
Computationally Efficient Reinforcement Learning:
Targeted Exploration leveraging Simple Rules

Loris Di Natale, Bratislav Svetozarevic, Philipp Heer, and Colin N. Jones

Abstract— Model-free Reinforcement Learning (RL) gener-
ally suffers from poor sample complexity, mostly due to the
need to exhaustively explore the state-action space to find well-
performing policies. On the other hand, we postulate that
expert knowledge of the system often allows us to design simple
rules we expect good policies to follow at all times. In this
work, we hence propose a simple yet effective modification of
continuous actor-critic frameworks to incorporate such rules
and avoid regions of the state-action space that are known to be
suboptimal, thereby significantly accelerating the convergence
of RL agents. Concretely, we saturate the actions chosen by the
agent if they do not comply with our intuition and, critically,
modify the gradient update step of the policy to ensure the
learning process is not affected by the saturation step. On
a room temperature control case study, it allows agents to
converge to well-performing policies up to 6 − 7× faster than
classical agents without computational overhead and while
retaining good final performance.

I. INTRODUCTION

Despite its success in many applications [1], [2], model-
free Reinforcement Learning (RL), and in particular deep RL
(DRL), usually suffer from data inefficiency, i.e., they require
a significant number of interactions with the environment to
converge [3], [4]. This stems from the necessity to explore
the state-action space to find optimal policies and leads to
significant computational costs. It also limits the deployment
of DRL methods on physical systems without pretraining in
simulation: learning a building temperature control policy
from scratch can for example take years of data [5], [6].

To speed up the training of DRL agents, researchers have
for example investigated how to leverage expert demon-
strations [7], [8], but this requires access to an expert
policy which is not always available in practice. Instead,
we postulate that prior knowledge of physical systems often
allows us to design simple rules that agents should follow a
priori, such as “Do not heat the room if it is already 26 ◦C”;
we indeed know this action will always be suboptimal in that
state, there is no need for agents to explore its consequences.

In this paper, we hence propose modifications of actor-
critic algorithms to encode simple rules in RL agents, in-
troducing state-dependent constraints on the agents’ actions
to restrict exploration to interesting regions of the state-
action space. In other words, the key idea is to avoid visiting

This research was supported by the Swiss National Science Foundation
under NCCR Automation, grant agreement 51NF40 180545, and in part by
the Swiss Data Science Center, grant agreement C20-13.

L. Di Natale, B. Svetozarevic, and P. Heer are with the Urban Energy
Systems Lab, Empa, Dübendorf, Switzerland. {loris.dinatale,
bratislav.svetozarevic, philipp.heer}@empa.ch.

L. Di Natale and C. N. Jones are with the Laboratoire d’Automatique,
EPFL, Lausanne, Switzerland. colin.jones@epfl.ch.

state-action pairs that are known to be suboptimal by the
expert to accelerate the convergence towards meaningful
solutions and thus increase the efficiency of (D)RL. Note that
while state-dependent bounds were concurrently introduced
in [9], they are enforced a posteriori in the environment
instead of directly modifying the agent’s behavior and do not
necessarily improve convergence. In another line of work,
prior knowledge successfully accelerated learning in [10],
but relying on fuzzy rather than direct rule integration.

A. Constraining RL agents

To bound the decisions taken by RL agents, one typically
defines some constrained set of actions and either project the
actions of the agents on this set at each time step or switch to
a fallback controller when needed [11], [12], [13], [14]. The
main challenge with these operations is that they are usually
not differentiable and hence cannot be learned by RL agents,
with the notable exceptions of [15], [16], [17], who leveraged
differentiable optimization layers [15], modified the policy
updates to account for projections [16], or derived a closed-
form solution of the projection step [17]. However, these
methods either entail additional computational burden [15],
[16] or rely on a learned linearization of the constraints [17].
Alternatively, one could also apply tools from the safe RL
literature [18], [19], [20], typically relying on constrained
policy optimization [21], [22]. However, this would again
introduce both engineering and computational overhead.

