
Distributionally robust stability of payoff allocations in stochastic coalitional
games

George Pantazis, Barbara Franci, Sergio Grammatico and Kostas Margellos

Abstract— We consider multi-agent coalitional games with
uncertainty in the coalitional values. We provide a novel
methodology to study the stability of the grand coalition in
the case where each coalition constructs ambiguity sets for the
(possibly) unknown probability distribution of the uncertainty.
As a less conservative solution concept compared to worst-case
approaches for coalitional stability, we consider a stochastic
version of the so-called core set, i.e., the expected value core.
Unfortunately, without exact knowledge of the probability
distribution, the evaluation of the expected value core is an
extremely challenging task. Hence, we propose the concept of
distributionaly robust (DR) core. Leveraging tools from DR
optimization under the Wasserstein distance, we provide finite-
sample guarantees that any allocation which lies in the DR core
is also stable with respect to the true probability distribution
and show the asymptotic consistency of the DR core. We
dedicate the last section to the computational tractability of
finding an allocation in the DR core.

I. INTRODUCTION

Coalitional games [1] are prevalent in applications ranging
from engineering [2]–[4] to economics and social sciences
[5]. Even though agents in such systems typically act as
selfish entities, they are incentivized to form coalitions
aiming at receiving higher individual gains or reducing their
own costs. A challenging task, due to the agents’ individual
interests, is to distribute their payoffs in such a way that none
of them has an incentive to deviate from the so-called grand
coalition, i.e., the coalition where all agents work together.
In the literature of coalitional game theory this problem is
known as stability of the grand coalition and the set of
payoffs for which stability is achieved is known as the core
of the game. Due to its conceptual simplicity, the core has
been widely used as a stability concept in coalitional games
[1] and in turn intense research has been dedicated to finding
allocations that lie within the core.

Stability of the grand coalition is fundamentally connected
to the values of each coalition. However, coalitional values
are typically subject to uncertainty. As such, the mathe-
matical framework of deterministic coalitional games needs
to be revisited and extended. The seminal works [6]–[8]
are the first on stochastic coalitional games. The work in
[9] also studies uncertain coalitional games and shows that
for a particular class, certain properties of the game, such
as the non-emptiness of the core continue to hold when
uncertainty is introduced. Uncertain coalitional games were
studied under the lenses of Bayesian learning in [10], [11],
while the work in [12] investigates which stability solution
concepts maximize the probabilistic stability of allocations.
In [2], the concept of the so called robust core is introduced
as a generalization to the traditional deterministic core. The

work in [13] extends the notion of the robust core to that
of the scenario core accounting for the more general case
where both the support set and the probability distribution of
the uncertainty affecting the coalitional value are unknown.
Guarantees on the stability of the grand coalition are then
provided by leveraging the results in [14], [15]. As an alter-
native to the robust core [2] and its data-driven counterpart
[13], in this paper we consider instead stability in the mean
sense that in turn gives rise to the so-called expected value
core. This consideration circumvents the fact that previously
proposed core variants can be empty, a fundamental technical
challenge in coalitional game theory. Apart from very mild
assumptions on the probability distribution of the uncertainty,
here we consider both the support set and the probability
distribution to be unknown. In other cases, the uncertain
parameter affecting the coalitional game might not even
admit a single distribution, but a range of possible distri-
butions, quantified through data-driven approaches. As such,
evaluating the expected core in this setting is challenging.

To address this, we follow an approach based on distribu-
tionally robust (DR) optimization [16]–[22] thus considering
ambiguity sets that represent empirical sets in which the true
probability distribution (in case the uncertainty admits one)
is likely to be contained. The consideration of ambiguity
sets leads to allocations that are distributionally stable. We
call the set of all distributionally stable allocations the
distributionally robust (DR) core of the game.

