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Abstract— Different concepts to control integrators with long
dead time have been presented over the last 40 years. Although
this particular plant model is of practical interest, another
practical issue of high interest, i.e. actuator constraints, has
often enough been neglected in the treatises. This paper
presents a control scheme (the so-called Conditioned Smith-
Åström Predictor) that guarantees global asymptotic stability
for integrators with long dead time. Furthermore, it offers a
straightforward design procedure and—yet another practical
aspect of increasing interest—an explicit disturbance estimate
(independent of constraints). A highlight of the proposed
stability proof is that it uses well-established graphical methods
that allow for an easy verification of closed-loop stability even in
the presence of unmodelled dynamics and dead time mismatch,
the latter of which is illustrated in the paper. This makes it an
appealing alternative to other methods found in literature.

I. INTRODUCTION

Integrators with (long) dead time are commonly found
in practical applications, either directly (e.g. if mass and/or
energy balances are involved) or—ever since the days of
Ziegler and Nichols—as approximations of more complex
models [1]. The control of such plants has been investigated
for more than 40 years (see e.g. [2]), but often enough
actuator constraints were either not considered or were
neglected in stability analysis. In [3], the region of attraction
was estimated for the so-called Filtered Smith Predictor by
means of the circle criterion, yet global asymptotic stability
has not been established for the integrator with long dead
time. The main ideas of that article were generalised in [4]
and global asymptotic stability was established for two (out
of three) exemplary tunings of the Filtered Smith Predictor
by means of linear matrix inequalities. In [5] and [6], the
circle criterion was used to assess closed-loop stability for
control of an integrator with long dead time, yet global
asymptotic stability has not been rigorously established.

The present paper is based on the so-called Conditioned
Smith-Åström Predictor—a widely recognised, yet under-
rated modification of the Smith Predictor—, which was
recently re-evaluated in [1]. It offers a straightforward design
procedure, considers actuator constraints, and can be tuned
to yield the same input-output behaviour as the Filtered
Smith Predictor in many cases [1]; additionally, it provides
an explicit disturbance estimate (independent of constraints),
which gains importance in modern industrial applications.
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This makes the Conditioned Smith-Åström Predictor an
interesting alternative to the Filtered Smith Predictor.

The main contribution of this paper is that it presents
the Smith-Åström Predictor in a rigorous manner (whereas
[1] is written from a practical and didactic point of view),
including—for the first time—stability analysis for the con-
strained case. Furthermore, global asymptotic stability for the
integrator with long dead time is established for a whole class
of controllers by means of the circle criterion; this approved
graphical tool makes it easy to also guarantee stability for
perturbed cases, which is illustrated for the case of a dead
time mismatch of ±20 %.

II. THE CONDITIONED SMITH-ÅSTRÖM
PREDICTOR

The Conditioned Smith-Åström Predictor [1] is an ex-
tension of the so-called Smith-Åström Predictor—originally
published in [7], [8]—to deal with actuator saturation. Its
structure for the case without saturation is shown in Fig. 1.
The plant model P (s) consists of a dead-time free part P ∗(s)
and a delay with (dead) time L, i.e.

P (s) = P ∗(s)e−sL . (1)

The Smith-Åström Predictor consists of two controllers:
K(s) and M(s), where the former determines the set-point
response transfer function

T (s) =
y(s)

r(s)
=

K(s)P ∗(s)

1 +K(s)P ∗(s)
e−sL (2)

and the latter determines the load response transfer function

Sd(s) =
y(s)

d(s)
=

P ∗(s)

1 +M(s)P (s)
e−sL (3)

(notice the decoupling of set-point and load response). The
controller M(s) is a modification of the famous Smith
Predictor, i.e.

M(s) =
R∗(s)

1 +R∗(s)P ∗(s) [F (s)− e−sL]
, (4)

where R∗(s) is a “nominal” controller (see Fig. 2) and the
filter F (s) constitutes the modification (the original Smith
Predictor is recovered for F (s) = 1). The design procedure
proposed in [1] is summarised in:

Proposition 1: Consider the control system shown in
Fig. 1 with

P ∗(s) =
b

s
, (5)

b 6= 0 being a real constant, L > 0 being the dead time, and
M(s) be chosen according to (4). Let
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Fig. 1. Structure of the Smith-Åström Predictor; P ∗(s) is the dead-time free part of P (s).