The complexity of the methods discussed above often
stems from the fact that they are designed to impose state
constraints on DRL agents, which is a more challenging
problem in general since it leads to complex action bounds
for the agent at each step. Here, however, we argue that
prior knowledge can straightforwardly be used to accelerate
the training of DRL agents through simple state-dependent
box constraints on their actions, which allows us to leverage
less computationally expensive tools.

To alleviate the issue of non-differentiability without in-
creasing either the engineering or the computational burden,
Reward Shaping (RS) heuristics might be used in various
forms to penalize agents when constraints are violated, let
them know when a fallback controller was used or they were
saturated, or introduce prior knowledge about the task to
solve [14], [23], [24]. While such methods might accelerate
the learning process to some extent, they are however in-
direct, i.e., they only influence the learned policies through
the reward function that the agent will learn to optimize over
time. Moreover, shaping the reward function simultaneously
impacts the learning process of both the actor and the critic.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 2334

B. Contribution
In this work, we propose to clip DRL agents’ actions

according to simple expert-designed state-dependent bounds
and then modify the gradient update step of the actor to
let agents learn from their mistakes and accelerate their
convergence to expected actions. To explain the effectiveness
of the gradient modification, we provide an intuitive analyt-
ical analysis of its impact on the learning of DRL agents.
Importantly, contrary to RS, our modifications only affect
the actor, allowing the critic to learn the true Q-values.

Remarkably, our method bypasses the need for complex
projection steps and does not require access to a fallback
controller or an expert policy. Moreover and critically, the
proposed modifications do not impact the computational
complexity of the algorithm, are straightforward to design
and implement, and can be coupled with any actor-critic
algorithms. Note that, in contrast with [10], where the
expert knowledge is potentially overridden by the policy, our
method enforces the wanted behaviors on agents at all times.

The effectiveness of the proposed Efficient Agents (EAs)
is demonstrated in simulation on a room temperature control
case study, where they converge up to 6 – 7 times faster
than classical ones and 2 – 3 times faster than RS-based
agents while retaining good final performance. This hints at
how the proposed modifications can provide a simple yet
effective and computationally inexpensive mean to leverage
expert knowledge to accelerate DRL algorithms.

II. PRELIMINARIES

A. Reinforcement Learning
At each time step t, given an observation st of the state

of the environment, an RL agent chooses an action at.
The environment then transitions to st+1 according to the
transition probabilities P (st, at) and sends the new state and
the reward signal r(st, at) to the agent. The objective of any
deterministic RL algorithm1 is to find a policy π(st) that
maximizes the expected discounted cumulative returns:

J(π) = Eat∼π(st),st+1∼P (st,at)

[∞∑
t=0

γtr(st, at)

]
, (1)

where γ is the discount factor trading off near- and long-
term rewards, and the initial state s0 ∼ ρ is sampled from
the corresponding initial distribution. With a slight abuse of
notation on the expectation for clarity, we can define the
Q-function of any state-action pair (s, a):

Qπ(s, a) = Eπ

[∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
, (2)

which captures the expected returns when action a is chosen
in state s and the policy π is followed thereafter.

In our simulations, we let agents explore the environment
with the ϵ-greedy exploration strategy, which means we apply
the following action to the environment:

a(s) = clip(π(s) + ϵ, alow, aup), ϵ ∼ N (0, σ), (3)

1While the presented analyses deal with deterministic actor-critic agents
for clarity, the results can easily be extended to the stochastic case.

where the noisy actions are clipped elementwise between
alow and aup, the predefined action bounds from the environ-
ment, and ϵ is the Gaussian exploration noise with a standard
deviation of σ. All the transition tuples (s, a, r, s′) observed
by the agent are stored in a replay buffer.