Leveraging results from data-driven DR optimization un-
der the Wasserstein distance [23], [24], we provide finite
sample guarantees on the probability that any allocation
in the DR core of the DR game approximation is also
in the expected value core of the original game with a
given confidence (Section III). Moreover, we prove almost-
sure asymptotic convergence of the Wasserstein DR core
to the expected core of the original game (Section IV.A).
Finally, we provide the means to calculate an allocation in the
Wasserstein DR core (Section IV.B). Specifically, we show
that under certain conditions, the problem of finding such an
allocation can be recast as a convex optimization problem,
whose complexity both in the number of decision variables
and constraints is inherently connected to the number of
possible subcoalitions. Numerical simulations corroborate
our theoretical findings (Section V).

II. STOCHASTIC COALITIONAL GAMES

A. Allocation mean stability and expected value core

We consider a coalitional game with N agents parameter-
ized by the index set N = {1, . . . ,N}. We denote the number
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of possible subcoalitions except for the grand coalition by M,
i.e., M = 2N − 1. In this setting, the agents, though selfish,
wish to form coalitions if that implies an increase in their
individual payoffs. The total gain for each coalition is given
by the so called value function, which, depending on the
coalition S ⊆ N , takes a real value representing the total
payoff that agents participating in it would obtain from its
formation. However, the values of each coalition are typically
subject to uncertainty.

Definition 1: The value function of a coalition S ⊂N is
a function uS : 2N × Ξ → R that, given the value of the
uncertainty realization ξ ∈ Ξ ⊆ Rp, returns the total payoff
for the agents forming a coalition S. The value function of
the grand coalition is deterministic, i.e., uN : 2N → R. □
An uncertain coalitional game is then defined as the tuple
GP = {N ,{uS}S⊆N ,Ξ,P}, where P denotes the probability
distribution that the uncertainty ξ ∈Ξ follows. To circumvent
the fundamental issue of the emptiness of the robust core as
defined in [2], let us consider the concept of stability of
allocations in the mean sense, defined as follows.

Definition 2: An allocation x = (xi)i∈N of the game GP =
{N ,{uS}S⊆N ,Ξ,P} is stable in the mean sense if i)
∑i∈N xi = uN and ii) ∑i∈S xi ≥ EP[uS(ξ )], ∀ S ⊂N . □
The first condition is called the efficiency condition. Due
to our assumption that the grand coalition is deterministic,
it means that the total increase in gains when all agents
work together is known with certainty. This is the case when
agents might know how efficient a fully-cooperative scheme
is but have some level of uncertainty/ambiguity with respect
to the potential outcomes of the subcoalitions. The second
condition implies that the allocation x is not strictly feasible,
hence agents do not have an incentive to form S. Otherwise, if
∑i∈S xi <EP[uS(ξ )] agents would have the incentive to leave
the grand coalition and form S, thus receiving EP[uS(ξ )]
as opposed to ∑i∈S xi. In this setting, we wish to study
the stability of the grand coalition, where no agent has an
incentive to deviate and create other subcoalitions. To this
end, let us introduce an extension to the classic notion of
the core, the so-called expected value core, which is the set
of all stable allocations in the mean sense as defined next.

Definition 3: The expected value core CE(GP) of the
game GP is defined as the set CE(GP) = {x ∈ RN :
∑

i∈N
xi = uN , ∑

i∈S
xi ≥ EP[uS(ξ )], ∀ S ⊂N }. □

We now impose the following mild technical assumptions.
Assumption 1: There exists a > 1 such that

A := EP[exp(∥ξ∥a)] =
∫

Ξ

exp(∥ξ∥a)P(dξ )< ∞.

Assumption 2: It holds that EP[∥ξ∥]< ∞.
Assumption 1 requires the tail of the true probability distribu-
tion P to decay at an exponential rate. Assumption 2 requires
that P admits a finite first-order moment. In such a general
set-up it is challenging, if not impossible, to compute the
expected value, i.e., one cannot evaluate the expected-valued
core CE(GP). To circumvent this challenge, we propose a
methodology based on DR optimization.

B. Distributionally robust stability of allocations
In our setting, agent coalitions S ⊂N can construct ambi-

guity sets of the probability distribution P of the uncertainty
ξ ∈Ξ that affect their coalitional values uS(ξ ). This is due to
lack of knowledge of P. In other words, we do not only have
uncertainty affecting the coalitional game, but uncertainty
about the distribution of the uncertain parameter.