(i) K(s) be a biproper rational function chosen such that

T ∗(s) =
K(s)P ∗(s)

1 +K(s)P ∗(s)
(6)

corresponds to a desired (i.e. at least BIBO stable) set-point
response behaviour,

(ii) R̃(s) be a proper rational function chosen such that

S̃d(s) =
P ∗(s)

1 + R̃(s)P ∗(s)
(7)

is BIBO stable and has a zero at s = 0, and
(iii) F (s) be a biproper rational function chosen such that

H(s) = P ∗(s)[F (s)− e−sL] (8)

is BIBO stable (by cancellation of unstable plant poles) and
has a zero at s = 0. Furthermore, let F (s) and its inverse
1/F (s) be BIBO stable. If R∗(s) is chosen as

R∗(s) =
R̃(s)

F (s)
, (9)

then the closed-loop system is BIBO stable, the set-point
response is a time-shifted version of the desired response,
i.e.

T (s) = T ∗(s)e−sL , (10)

and constant input disturbances d are rejected; the poles of
Sd(s) are given by the poles of S̃d(s) and the zeros of F (s).

Additionally, if F (s) and R̃(s) share the same zeros, then
these zeros are no longer poles of Sd(s).

Proof: The set-point behaviour is trivial, compare (10)
with (2). As for the load response, insert (4) into (3) to find

Sd(s) = S̃d(s)[1 +R∗(s)H(s)]e−sL . (11)

Denote the numerator and denominator polynomial of the
following transfer functions with (arguments omitted for the
sake of space)

P ∗(s) =
µP

νP
, R̃(s) =

µR

νR
, F (s) =

µF

νF
. (12)

Now observe that

S̃d(s) =
µP νR

νRνP + µRµP
=
µP νR
νSd

, R∗(s) =
µRνF
νRµF

,

(13)

and with H(s) = h(s)/νH(s) (h(s) is not a polynomial)

1 +R∗(s)H(s) =
νRµF νH + µRνFh(s)

νRµF νH
. (14)

Since νH(s) = νF (s) (the pole of P ∗(s) being cancelled)
and µP (s) = b, the load response transfer function is

Sd(s) = b
νRµF + µRh(s)

νSd
µF

e−sL , (15)

which is BIBO stable (since νSd
and µF are Hurwitz) and its

dynamics are governed by the poles of S̃d(s) and the zeros
of F (s).

R∗(s)

e−sL

F (s)P ∗(s)

ym−y w

–

−d̂

–

M(s)

Fig. 2. A practicable implementation of the feedback controller M(s) for
integrating plants.

Remark 1 (Internal Stability): Under the assumption that
the controllers K(s) and R∗(s) are designed such that the
feedback loop is internally stable for L = 0 (dead-time
free case)—which is a sensible assumption in deed—, the
internal stability of the Smith-Åström Predictor depends on
the implementation of the transfer function H(s) given in
(8) [1], [9]. In a discrete-time implementation, H(z) is a
rational function and the unstable plant pole(s) can easily be
cancelled out; however, this is not true for the continuous-
time case. For integrating plants (one pole at zero, the
others “left”), a possible implementation of M(s)—and thus
H(s)—is given in Fig. 2. At steady state (r and d being
constant), the constant signal w is “blocked” by the zero
of F (s) − e−sL and thus, the input to the integrator of
P ∗(s) is zero. Note that swapping the position of P ∗(s) and
F (s) − e−sL would lead to a ramp function at the output
of P ∗(s) at steady state and hence to an internally unstable
feedback loop.