B. Actor-critic algorithms

In practice, policies and Q-functions are often
parametrized with Neural Networks (NNs) as πθ and
Qϕ, respectively, leading to DRL, and numerous algorithms
have been developed to maximize (1) [25]. In this work,
we are interested in deterministic actor-critic methods
stemming from [26], where both the actor πθ (also referred
to as the policy) and the critic Qϕ are optimized in parallel
leveraging gradient descent. While different flavors exist,
most algorithms compute the gradient of the critic using the
Temporal Difference (TD) loss [26]:

∇̂ϕQϕ = ∇ϕ

 1

|B|
∑

b=(s,a,r,s′)∈B

(Qϕ(s, a)− y(b))
2

 , (4)

with y(b) = (r + γmaxa′ Qϕ(s
′, a′)) and where a batch B

of past transitions is sampled from the replay buffer and
used to estimate expectations. Leveraging the policy gradient
theorem [27], one can similarly use the critic to estimate the
actor gradient as:

∇̂θπθ = −∇θ

[
1

|B|
∑
s∈B

Qϕ(s, πθ(s))

]
. (5)

Note that these gradients are easily computed using au-
tomatic differentiation when the actor and the critic are
parametrized with NNs.

In this paper, we rely on the Twin Delayed Deep Determin-
istic (TD3) policy gradient algorithm, which introduces a few
modifications to limit the well-known overestimation bias
of Q-functions plaguing vanilla actor-critic algorithms [28].
Remarkably, however, these adjustments do not impact the
actor gradient in (5), allowing us to seamlessly integrate the
proposed modifications detailed in Section III.

III. METHODS

A. State-dependent action saturation

In many cases, prior knowledge allows us to design state-
dependent upper and lower bounds amax(s) and amin(s), re-
spectively, on the actions we expect well-performing control
policies to take in a given state s, with:

alow ≤ amin(s) ≤ amax(s) ≤ aup. (6)

To limit the exploration of known suboptimal state-action
pairs, we can then modify (3) accordingly to:

a(s) = clip(πθ(s) + ϵ, amin(s), amax(s)). (7)

Note that these bounds stemming from prior knowledge are
also enforced at test time when ϵ = 0 to ensure an agent
would never turn left if whenever there is a wall in that
direction, for example, neither during the training nor the
deployment phase.

2335

B. Actor gradient modification

The major problem with the clipping operation in (7) is
its non-differentiability. Worse yet, its subdifferentials go to
zero whenever agents are saturated (see (9) in Section III-C),
making any backward flow of information on the overriding
process impossible. As a countermeasure, to let agents learn
from their mistakes, we also modify the actor gradient (5)
to:

∇̂EA
θ πθ = −∇θ

(
1

|B|
∑

(s,a)∈B

[
Qϕ(s, πθ(s))

− λ

2
(πθ(s)− a(s))

2

])
, (8)

where λ is a hyperparameter. The last term in (8) penalizes
actions chosen by the policy πθ(s) if they deviate from the
constrained action a(s) that was applied to the environment,
thus steering the agent’s decisions towards expected actions.2

Alternatively, we note here that one could instead modify
the reward function to include this penalty (RS) and then
maximize (1). Remarkably, however, the latter also impacts
the learning process of the critic in (4) when applied to actor-
critic frameworks, contrary to our method. We will show
empirical benefits of the proposed modification (8) over RS-
based penalties in terms of convergence speed in Section V.

C. Implications of the modified gradients

Let C(s) =
{
a ∈ R : amin(s) ≤ a ≤ amax(s)

}
for any

given state s.3 Grouping all the parameters θ in a vector
and recalling the definition of the action a(s) applied to the
environment in state s from (7), we can define its subgradient
∇θa(s) as:

a(s) =

amin(s), if π(s) < amin(s),

πθ(s) + ϵ, if πθ(s) ∈ C(s),

amax(s), if π(s) > amax(s).

=⇒ ∇θa(s) =

{
∇θπθ(s), if πθ(s) ∈ C(s),

0, else,
(9)

where ∇θπθ(s) is the actor gradient. We can then rewrite
the gradient of EAs (8) as:

∇̂EA
θ πθ = − 1

|B|
∑

(s,a)∈B

[
∇θQϕ(s, πθ(s))

−∇θ

(
λ

2
(πθ(s)− a(s))

2

)]
= − 1

|B|
∑

(s,a)∈B

[
∇θQϕ(s, πθ(s))

−
(
λ (∇θπθ(s)−∇θa(s))

⊤
(eθ(s))

)]
,

2In another line of work, this penalty was also used in [15] to improve the
robustness of differentiable layer-based RL for state-constrained problems.