We postulate that each coalition S ⊂ N is allowed to
construct their own ambiguity sets. The heterogeneity of the
coalitional ambiguity sets provides the necessary modelling
freedom for our theory to be flexible for application pur-
poses. To this end, we assume that each coalition S ⊂N has
access to their own i.i.d. samples ξKS = (ξ (1), . . . ,ξ (KS)) ∈
ΞKS and consider the DR version GP̂K

of the original game
GP defined as the tuple GP̂K

= {N ,{uS}S⊆N ,Ξ, P̂K}, where
K = {KS}S⊂N , while P̂K = {P̂KS}S⊂N is the collection of
ambiguity sets constructed based on the available data ξKS

of each subcoalition S ⊂N . We now proceed to defining the
notion of distributional stability of an allocation.

Definition 4: (DR stability) For a given number of i.i.d.
drawn samples ξKS =(ξ (1), . . . ,ξ (KS))∈ΞKS per coalition S⊂
N , an allocation x = (xi)i∈N is distributionally stable with
respect to the coalitional ambiguity sets P̂KS , S ⊂N if

1) ∑i∈N xi = uN and
2) ∑i∈S xi ≥ supQS∈P̂KS

EQ[uS(ξ )], ∀ S ⊂N . □

III. DISTRIBUTIONALLY ROBUST COALITIONAL GAMES
BASED ON THE WASSERSTEIN DISTANCE

A. Background on distributional robustness
In this section, we introduce some basic concepts from

DR optimization under the Wasserstein metric [17], [23],
[24]. We show how one can leverage this framework in
order to provide certificates of stability with respect to
the true unknown coalitional game along with a tractable
approximation of its expected value core. In our set-up, we
consider all distributions with bounded first-order moments,
i.e., Q ∈ M(Ξ), where M(Ξ) is the set of probability
distributions with support Ξ that satisfy Assumption 2. We
then need a measure of distance between two probability
distributions to quantify how close a candidate probability
distribution is to the true probability distribution P; Let us
thus use the Wasserstein distance defined as follows.

Definition 5: The Wasserstein distance dW : M(Ξ) ×
M(Ξ)→R≥0 between two distributions Q1,Q2 is given by

dW (Q1,Q2) = inf
Π

{∫
Ξ2
∥ξ1 −ξ2∥Π(dξ1,dξ2)

}
, (1)

where Π is a joint distribution of ξ1 and ξ2 with marginals
Q1 and Q2, respectively.

B. Finite-sample guarantees for the DR core
In the subsequent developments, we consider that each

S ⊂ N has their own independent samples from P. Any
given coalition S ⊂N constructs their respective ambiguity
set based on their collected data ξKS = (ξ (kS))

KS
kS=1 ∈ ΞKS . For

each coalition S ⊂N each ambiguity set is given by:

BεS(P̂KS) = {QS ∈M : dW (P̂KS ,QS)≤ εS}, (2)
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where P̂KS = ∑
KS
ks=1 δ (ξ − ξ (kS)) is the empirical probability

distribution of each coalition S on the basis of KS i.i.d
samples from the support set Ξ by coalition S with δ (ξ −
ξ (kS)) = 1

KS
if ξ = ξ (kS), kS = {1, . . . ,KS} and 0 otherwise.

The following result provides guarantees on the probability
that a multi-sample will be drawn from coalition S ⊂ N
such that true probability measure lies within the constructed
Wasserstein ball with a given confidence.

Lemma 1: Let Assumption 1 hold and for any coalition
S ⊂N fix εS > 0. We have that

PKS
{

ξKS ∈ Ξ
KS : dW (P, P̂KS)≤ εS

}
≥ 1−βS,

where

βS =

{
cexp(−qKSε

max{p,2}
S ), if εS ≤ 1

cexp(−qKSεa
S ), if εS > 1,

(3)

for all KS ≥ 1 and p ̸= 2, where c,q are positive constants
that only depend on the parameters a,A in Assumption 1 and
the dimension of the support set p.
Proof : The proof is an adaptation of Theorem 2 in [17]
applied to each ball P̂KS = BεS(P̂KS) and each S ⊂N . ■
Lemma 1 paves the way towards establishing finite sample
guarantees for the following Wasserstein DR core.