Remark 2 (Disturbance Estimate): The signal w is an ex-
plicit estimate of −d, since in the closed loop

w = − M(s)P (s)

1 +M(s)P (s)
d =

−1
F (s)

· R̃(s)P ∗(s)

1 + R̃(s)P ∗(s)
d , (16)

which can easily be verified by observing that

w =M(s)[P (s)v − P (s)(d+ u)] (17)

and u = v +w. Note that w does not depend on r but only
on d. Further note that the step response of 1/F (s) may not
be agreeable; thus, w may be filtered by means of F (s) to
obtain a more acceptable disturbance estimate d̂, see Fig. 2.
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The Conditioned Smith-Åström Predictor, shown in Fig. 3,
is obtained by applying the so-called conditioning technique
due to Hanus [10], [11]. The idea is to calculate a reference
that would—in the current time instance—lead to u being
equal to the constrained actuating signal u∗; this “realisable”
reference r∗ is then applied to the dynamic part of the
controller (thus the controller states are “kept consistent”
with the constrained actuating signal, so to speak).

With V (s) and Q(s) defined such that

u(s) = V (s)r(s)−Q(s)y(s) (18)

holds and assuming that V (s) has a direct transmission term,
i.e.

lim
s→∞

V (s) = v0 6= 0 , (19)

one gets

u∗(s) = v0r
∗(s) + [V (s)− v0]r(s)−Q(s)y(s) (20)

and thus (subtracting (20) from (18) and rearranging)

r∗(s) = r(s)− 1

v0
[u(s)− u∗(s)] . (21)

Applying r∗ to the dynamic part of the controller gives

u(s) = v0r(s) + [V (s)− v0]r∗(s)−Q(s)y(s)

= V (s)r(s)− V (s)− v0
v0

[u(s)− u∗(s)]−Q(s)y(s) .

(22)

In the unconstrained case (u∗ = u), the original control law
is recovered; in the constrained case (u∗ 6= u), there is no
feedback and u is given by

u(s) = v0r(s) +

[
1− v0

V (s)

]
u∗(s)− v0

Q(s)

V (s)
y(s) . (23)

Note that V (s), i.e. the path from r to u, is inverted.
Applying the conditioning technique to the Smith-Åström

Predictor, one gets the structure shown in Fig. 3, compare
[1], i.e. the Conditioned Smith-Åström Predictor; its main
properties are summarised in the following proposition.

Proposition 2: Consider the Conditioned Smith-Åström
Predictor, i.e. the control system shown in Fig. 3, and let
the assumptions of proposition 1 be satisfied. Then, the
Conditioned Smith-Åström Predictor is asymptotically stable
in the unconstrained case (u∗ = u). In the constrained case
(u∗ 6= u), bounded signals r, u∗, and y lead to a bounded
signal u, if the numerator polynomial of K(s) is Hurwitz.

Proof: The unconstrained case is trivial. For the con-
strained case, it has to be shown—according to (23)—that
1/V (s) and Q(s)/V (s) are BIBO stable, with

V (s) =
K(s)[1 +M(s)P (s)]

1 +K(s)P ∗(s)
, Q(s) =M(s) , (24)

and
v0 = k0 = lim

s→∞
K(s) , (25)

which is non-zero by assumption.

As for 1/V (s), observe that

1

V (s)
e−sL =

Sd(s)

T ∗(s)
. (26)

Thus, it is sufficient to show that the numerator polynomial
of T ∗(s) is Hurwitz and that 1/V (s) is biproper.

T ∗(s) =
b µK(s)

s νK(s) + b µK(s)
, (27)

where µK and νK denote the numerator and denominator
polynomial of K(s), respectively; µK(s) is Hurwitz by
assumption. With (13) one sees that 1/V (s) is biproper iff

S̃d(s)

T ∗(s)
=
s νK(s) + b µK(s)

b µK(s)
· b νR(s)

s νR(s) + b µR(s)
(28)

is biproper, which is the case since K(s) is biproper by
assumption.

As for Q(s)/V (s), observe that with (24), (4), and (12)

Q(s)

V (s)
=

1

T ∗(s)
· 1

F (s)
· R̃(s)P ∗(s)

1 + R̃(s)P ∗(s)

=
s νK(s) + b µK(s)

b µK(s)
· νF (s)
µF (s)

· b µR(s)

s νR(s) + b µR(s)
,

(29)

which is a proper transfer function; since µK(s), µF (s),
and sνR(s) + bµR(s) = νSd

(s) are Hurwitz by assumption,
Q(s)/V (s) is BIBO stable.