3Without loss of generality, we assume that a ∈ R in this section for
clarity. This assumption can easily be lifted for multi-dimensional problems.

where we introduce the error term eθ(s) = πθ(s)−a(s). We
hence get the following modified actor gradient, where we
omit (s, a) ∈ B for clarity:

∇̂EA
θ πθ =

− 1

|B|
∑

B

[
∇θQϕ(s, πθ(s))

]
, if πθ(s) ∈ C(s),

− 1
|B|
∑

B

[
∇θQϕ(s, πθ(s))

−λ∇θπθ(s)
⊤eθ(s)

]
, else.

Remarkably, the additional penalty term in (8) hence allows
us to solve the issue of the subdifferentials of the clipping
operator being zero when actions are saturated, modifying
the gradients only when the constraints are not met. Indeed,
as long as the action chosen by the agent respects the
constraints provided by the expert, the classical gradient (5)
is used. On the other hand, as soon as the constraints are
not met, the gradient is modified in the direction eθ(s) to
accelerate the convergence of πθ(s) to C(s) despite the
subdifferential of the clipped action being zero, confirming
the graphical intuition from [15, Fig. 2]. This allows EAs to
learn from their mistakes and — we hypothesize — helps
them rapidly converge to meaningful policies.

IV. ROOM TEMPERATURE CONTROL CASE STUDY

To assess the effectiveness of the proposed method, we
apply it to a temperature control case study, where the objec-
tive is to minimize the energy consumption of a room while
maintaining the comfort of the occupants, represented by
predefined temperature bounds that should not be exceeded.

A. Reinforcement Learning framework

The continuous action space of the agents corresponds to
how much heating or cooling power, should be applied at
each time step, normalized between alow = −1 and aup = 1.
During the heating season, alow corresponds to the heating
being turned off and aup to full heating, and the contrary
in the cooling case. Physically Consistent Neural Networks
(PCNNs) [29] are used to simulate one bedroom in the NEST
building [30] and st gathers time, weather, temperature, and
comfort bound information (see [6] for details). The reward
function is defined as the negative weighted sum of energy
consumption Et and comfort violations, i.e. how far from
the designed bounds the temperature inside the room is:

r(st, at) = −max {Lt − Tt, Tt − Ut, 0} − αEt, (10)

Et =

{
at+1
2 Emax

heat, in the heating season,
1−at

2 Emax
cool, in the cooling season.

where Lt and Ut represent the lower and upper comfort
bounds on the temperature Tt at time t, respectively, α is a
weighting factor, and Emax

heat and Emax
cool stand for the maximal

heating and cooling power, respectively.

B. Design of the saturation rules

In the context of room temperature control, we intuitively
know that an optimal policy should gradually stop heating
when the temperature reaches the upper comfort bound and
gradually start heating as soon as the lower bound is not met

2336

n
m m

n

Allowed

1
Lt Ut

-1

Tt

a t

Fig. 1: Representation of the action bounds used in this work.

(and vice versa for cooling). To encode these simple rules,
we design state-dependent action bounds as follows:

amin(st) = clip
(
(Lt −m)− Tt

n−m
, 0, 1

)2

∗ 2− 1 (11)

amax(st) = 1− 2 ∗ clip
(
Tt − (Ut +m)

n−m
, 0, 1

)2

, (12)

with n ≥ m ≥ 0 representing design parameters to leave
more or less freedom to the agents. In words, we start con-
straining the action of the agents as soon as the temperature
deviates from the bounds for more than m degrees and then
quadratically increase the constraint until n degrees have
been reached, where the agent is forced to use the maximum
or minimum power, as pictured in Fig. 1.