Definition 6: The DR core CDR(GP̂K
) of the game GP

based on the Wasserstein distance is defined as the set

CDR(GP̂K
) =

{
x ∈ RN : ∑

i∈N
xi = uN ,

∑
i∈S

xi ≥ sup
QS∈P̂KS

EQS [uS(ξS)], ∀ S ⊂N
}
,

where P̂KS = BεS(P̂KS). □
Throughout we assume that for all multi-samples, the

ambiguity sets are such that a non-empty DR core is returned.
Theorem 1: For each S ⊂ N fix a Wasserstein radius εS

and consider a multi-sample size KS. It holds that

PK
{

ξK ∈ Ξ
K : CE(GP)⊇CDR(GP̂K

)
}
≥ β , (4)

where β = ∏S⊂N (1−βS) and each βS is given by (3).
Proof : We have that

PK
{

ξK ∈ Ξ
K : CE(G{Ξ,P})⊇CDR(G{Ξ,P})

}
≥ PK

{
ξK ∈ Ξ

K : EP[uS(ξ )]≤ sup
QS∈P̂KS

EQS [uS(ξ )], ∀ S ⊂N
}

= PK
{ ⋂

S⊂N

{
ξK ∈ Ξ

K : EP[uS(ξ )]≤ sup
QS∈P̂KS

EQS [uS(ξ )]
}}

= ∏
S⊂N

PKS
{

ξKS ∈ Ξ
KS : EP[uS(ξ )]≤ sup

QS∈P̂KS

EQ[uS(ξ )]
}

(5)

The last equality is due to the fact that each coalition
constructs its ambiguity sets based on its own (independent)
samples. From Lemma 1 for each coalition S ⊂N we have
that

PKS
{

ξKS ∈ Ξ
KS : dW (P, P̂KS)} ≤ εS

}
≥ 1−βS.

Therefore,

∏
S⊂N

PKS
{

ξKS ∈ Ξ
KS : EP[uS(ξ )]≤ sup

QS∈P̂KS

EQS [uS(ξS)]
}

≥ ∏
S⊂N

PKS
{

ξKS ∈ Ξ
KS : dW (P, P̂KS)≤ εS

}
≥ ∏

S⊂N
(1−βS), (6)

where the first inequality follows from Theorem 3.5 in [23].
■

The following result provides guarantees when all coali-
tions use the same parameters.

Corollary 1: Consider Assumption 1. For each coalition
S ⊂N fix a common Wasserstein radius ε and assume that
the same multi-sample ξK is used among coalitions. Then, it
holds that

PK{ξK ∈ Ξ
K : CE(GP)⊇CDR(GP̂K

)} ≥ (1−β )M,

where β is given by (3) by setting εS = ε and KS = K. □
Proof : Fix εS = ε for all S ⊂ N and consider the same
number of samples K ∈ N drawn for all S ⊂ N . By (3),
βS = β for all S ⊂ N . Direct application of Lemma 1
concludes then the proof. ■

IV. ASYMPTOTIC CONSISTENCY AND COMPUTATIONAL
TRACTABILITY OF THE DR CORE

A. Asymptotic consistency of the DR core

In this subsection we show that under appropriate choice
of the radius of the Wasserstein ball εS and of the confi-
dence parameter βS for each coalition S ⊂N , the DR core
converges almost surely to the true expected value core. Let
us impose the following assumption:

Assumption 3: For each S ⊂ N , uS is LS-Lipschitz con-
tinuous in ξ with LS ≥ 0, i.e, ∥uS(ξ )−uS(ξ

′)∥ ≤ LS∥ξ −ξ ′∥
for all ξ ,ξ ′ ∈ Ξ. □
As opposed to the developments of the previous section,
where we fix the radius εS and the number of samples KS
for any S ⊂N and calculate βS based on (3), we now solve
(3) with respect to εS, thus obtaining the Wasserstein radius
as a function of the confidence parameter βS and the number
of samples KS. In particular, we have that

εS(βS,KS) =



(
ln( c

βS
)

qKS

) 1
max{p,2}

if KS ≥
ln( c

βS
)

q(
ln( c

βS
)

qKS

) 1
a

if KS <
ln( c

βS
)

q
.