Remark 3 (Disturbance Estimate): The signal w still de-
pends on d alone, regardless of the actuator constraints, i.e.
(16) holds true even in the constrained case.

III. STABILITY IN THE PRESENCE OF ACTUATOR
CONSTRAINTS

Stability of the feedback loop given in Fig. 3, i.e. the
Conditioned Smith-Åström Predictor, was proven for the
unconstrained case only. For the constrained case, it was
shown that bounded signals r, u∗, and y lead to a bounded
signal u, which does not necessarily imply closed-loop
stability. To establish closed-loop stability in the constrained
case, the notion of absolute stability is used. To that end, the
feedback loop without inputs, i.e. r = d = 0, is considered.
The Conditioned Smith-Åström Predictor thus reduces to the
feedback loop shown in Fig. 4, with

L(s) = k0P
∗(s) +

k0
K(s)

− 1 , (30)

which follows from (23) with y = P (s)u∗. The static
nonlinearity ϕ(u) is the saturation function, i.e.

u∗ = ϕ(u) =

{
u |u| ≤ umax ,

umax · sign(u) |u| > umax ,
(31)

umax > 0. With these preliminary remarks it can be shown
that for P (s) being an integrator with long dead time, one
can design a Conditioned Smith-Åström Predictor that results
in a globally asymptotically stable feedback loop.
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K(s)−k0

k0

1/k0

P ∗(s) e−sL M(s) P (s)
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v

–

w
d

y

–

u u∗

–––

Fig. 3. Structure of the Conditioned Smith-Åström Predictor for P ∗(s) being strictly proper and K(s) being biproper, with k0 = lims→∞K(s).

ϕ(u) L(s)
u u∗

–

Fig. 4. Nonlinear feedback loop for r = 0, d = 0.

Theorem 1: Consider the Conditioned Smith-Åström Pre-
dictor, Fig. 3, and let the assumptions of proposition 1 be
satisfied. Let α1, α2 ∈ C be chosen such that

k1 = α1 + α2 > 0 and k2 = α1α2 > 0 , (32)

i.e. α1, α2 are either positive or complex-conjugate with
positive real part, and let

K(s) =
1

b
· k2
k1
, R̃(s) =

k1s+ k2
b s

, (33)

and

F (s) =
k1s+ k2

(k1 + k2L)s+ k2
. (34)

If |d(t)| < umax for all t, then the resulting feedback loop
is globally asymptotically stable both in the unconstrained
(u∗ = u) and in the constrained (u∗ 6= u) case.

Proof: First observe that the assumptions of proposi-
tion 1 are in deed satisfied: (i) K(s) is biproper and the
set-point response transfer function (2) is

T (s) =
k2

k1s+ k2
e−sL , (35)

which is BIBO stable according to (32); (ii) R̃(s) is proper
and gives

S̃d(s) = b
s

(s+ α1)(s+ α2)
, (36)

which is BIBO stable with a zero at s = 0; (iii) both F (s)
and 1/F (s) are BIBO stable and F (s)−e−sL has two zeros
at s = 0. Furthermore, F (s) and R̃(s) share the same zeros,
thus

R∗(s) =
(k1 + k2L)s+ k2

b s
(37)

and by proposition 1, Sd(s) is BIBO stable and has two poles
at s = −α1 and s = −α2. In fact, Sd(s) is [1]

Sd(s) =
b(1− e−sL)e−sL

s
+
b(s− α1α2L)e

−s2L

(s+ α1)(s+ α2)
. (38)

The unconstrained case is thus proven.

For the contrained case, the idea is to show absolute
stability by means of the circle cirterion for the (reduced)
feedback loop given in Fig. 4; with (30) and (33) one gets

L(s) =
k2
k1s

. (39)

Due to the pole at s = 0, one cannot immediately apply
the circle criterion, because ϕ(u) globally belongs to the
sector [0, 1] as does the “nonlinearity” ψ(u) = 0, the latter
of which does not lead to an asymptotically stable origin. To
circumvent this technical difficulty, assume that

|u(t)| ≤ umax

ε
, 0 < ε� 1 , (40)

holds true for all t; thus, it is sufficient to show absolute
stability for a nonlinearity in the sector [ε, 1]. Since L(s)
has no poles with positive real part and