V. RESULTS

To investigate the influence of m and n, which measure
how much prior knowledge is transmitted to DRL agents, we
train different EAs (EA m / n). For comparison purposes,
we also train agents with the classical actor gradient (5),
introducing the additional squared penalty λ

2 (πθ(s)− a(s))
2

in the reward function instead as another computationally
inexpensive means to incorporate prior knowledge in agents
(RS m / n). Finally, we also analyze two classical DRL
agents with different random seeds (Classical 1 and 2).4

A. Final performance

All the agents were trained on up to three-day-long
episodes randomly sampled from three years of data. They
were evaluated after each 96 steps of 15min, i.e. one day’s
worth of data, hereafter also referred to as an epoch, on a
testing set of 50 unseen sequences of three days. They all
use the same hyperparameters as in [6]. We manually set
λ = 100 for EAs to ensure the constraints are enforced as
fast as possible and λ = 10 for RSs since larger penalties
led to instability. While we empirically observed more robust
performance of EAs with respect to λ compared to RSs, a
complete sensitivity analysis is left for future work.

The best reward obtained by all the trained agents over
the first 500 epochs can be found in Table I, and the
corresponding trade-off between energy consumption and
comfort violations is plotted in Fig. 2. These results illustrate
how tighter parameters m and n, i.e., higher levels of prior
knowledge, allow EAs and RSs to converge to better solu-
tions in this limited training regime. In particular, it allows
EAs to reduce the amount of comfort violations without

4The code and data are available on https://gitlab.
nccr-automation.ch/loris.dinatale/efficient-drl.

TABLE I: Best reward obtained by each agent on the test set over
the first 500 epochs.

Agent Rew. Agent Rew. Agent Rew.
Classical 1 -2.64 Classical 2 -2.75
RS 0 / 1 -2.58 EA 0 / 1 -2.85 EA 0.5 / 1 -2.83
RS 0 / 0.5 -2.44 EA 0 / 0.5 -2.58 EA 0.25 / 0.5 -2.74
RS 0 / 0.25 -2.37 EA 0 / 0.25 -2.51 EA 0.2 / 0.25 -2.62
RS 0 / 0.1 -3.69 EA 0 / 0.1 -2.46 EA 0.075 / 0.1 -2.46

6 7 8
En. [kWh]

10

12

14

16

Vi
o.

 [K
h]

Baseline 1
Baseline 2
Best Agent
Optimum
Classical 1
Classical 2
RS 0 / 1

EA 0 / 1
RS 0 / 0.5
EA 0 / 0.5
RS 0 / 0.25
EA 0 / 0.25
EA 0 / 0.1

Fig. 2: Average energy consumption (En.) and comfort violations
(Vio.) over the test set corresponding to each agent in Table I.
The performance of two industrial baselines, of an agent trained
for 125,000 epochs (Best Agent), and the optimal performance
achievable (Optimum), all computed as in [6], are reported in gray.

significantly increasing the energy consumption. Classical
DRL agents on the other hand usually use less energy at
the cost of additional comfort violations in this early phase
of learning before converging to near-optimal solutions after
longer training times [6].

B. Visualization of the impact of prior knowledge

To intuitively understand the effect of action saturation,
we visualize its impact on some EAs in Fig. 3, where
the behavior of all agents is plotted before training on
the left, and after on the right, for the same three days
during the heating season. Focusing on the left plot, we
see the untrained classical DRL agent in black letting the
temperature diverge to an uncomfortably high range (out
of the bounds of the plot) as it starts exploring the state
space using roughly constant heating power. On the other
hand, all the EAs are forced to stop heating once they
are n degrees out of bounds. Consequently, even before
training, such agents will not overheat the room and keep it
at acceptable temperatures for the occupants, corresponding
to what we expect from good controllers. However, note that
EAs can present control input oscillations due to the impact
of external disturbances, mainly the solar gains around noon,
triggering the saturation mechanism on and off.