The following theorem establishes almost-sure conver-
gence of the DR core to the expected value-core as the
number of samples increases.

Theorem 2: Let Assumptions 1 and 3 hold. Suppose that
for each S ⊂N , β

KS
S ∈ (0,1),KS ∈ N satisfies

∞

∑
KS=1

β
KS
S < ∞

and lim
KS→∞

εS(βS,KS) = 0. Any sequence of the Wasserstein-

based DR cores {CDR(GP̂K
)}K∈NM , where K = (KS)S⊂N ,
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converges P∞-almost surely to the true expected core CE(GP)
as KS → ∞ for all S ⊂N . □
Proof : For each coalition S ⊂N we have that

PKS{ξKS ∈ Ξ
KS : EP[uS(ξ )]≤ sup

QS∈P̂KS

EQS [uS(ξ )]}

≥ PKS{ξKS ∈ Ξ
KS : dW (P, P̂KS)≤ εS(β

KS
S ,KS)} ≥ 1−β

KS
S ,

where the last inequality is due to Lemma 1. Letting KS → ∞

and since lim
KS→∞

β
KS
S = 0 we have that

EP[uS(ξ )]≤ lim
KS→∞

sup
QS∈P̂KS

EQS [uS(ξ )] (7)

P∞-almost surely. Following a methodology similar in spirit
to [23], for each coalition S ⊂N and for every KS ∈ N by
the definition of supremum for any δS > 0 there exists Q̂KS

such that

sup
QS∈P̂KS

EQS [uS(ξ )]≤ EQ̂KS
[uS(ξ )]+δS

By the Kantorovich-Rubinstein theorem [25] and Assump-
tion 3, we have that

EQ̂KS
[uS(ξ )]≤ EP[uS(ξ )]+LSdW (Q̂KS ,P).

It then holds that

lim
KS→∞

sup
QS∈P̂KS

EQS [uS(ξ )]≤ lim
KS→∞

EQ̂KS
[uS(ξ )]+δS

≤ lim
KS→∞

{
EP[uS(ξ )]+LSdW (Q̂KS ,P)

}
+δS = EP[uS(ξ )]+δS

P∞-almost surely, since by adapting [23, Lemma 3.7] in our
setting, we have that for each S ⊂N

lim
KS→∞

dW (P,Q̂KS) = 0, P∞-almost surely.

Letting δS ↓ 0 we have that

lim
KS→∞

sup
QS∈P̂KS

EQS [uS(ξ )]≤ EP[uS(ξ )]. (8)

From relations (7) and (8) we have that for any S ⊂N

lim
KS→∞

sup
QS∈P̂KS

EQS [uS(ξ )] = EP[uS(ξ )], P∞-almost surely.

As such, by Definitions 3 and 6, any sequence of DR cores
{CDR(GP̂K

)}K∈NM , for which S ⊂ N , β
KS
S ∈ (0,1),KS ∈ N

satisfies
∞

∑
KS=1

β
KS
S < ∞ and lim

KS→∞
εS(βS) = 0 for all S ⊂ N

with K = (KS)S⊂N , converges P∞-almost surely to the true
expected core CE(GP) as KS → ∞ for all S ⊂N . ■

B. Finding allocations inside the DR core

Leveraging results from [23], we show that an allocation
inside the DR core can be computed by solving a finite-
dimensional convex optimization problem. Here we impose
the following assumption.