Re{1 + L(jω)} = 1 > 0 , (41)

the nonlinear feedback loop in Fig. 4 is absolutely stable
[12, theorem 7.2, p. 270]. Although this should suffice for
any practical application, the so-called off-axis circle crite-
rion is now used to rigorously establish global asymptotic
stability; assumption (40) can thus be abandoned. The off-
axis circle criterion states that in order the establish global
asymptotic stability in the considered case (the nonlinearity
being monotonically increasing), it is sufficient to show that
the Nyquist plot of L(jω) lies entirely to the right of a
straight line passing through the point (−1 + ε, 0), with
ε > 0 [13, theorem 2, p. 414]. This is the case according
to (41) and thus, the Conditioned Smith-Åström Predictor
is globally asymptotically stable for r = d = 0 and
proposition 2 guarantees that it is globally asymptotically
stable for bounded signals r and d, where the latter satisfies
|d(t)| < umax for all t by assumption. Note that the bound
on d is necessary, for if umax < d = const., then d+u∗ > 0
and y approaches infinity.

Remark 4 (Using No Anti-Windup Measure): For the un-
conditioned Smith-Åström Predictor, L(s) in the nonlinear
feedback loop of Fig. 4 is

L(s) =M(s)P (s) =
R∗(s)P (s)

1 +R∗(s)P ∗(s) [F (s)− e−sL]
.

(42)
Here, global asymptotic stability for P (s), R̃(s), and F (s)
according to theorem 1 cannot be guaranteed by means of
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the circle criterion. Two exemplary Nyquist plots are shown1

in Fig. 5 and 6. In the first case, asymptotic stability can be
guaranteed if |u(t)| ≤ umax/0.26 holds true for all t and in
the second case if |u(t)| ≤ umax/0.3 holds true. Simulations
show that in the second case the feedback loop is unstable
for u(t=0) = −2 = −umax/0.05 with umax = 0.1.

Fig. 5. Nyquist plot (ω ≥ 0) of L(jω) for the conditioned and
unconditioned Smith-Åström Predictor; b = 1, L = 5, α1 = α2 = 0.25;
the circle passes through −1/0.26 and −1.

Fig. 6. Nyquist plot (ω ≥ 0) of L(jω) for the conditioned and
unconditioned Smith-Åström Predictor; b = 1, L = 5, α1 = α2 = 0.4;
the circle passes through −1/0.3 and −1.

IV. THE PERTURBED CASE

The proposed method can easily be used to investigate
the perturbed case. For the feedback loop considered in
theorem 1, let the actual plant be given by

P̂ (s) =
b

s
e−sL̂ . (43)

Then, the load response transfer function is

Ŝd(s) =
P̂ (s)

1 +M(s)P̂ (s)
. (44)

1Note that in both plots, the Nyquist criterion is satisfied for the
conditioned and unconditioned predictor; for the latter, this follows from
the fact that the feedback loop without saturation (linear case) is globally
asymptotically stable.

Hence, with (4) and with the particular choice for K(s),
R̃(s), and F (s)

Ŝd(s) =
b[s2 + k1s+ k2 − (k3s+ k2)e

−sL]e−sL̂

s[s2 + k1s+ k2 − (k3s+ k2)(e−sL − e−sL̂)]
,

(45)
where

k3 = k1 + k2L . (46)

Since the pole at s = 0 is cancelled by a zero, it has to be
shown that

s2 + k1s+ k2 − (k3s+ k2)(e
−sL − e−sL̂) = 0 (47)

has only roots with negative real parts in order for Ŝd(s) to
be BIBO stable; since s2+k1s+k2 is Hurwitz, it is sufficient
to show—similar to [14]—that

1 +W (s) = 1 +
−(k3s+ k2)(e

−sL − e−sL̂)

s2 + k1s+ k2
= 0 (48)

has only roots with negative real parts, which is the case if
the Nyquist criterion for W (s)—which has only poles with
negative real part—is satisfied. Two cases with an exemplary
dead time mismatch of ±20 %, i.e. L̂ = 0.8L and L̂ = 1.2L,
are considered; the corresponding Nyquist plots are shown
in Fig. 7 and 8, respectively; the Nyquist criterion is satisfied
in both cases, which concludes the unconstrained case.