On the right plot, after training, one can observe that all
EAs generally take comparable decisions — still being some-
times saturated, which ensures compliance with prior expert
knowledge — leading to similar temperature patterns. On the
other hand, the classical agent presents a slightly different
behavior, with smoother decision patterns. Interestingly, this
agent is the only one heating in the early afternoon, while
the EAs wait until the end of the afternoon to heat the room
with high power and meet the comfort bound tightening at
8pm. This allows the classical agent to use less energy than
EAs over these three days but can incur additional comfort
violations (Table II), as expected from Fig. 2.

2337

22

24

26

Te
m

pe
ra

tu
re

[∘ C
]

22

24

26

Te
m

pe
ra

tu
re

[∘ C
]

12:00 0:00
12:00 0:00

12:00 0:00
Time

0.0

0.2
Po

we
r

[k
W

]

Classical DRL EA 0 / 1

12:00 0:00
12:00 0:00

12:00 0:00
Time

0.0

0.2

0.4

Po
we

r
[k

W
]

EA 0 / 0.5 EA 0 / 0.25

Fig. 3: Behavior of a classical agent and EAs with various m and n parameters (ours) minimizing the heating power consumption (bottom)
while maintaining the temperature in the grey dotted bounds (top). Left: Performance before training, where EAs are saturated once they
exceed the bounds by n degrees. Right: Performance after training, showing how all agents converged to similar solutions (Table II).

TABLE II: Reward, sum of comfort violations (Vio.), and energy
consumption (En.) of each agent over the three days depicted on
the right of Fig. 3.

Agent Classical 1 EA (ours)
m / n - 0 / 1 0 / 0.5 0 / 0.25
Reward -0.68 -0.69 -0.89 -0.60
Vio. [Kh] 1.28 1.18 2.23 0.65
En. [kWh] 5.03 5.38 5.54 5.46

C. Data efficiency of the proposed gradient modification

A comparison of the convergence speed of various agents
over the first 300 epochs is plotted in Fig. 4, where the
vertical lines and annotations illustrate the number of days
required to attain performance on par with rule-based on-off
industrial baselines from [6]. In general, we observe that all
the EAs attain returns on par with the baselines significantly
earlier than classical DRL agents, in as little as 29 days
instead of roughly 200, an improvement of almost an order of
magnitude. In particular, the smaller n is chosen (from left to
right in Fig. 4), the faster the convergence of the EAs in green
and blue. Intuitively, this makes sense, as tighter constraints
introduce more prior knowledge to the EAs, thereby allowing
them to find interesting solutions faster, without losing time
exploring suboptimal state-action pairs. On the other hand,
the influence of m is less marked, with m ̸= 0 (blue) and
m = 0 (green) leading to very similar convergence patterns
in the bottom row of plots in Fig. 4.

Remarkably, RS does not seem to drastically speed the
training up in this case study (red). While RS 0 / 0.25
does converge twice as fast as the classical DRL agents,
RS 0 / 0.1 does not converge at all, hinting at the fragility
of RS in general. Even when they converge, RSs are still
two to three times slower than their EA counterparts. On the
other hand, RS seems to lead to more consistent performance
than classical agents and EAs after a few hundred epochs,
which is confirmed by their good final performance in Fig. 2.

Overall, these results support our claim that, as long as the
rules provided to the agents are well-defined and correspond
to expected behaviors, the proposed modifications can indeed
greatly accelerate the convergence of DRL agents. Critically,
this does not significantly impact the quality of the final so-
lution (Sec. V-A). Interestingly, incorporating more specific

expert knowledge in EAs — through smaller m and n —
further accelerates their convergence. This corresponds to our
intuition: better-defined rules help agents more. Remarkably,
the modifications proposed in Sec. III provide the desired
speedup for a wide variety of parameters m and n, contrary
to RS, hinting at the robustness of the proposed scheme.

VI. CONCLUSION

Starting from the postulate that prior expert knowledge
often gives us an intuition of how good control policies
should behave, we presented a scheme to encode it in actor-
critic frameworks through simple rules to accelerate learning
and decrease the associated computational load. These rules
take the form of bounds on the agent’s actions that can
directly be enforced during training and online operations. To
ensure agents learn from their mistakes, we also modified the
actor gradients to steer control policies towards expected be-
haviors, limiting the exploration of known suboptimal state-
action pairs. Critically, both these operations are computa-
tionally inexpensive, ensuring the gains in sample complexity
positively impact the training time of the agents.