Assumption 4: 1) For any S ⊂ N the value function
us(ξ ) can be written as uS(ξ ) = max

mS=1,...,MS
umS(ξ ),

where −umS(ξ ) is proper, convex and lower semi-
continuous for all mS ∈ {1, . . . ,MS} and any S ⊂N .

2) For any S ⊂N uS does not take the value −∞ on Ξ.
3) The support set Ξ is closed and convex. □

Under these assumptions we have the following result:
Lemma 2: Let Assumption 4 hold. By drawing KS

samples and considering the dual variables λS, zS =
((zkSmS)

KS
kS=1)

Ms
mS=1, vS = ((vkSmS)

KS
kS=1)

Ms
mS=1 and ℓS = (ℓkS)

KS
kS=1

that correspond to the Wasserstein ball constraint of each
coalition S ⊂N , an allocation inside the DR core is found
by solving the optimization problem

P :



min
x,{λS,ℓS,zS,vS}S⊂N

||x||22

s.t. ∑
i∈N

xi = uN

λSεS +
1

KS

KS

∑
kS=1

ℓkS ≤ ∑
i∈S

xi, ∀ S ⊂N

[−umS ]
∗(zkSmS − vkSmS)+σΞ(vkSmS)− z⊤kS

ξ
(kS) ≤ ℓkS ,

∀kS,∀mS, ∀ S ⊂N
∥zkSmS∥∗ ≤ λS ∀kS,∀mS, ∀ S ⊂N

where [ f ]∗ denotes the conjugate function of a function f ,
i.e., [ f ]∗(y) = supx∈dom( f )(y

⊤x− f (x)). and ∥ · ∥∗ is the dual
norm, while σX denotes the conjugate of the characteristic
function. □

Proof : We wish to solve the following feasibility problem min
x∈RN

||x||22

s.t x ∈CDR(GP̂K
),

which, by Definition 6 and considering the data-driven
Wasserstein ball as the ambiguity set of each coalition, is
equivalent to

min
x∈RN

||x||22

s.t. ∑
i∈N

xi = uN ,

∑
i∈S

xi ≥ sup
QS∈P̂KS

EQS [uS(ξ )], ∀ S ⊂N .

Under Assumption 4 the problem above can be rewritten
as the following finite-dimensional convex program, using
Theorem 4.2 in [23],

min
x: ∑

i∈N
xi=uN

||x||22

s.t. min
qS∈ΛS

λSεS +
1

KS

KS

∑
kS=1

ℓkS ≤ ∑
i∈S

xi, ∀ S ⊂N ,

where qS = (λS, ℓS,zS,vS)
⊤ and ΛS = {qS : [−umS ]

∗(zkSmS −
vkSmS)+σΞ(vkSmS)− z⊤kS

ξ (kS) ≤ ℓkS ,∥zkSmS∥∗ ≤ λS ∀kS,∀mS}.
Next, since the min operator is on the left-hand side of the
inequality constraint, we can include the constraint qS ∈ ΛS
into the main optimization problem, thus recovering the
desired formulation for P. ■

Note that the additional decision variables of P correspond
to Wasserstein distance constraints in the primal problems P′

S
for each S ⊂N [23, Theorem 4.2].
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V. NUMERICAL EXAMPLE

We consider a stochastic coalitional game with N = 3
agents and coalitional values u1 = 2 + ξ , u2 = 1.5 + ξ ,
u3 = 2.5 + ξ and u12 = 6 + ξ ,u23 = 6.5 + ξ ,u13 = 7 + ξ ,
where ξ is an uncertain parameter following a Gaussian
distribution with mean value µ = 1 and variance σ2 = 1,
truncated at the interval Ξ = [0,1]. We assume that each
coalition has a certain level of ambiguity with respect to the
distribution of the uncertain parameter. Though our results
hold under the consideration of different Wasserstein balls
and multi-sample sizes per coalition S ⊂ N , we assume
here the same radius and the same multi-sample size for
illustration purposes (see Corollary 1). Initially, we consider
for each coalition a Wasserstein ball of radius ε = 0.3.