Fig. 7. Nyquist plot (ω ≥ 0) of W (jω); b = 1, L = 5, L̂ = 4,
α1 = α2 = 0.25.

Fig. 8. Nyquist plot (ω ≥ 0) of W (jω); b = 1, L = 5, L̂ = 6,
α1 = α2 = 0.25.
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For the constrained case, the open-loop transfer function
L(s)—corresponding to Fig. 4—is

L(s) =

(
k0P

∗(s) +
k0
K(s)

)
1 +M(s)P̂ (s)

1 +M(s)P (s)
− 1 , (49)

compare (30), which is equivalent to

L(s) =
k2
k1s
− k1s+ k2

k1s

(k3s+ k2)(e
−sL − e−sL̂)

s2 + k1s+ k2
, (50)

compare (39). For the two perturbed cases shown before, i.e.
Fig. 7 and 8, the inequality

Re{1 + L(jω)} > 0 (51)

still holds true as shown by Fig. 9 and 10, respectively,
compare (41).

Fig. 9. Nyquist plot (ω ≥ 0) of L(jω), perturbed case; b = 1, L = 5,
L̂ = 4, α1 = α2 = 0.25.

Fig. 10. Nyquist plot (ω ≥ 0) of L(jω), perturbed case; b = 1, L = 5,
L̂ = 6, α1 = α2 = 0.25.

Thus, for L̂ = 0.8L = 4 and L̂ = 1.2L = 6, global
asymptotic stability could easily be established by means of
the tools shown in the previous section.

V. CONCLUSIONS AND FUTURE WORKS

When it comes to controlling an integrator (or integrating
plants) with long dead time, the Conditioned Smith-Åström
Predictor is an appealing alternative to other control schemes
found in literature (such as the so-called Filtered Smith
Predictor, for instance). Its prime feature is that closed-loop

stability can be guaranteed globally both in the unconstrained
and constrained case. By means of the circle criterion,
global asymptotic stability has be established quite easily
(in contrast to other methods given in literature) even in the
perturbed case. Another appealing feature is the availability
of an explicit disturbance estimate that is not affected by
actuator constraints.

The Conditioned Smith-Åström Predictor can easily be
applied in a discrete-time setting by using corresponding
transfer functions, replacing e−sL by z−`, and applying the
conditions and methods analogously; however, a rigorous
presentation is still considered future work. The same is true
for the extension to unstable plants—in the continuous-time
and/or discrete-time case—, which presents no conceptual
difficulties, however. In fact, the method in this paper is
presented with the general case in mind. Only the region of
attraction will not contain the whole state space, in general;
thus, the circle criterion needs to be complemented with a
method that can establish rigorous bounds on the region of
attraction.
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[7] K. J. Åström, C. C. Hang, and B. C. Lim, A New Smith Predictor for
Controlling a Process with an Integrator and Long Dead-Time, ser.
Tech. Rep. TFRT-7488. Dept. of Automatic Control, Lund Institute
of Technology, 1992.

[8] ——, “A New Smith Predictor for Controlling a Process with an In-
tegrator and Long Dead-Time,” IEEE Trans. Automat. Contr., vol. 39,
no. 2, pp. 343–345, 1994.

[9] J. E. Normey-Rico and E. F. Camacho, “Unified approach for robust
dead-time compensator design,” J Process Control, vol. 19, no. 1, pp.
38–47, 2009.

[10] R. Hanus, “A new technique for preventing control windup,” Journal
A, vol. 21, no. 1, pp. 15–20, 1980.

[11] R. Hanus, M. Kinnaert, and J.-L. Henrotte, “Conditioning Technique,
a General Anti-windup and Bumpless Transfer Method,” Automatica,
vol. 23, no. 6, pp. 729–739, 1987.

[12] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
[13] Y.-S. Cho and K. S. Narendra, “An Off-Axis Circle Criterion for the

Stability of Feedback Systems with a Monotonic Nonlinearity,” IEEE
Trans. Automat. Contr., vol. 13, no. 4, pp. 413–416, 1968.
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