On a room temperature control case study, this scheme al-
lowed us to accelerate the convergence speed of DRL agents
by up to 6 – 7×. Furthermore, modifying actor gradients
proved to be 2 – 3 times more effective and more robust
than the widespread reward shaping method. Remarkably,
this was done without suffering from a significant drop in
the final performance of the control policies, illustrating how
prior knowledge can help alleviate the computational burden
of DRL. This represents an interesting first step towards
efficient agents that can be deployed and learned from scratch
on physical systems, potentially bypassing the need for
complex simulators. In future work, it would be interesting
to investigate annealing strategies on λ or leverage primal-
dual optimization tools to adaptively tune the influence of the
additional penalty in the actor gradient and let agents learn
more expressive policies after the initial exploration phase.

REFERENCES

[1] A. Coronato, M. Naeem, G. De Pietro, and G. Paragliola, “Rein-
forcement learning for intelligent healthcare applications: A survey,”
Artificial Intelligence in Medicine, vol. 109, p. 101964, 2020.

2338

−7.5

−5.0

−2.5

Re
wa

rd

200109

RS 0 / 1
EA 0 / 1

17553

RS 0 / 0.5
EA 0 / 0.5

10731

RS 0 / 0.25
EA 0 / 0.25

20429

RS 0 / 0.1
EA 0 / 0.1

0 200
Days

−7.5

−5.0

−2.5

Re
wa

rd

116109

EA 0.5 / 1
EA 0 / 1

0 200
Days

9053

EA 0.25 / 0.5
EA 0 / 0.5

0 200
Days

4131

EA 0.2 / 0.25
EA 0 / 0.25

0 200
Days

29 17429

EA 0.075 / 0.1
EA 0 / 0.1

Fig. 4: Convergence speed of various EAs with different m and n parameters (ours), compared to agents using RS and two classical
agents in black (one in the top plots, one in the bottom ones). The vertical lines and annotations specify the number of days of data
required to obtain a reward of −2.95 for each agent, which corresponds to the performance of two industrial rule-based baselines.

[2] Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for
power system applications: An overview,” CSEE Journal of Power
and Energy Systems, vol. 6, no. 1, pp. 213–225, 2019.

[3] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel, “RL2: Fast reinforcement learning via slow reinforcement
learning,” arXiv preprint arXiv:1611.02779, 2016.

[4] M. Schwarzer, N. Rajkumar, M. Noukhovitch, A. Anand, L. Charlin,
R. D. Hjelm, P. Bachman, and A. C. Courville, “Pretraining represen-
tations for data-efficient reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[5] Z. Wang and T. Hong, “Reinforcement learning for building controls:
The opportunities and challenges,” Applied Energy, vol. 269, p.
115036, 2020.

[6] L. Di Natale, B. Svetozarevic, P. Heer, and C. N. Jones, “Near-
optimal Deep Reinforcement Learning Policies from Data for Zone
Temperature Control,” arXiv preprint arXiv:2203.05434, 2022.

[7] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in 2018 IEEE international conference on robotics and automa-
tion (ICRA). IEEE, 2018, pp. 6292–6299.

[8] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep q-learning
from demonstrations,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, 2018.

[9] B. De Cooman, J. Suykens, and A. Ortseifen, “Enforcing Hard
State-Dependent Action Bounds on Deep Reinforcement Learning
Policies,” in Machine Learning, Optimization, and Data Science: 8th
International Workshop, LOD 2022, Certosa di Pontignano, Italy,
September 19–22, 2022, Revised Selected Papers, Part II. Springer,
2023, pp. 193–218.