Figure 1 focuses on coalition S = {1} and shows the
range of normalized DR values for the expectation of uS(ξ ),
denoted by supQS∈P̂KS

EQS [uS(ξ )] over 500 simulations per
multi-sample size KS. We note that a similar behaviour
is exhibited in all other coalitions, with the graphs being
centered at different values. As the observed pattern is similar
across coalitions, it is not shown to avoid repetition.

Fig. 1. DR coalitional values (red shaded area) vs expected coalitional
value (blue solid line) for KS ∈ {5,10,30,50,100,200,500} and ε = 0.3.

Fig. 2. DR coalitional values vs expected coalitional value for KS ∈
{5,10,30,50,100,200,500} and ε = 0.03. Decrease in ε affects the con-
fidence that the DR core is contained within the expected value core.

For the same number of samples per coalition varying in
[5,500], we observe that as the number of samples increases,

Fig. 3. DR coalitional values vs expected coalitional value with increasing
radius ε for KS = 100.

Fig. 4. DR coalitional values vs expected coalitional value with increasing
radius ε for KS = 250.

all the DR coalitional values, illustrated by the red shaded
area in Figure 1, are above the corresponding expected
value (blue solid line). Since the same pattern is observed
across all coalitions, this implies (see Equation (6) in the
proof of Theorem 1) that the DR core is contained within
the expected value core as KS increases for each S ⊂ N .
This observation is in line with Theorem 1, since for an
increasing multi-sample size per coalition, the confidence β

in the provided theoretical guarantees tends to 1. Figure 2
shows that following the same approach as Figure 1 for a
significantly smaller Wasserstein radius ε = 0.03 leads to
a smaller empirical confidence that is improved the more
samples we obtain. At KS = 500, however, only a small
portion of DR values is below the expected value, which
implies stability of DR stable allocations in the mean sense
with high confidence.

Figure 3 illustrates the DR coalitional values for the
empirical expectation of uS(ξ ) (red shaded areas), over 500
simulations, compared to the corresponding expected value
(blue solid line) as the Wasserstein radius ε increases (for a
fixed number of samples KS = 100). We note again that for
a radius ε larger than a certain threshold, all DR coalitional
values are above their corresponding expected value and
therefore, since this holds for all coalitions when the same
number of samples is used, the DR core lies within the
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expected value core. This behaviour is expected because for
a fixed number of samples the larger the Wasserstein ball the
more likely it is to include the true probability distribution.
As such, obtaining allocations stable in the mean sense can
also be achieved, even for a small number of samples, by
tuning the Wasserstein radius of each coalition accordingly.
We note that the comparison of Figures 1 and 2 is consistent
with Figure 3. Note that the higher ε or KS are, the lower
βS and as a result the higher the confidence.

Compared to Figure 3, in Figure 4 for each simulation a
larger number KS = 250 of samples is generated. Drawing
conclusions for the general case is not straightforward,
however, when samples are drawn from distributions that
admit a density and with certain concentration properties we
conjecture that the more samples are used, the more likely
it is that the resulting empirical distributions P̂KS are closer
to each other across simulations (i.e., for different multi-
samples). As such the centres of the Wasserstein balls would
be closer, which in turn implies that the DR value for the
expectation of uS(ξ ) would be closer to each other as well.
In other words, the higher the number of samples the smaller
the variability of the resulting DR value for the expectation
of uS(ξ ) across simulations. In line with this intuition, the
width of the shaded area in Figure 4 (an empirical estimate
of variability) is smaller compared to that of Figure 3.

VI. CONCLUSION

We have introduced the concept of distributionally robust
core for coalitional games subject to distributional uncer-
tainty, namely a set of payoff allocations that is robust
in the expected value sense. We showed both theoretically
and numerically that the concept of distributionally robust
stability implies stability in the mean sense as more data
becomes available given a certain radius. This paper takes a
first step towards studying the class of distributionally robust
chance-constrained coalitional games. Future work will focus
on improving the probabilistic guarantees and on designing
distributed payoff allocation algorithms.
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