with a projection norm bound dpq, > 0. Consequently,
V(e(t), d(t)) < 0 is outside of the following compact set:

={(e(t),d(t)) eR" xR": e[z <m, [[d]|2 < n2}.
(22)
where 7, = ,/% and 72 = dyas + d. This proves the

uniform boundedness of the solution (e(t),d(t)) of the
closed loop system given by (16) for all (e(0),d(0)) €
R” x R". To show the ultimate bound for e(t) and d(t),
note that according to (18) and (22), one can obtain that

i3

2
Amin (£ + A)lle]|3 + < Amaa (£ + Ayt + —2

)\maac('y) = mer )\min(’)/)’
2
min A 3 < max A 1 ni?
(€4 Al < Ao+ ) + 52
||C~1H§ 2 77%
A'm,az (’7) ( ) ! )\mzn (’Y)
(23)
As a result, one can obtain that
Amaz (L + A) 1
< 2 2
(24)
~ Amﬂz
IMBS¢MMWMMA£+Mﬁ+ o
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This proves the ultimate bound of the error signals e(t) and
d(t) whose dynamics are given in (16).

The ultimate bounds of e(t) and d(¢) in (17) characterize
the impact of the learning rate matrix vy on these bounds.
Hence, « should be appropriately designed so that those
bounds are as small as possible.

Remark 3. The boundedness of d(t) in (17) and d(t) (due
to Assumption 2) imply that d(t) is bounded.

The next theorem analyzes the Lyapunov stability of
the closed-loop dynamical system in (16) for the case of
time-invariant FDI integrity attacks d(¢) (constant false data
injection d).

Theorem 2. Let Assumption 1-Assumption 3 hold. For the
case of time-invariant FDI integrity attacks d, the zero
solution (e(t),d(t)) = (0,0) of the closed-loop system given
by (16) is Lyapunov stable for all (e(0),d(0)) € R™ x R™
Furthermore, lim;_, o e(t) = 0 and lim;_, a(t) =0.

Proof: As the integrity attack d is time-invariant, d=0
and hence d = 0. Using the same procedure as the proof of
Theorem 1, it can be shown that

Vie(t),d(t)) = —e” (t)(L + 4)%e(t)

—aT@) (Projn (d(t) —d(t), (L + A)e(t)) —(L+ A)e(t):
(25)

As —(L + A)2 < 0 and due to (20), V(e(t),d(t)) < 0,
t > 0. We then apply LaSalle’s invariance principle [20] to
show that the state trajectories (e(t),d(t)) converge to the
largest invariant set in the following set:

D= {(e(t), d(t)) e R" x R™ : V(e(t),d(t)) = o} (26)

From (25), V(e(t),d(t)) = 0 is equivalent to e(t) = 0

and from (16) this leads to d(¢) = 0. As a result, the origin
is the largest invariant set in D. As a result, lim;_, ., e(t) = 0
and lim;_, o El(t) =0.
Remark 4. From the results of Theorem 2, it follows
that limy oo x(t) = 1,20 despite the existence of a
time-invariant FDI integrity attack d. This shows that the
projection-based update law in (13) accurately estimates
the injection of time-invariant false data d; into the control
inputs of the agent i; ¥V i € {1,...,n}.

V. SIMULATION RESULTS AND ANALYSIS

Consider a multi-agent system represented by an undi-
rected graph depicted in Fig. 1 with n = 34 followers. It is
assumed that only follower 1 has access to the leader’s state
2o = 1 and all agents have random initial conditions z;(0).
In the estimation algorithm in (13), d;(0) = 0 is selected for
t=1,...,n.

The performance of the proposed resilient distributed
leader-follower consensus is evaluated in two case studies.

In the first case study, it is assumed that the control inputs
of agents, i.e. u;(t) for i = 1,...,34, are subject to constant
random FDI attacks occurring in ¢ =5 s.

Fig. 1. Undirected graph used in Section V- Gray lines denote communi-
cation links and black circles denote follower agents.

3 4 5 6 7 8 9 10
t(s)
1.4
(b)
1.05 | 8
= %‘
B
095 - B
0.9 Il Il Il Il Il Il
3 4 5 6 7 8 9 10
t(s)
Fig. 2. State trajectories of the multi-agent system in the presence

of constant random FDI attacks on control inputs with (a) conventional
distributed algorithm in (6) and (b) proposed resilient distributed framework
in (15) with v = 10001,,.

The second case study considers the case of time-varying
FDI attacks on the followers’ control inputs. For this purpose,
the control inputs are subjected to a combination of constant
and sinusoidal signals with a random range of frequencies
occurring at t =5 s.

The state trajectories of the follower agents for both case
studies are respectively depicted in Fig. 2 and Fig. 3.

As one can observe from both figures, the proposed
resilient distributed control scheme can achieve a resilient
consensus even when agents are subject to FDI attacks while
the conventional distributed leader-follower algorithm in (6)
cannot reach a consensus in the presence of FDI attacks.

VI. CONCLUSIONS

This paper deals with the problem of leader-follower
consensus in multi-agent systems in the presence of cy-
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Fig. 3. State trajectories of the multi-agent system in the presence of time-
varying attacks on control inputs with (a) conventional distributed algorithm
in (6) and (b) proposed resilient distributed framework in (15) with v =
1000L,,.

berattacks on control input channels. The paper develops a
novel resilient distributed algorithm for agents to resiliently
track a reference state propagated by a set of leaders, despite
the existence of unknown but bounded cyberattacks on the
agents’ local computation and control inputs. A projection-
based dynamic scheme is used to estimate the uncertainties
on the control input channels of each agent and to ensure the
boundedness of the estimation. Our proposed approach guar-
antees the uniform ultimate boundedness of the consensus
and the estimation error in the presence of FDI adversarial
integrity attacks. Numerical simulation results are provided
to complement the theoretical analysis and demonstrate the
effectiveness of the proposed resilient distributed leader-
follower consensus scheme. The future scope of this work
includes (i) the extension of results to the case of FDI attacks
on both sensors and control inputs and (ii) considering the
case of time-varying learning rate.
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