[10] P. Zhang, J. Hao, W. Wang, H. Tang, Y. Ma, Y. Duan, and Y. Zheng,
“KoGuN: accelerating deep reinforcement learning via integrating hu-
man suboptimal knowledge,” arXiv preprint arXiv:2002.07418, 2020.

[11] R. Wang, X. Zhang, X. Zhou, Y. Wen, and R. Tan, “Toward Physics-
Guided Safe Deep Reinforcement Learning for Green Data Center
Cooling Control,” in 2022 ACM/IEEE 13th International Conference
on Cyber-Physical Systems (ICCPS). IEEE, 2022, pp. 159–169.

[12] H. Mao, M. Schwarzkopf, H. He, and M. Alizadeh, “Towards safe on-
line reinforcement learning in computer systems,” in 33rd conference
on neural information processing systems (NeurIPS 2019), 2019.

[13] R. Bautista-Montesano, R. Galluzzi, K. Ruan, Y. Fu, and X. Di,
“Autonomous navigation at unsignalized intersections: A coupled
reinforcement learning and model predictive control approach,” Trans-
portation Research Part C: Emerging Technologies, vol. 139, p.
103662, 2022.

[14] H. H. Goh, Y. Huang, C. S. Lim, D. Zhang, H. Liu, W. Dai, T. A.
Kurniawan, and S. Rahman, “An Assessment of Multi-Stage Reward
Function Design for Deep Reinforcement Learning-Based Microgrid
Energy Management,” IEEE Transactions on Smart Grid, 2022.

[15] B. Chen, P. L. Donti, K. Baker, J. Z. Kolter, and M. Bergés, “Enforc-

ing policy feasibility constraints through differentiable projection for
energy optimization,” in Proceedings of the Twelfth ACM International
Conference on Future Energy Systems, 2021, pp. 199–210.

[16] S. Gros, M. Zanon, and A. Bemporad, “Safe reinforcement learning
via projection on a safe set: How to achieve optimality?” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 8076–8081, 2020.

[17] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and
Y. Tassa, “Safe exploration in continuous action spaces,” arXiv
preprint arXiv:1801.08757, 2018.

[18] P. Osinenko, D. Dobriborsci, and W. Aumer, “Reinforcement learning
with guarantees: a review,” IFAC-PapersOnLine, vol. 55, no. 15, pp.
123–128, 2022.

[19] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, Y. Yang,
and A. Knoll, “A Review of Safe Reinforcement Learning: Methods,
Theory and Applications,” arXiv preprint arXiv:2205.10330, 2022.

[20] J. Garcıa and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” Journal of Machine Learning Research, vol. 16,
no. 1, pp. 1437–1480, 2015.

[21] T. D. Simão, N. Jansen, and M. T. Spaan, “AlwaysSafe: Reinforcement
learning without safety constraint violations during training,” in Pro-
ceedings of the 20th International Conference on Autonomous Agents
and MultiAgent Systems. International Foundation for Autonomous
Agents and Multiagent Systems, 2021.

[22] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy op-
timization,” in International conference on machine learning. PMLR,
2017, pp. 22–31.

[23] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[24] Y. Hu, W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, and
C. Fan, “Learning to utilize shaping rewards: A new approach of
reward shaping,” Advances in Neural Information Processing Systems,
vol. 33, pp. 15 931–15 941, 2020.

[25] OpenAI, “Part 2: Kinds of RL Algorithms,” 2018, accessed:
25.11.2022. [Online]. Available: https://spinningup.openai.com/en/
latest/spinningup/rl intro2.html#a-taxonomy-of-rl-algorithms

[26] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[27] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in International
conference on machine learning. PMLR, 2014, pp. 387–395.

[28] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International Conference on
Machine Learning. PMLR, 2018, pp. 1587–1596.

[29] L. Di Natale, B. Svetozarevic, P. Heer, and C. N. Jones, “Physically
consistent neural networks for building thermal modeling: theory and
analysis,” Applied Energy, vol. 325, p. 119806, 2022.

[30] Empa, “NEST,” 2022, accessed: 25.11.2022. [Online]. Available:
https://www.empa.ch/web/nest/overview

2339

