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Abstract— Optimization-based controllers, such as Model
Predictive Control (MPC), have attracted significant research
interest due to their intuitive concept, constraint handling
capabilities, and natural application to multi-input multi-output
systems. However, the computational complexity of solving
a receding horizon problem at each time step remains a
challenge for the deployment of MPC. This is particularly the
case for systems constrained by many inequalities. Recently,
we introduced the concept of constraint-adaptive MPC (ca-
MPC) to address this challenge for linear systems with hard
constraints. In ca-MPC, at each time step, a subset of the
constraints is removed from the optimization problem, thereby
accelerating the optimization procedure, while resulting in
identical closed-loop behavior. The present paper extends this
framework to soft-constrained MPC by detecting and removing
constraints based on sub-optimal predicted input sequences,
which is rather easy for soft-constrained MPC due to the
receding horizon principle and the inclusion of slack variables.
We will translate these new ideas explicitly to an offset-free
output tracking problem. The effectiveness of these ideas is
demonstrated on a two-dimensional thermal transport model,
showing a three order of magnitude improvement in online
computational time of the MPC scheme.

I. INTRODUCTION

Model predictive control (MPC) is a highly successful
control technology in many industrial domains. Its strengths
are, amongst others, the natural ability of constraint handling
and straightforward application to multi-input multi-output
systems. To implement this control technology, generally,
MPC requires the solution of a finite horizon optimal control
problem to be computed online. Despite MPC’s success, for
complex systems, the computational complexity of solving
an optimization problem online can be a bottleneck for its
real-time implementation. For this reason, there is a per-
sistent pursuit to accelerate solving the online optimization
problem. Approaches to accelerate MPC include, amongst
others, advances in tailored solvers [1], [2], conditioning of
the optimization problem [3], model reduction [4], (approx-
imations of) explicit MPC [5]–[8], and constraint removal
techniques [9]–[14].

In this paper, we are particularly interested in online
constraint removal techniques. These techniques remove, at
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each time step, a subset of the constraints to simplify the
optimization problem (and thus speed up computations).
Typically, online constraint removal techniques can remove
more constraints from the optimization problem compared
to offline methods [15], [16], as online methods can exploit
specific “local” properties of the optimization problem, for
instance, regions of activity [9], contraction properties of the
cost function [10], [11], the refinement of coarse solutions
[12], reachable sets [13], [14], and the availability of a
feasible input sequence [14].

In our previous works [13], [14], we proposed a constraint-
adaptive MPC (ca-MPC) framework that can be used to
detect and remove constraints from the optimization problem,
without changing the minimizer and thus with identical
closed-loop behavior. Our framework exploits, amongst other
information, feasible input sequences. Obtaining such se-
quences is natural in an MPC setting through, for example,
extending the optimal solution from the previous time step
based on the available terminal ingredients. Extending the
previous optimal solution is often used to guarantee stability
and recursive feasibility of the MPC feedback law. How-
ever, some MPC setups lack the formal terminal ingredi-
ents and use soft-constraints to guarantee feasibility of the
optimization problem. For soft-constrained MPC setups the
existing constraint removal strategies are not highly effective.
Hereto, in this work, we utilize the ideas from [14] and
propose a new computationally efficient constraint removal
for soft-constrained MPC based on feasible input sequences.
Crucially, for soft-constrained MPC, it will be trivial to
generate feasible input sequences. We will demonstrate the
method using an offset-free output tracking example, as this
settings turns out to be particularly well-suited for our soft-
constrained ca-MPC extension.

The remainder of this paper is structured as follows. We
will start with the preliminaries in Section II. Second, in
Section III, we will present the soft-constrained ca-MPC
scheme, after which we apply it to an offset-free output
tracking MPC setup. Fourth, in Section V, we demonstrate
our method using a two-dimensional thermal regulation
example containing 2030 inequality constraints. Finally, we
state the conclusions in Section VI.

II. PRELIMINARIES

In this section, we will introduce the system to be con-
trolled, the MPC setup, and results for ellipsoidal sets.
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A. System description

In this paper, we consider systems described by the linear
time-invariant (LTI) discrete-time model

xk+1 = Axk +Buk, (1a)
yk = Cxk +Duk. (1b)

Here, xk ∈ Rnx , uk ∈ Rnu , and yk ∈ Rny , denote the state,
input, and output, respectively at time k ∈ N. Moreover,
A, B, C, D denote matrices of appropriate dimensions.

B. MPC setup

We will consider a MPC feedback law for an LTI model
subject to linear inequality constraints and a quadratic cost
function. By eliminating the dynamics, we obtain the follow-
ing generic condensed MPC setup that is compatible with
many typical MPC formulations with soft constraints [3],
[17]:

minimize
v, ε

1

2
v>Hv + v>Fzk + ρ>ε, (2a)

subject to Wv ≤ c+Lzk + ε, (2b)
0nc
≤ ε. (2c)

Here, v ∈ Rnv , zk ∈ Rnz , and ε ∈ Rnc denote the
sequence of predicted control inputs, the initial state and
possibly reference information at time k, and slack variables,
respectively. The matrices H ∈ Rnv×nv

�0 and F ∈ Rnv×nz

define the quadratic part of the cost function and ρ ∈ Rnc
>0

defines the penalty corresponding to a constraint violation.
The matrices W ∈ Rnc×nv , Lnc×nz and vector c ∈ Rnc

parameterize the soft-constrained inequality constraints and
0nc

is the zero vector of length nc (when we omit the
subscript, we assume that the dimensions are clear from
context). Note that there always exists a ε ≥ 0 sufficiently
large such that a feasible solution to (2) exists.

Remark 1: In this paper, we consider an MPC setup
where all constraints are soft constraints. Extensions to MPC
setups where a subset of the constraints are soft constraints
is straightforward. In such cases, it is needed to generate
input sequences that are feasible with respect to the hard
constraints. An easy scenario, where this is the case, is when
all hard constraints are input constraints.

C. Reduced MPC setup

As we aim to remove, at each time step, a subset of the
constraints from the MPC problem (2), we introduce the
reduced MPC setup given by

minimize
v, εA

1

2
v>Hv + v>Fzk + ρ>A εA, (3a)

subject to WAv ≤ cA +LAzk + εA, (3b)
0nr
≤ εA. (3c)

Here, we use the notation WA ∈ Rnr×nv to denote the
matrix that consists of the rows in W that have a row index
in A ⊆ N[1,nc] = {1, 2, · · · , nc}. This is similar for cA, WA,
LA, εA. Note that εA implies that the number of decision
variables is decreased as well.

As mentioned previously, we will adapt the constraints
at each time step and, in particular, we will base this on
the initial state zk and a feasible input sequence ṽk, which
is assumed to be available at time k. More formally, given
ṽk ∈ Rnv , we aim to compute A(zk, ṽk) ⊆ N[1,nc] such that
the minimizers of (2) and (3) are identical.

D. Ellipsoidal set

The ca-MPC method uses ellipsoidal bounds defined as

E(P , q) := {x ∈ Rn | ‖P (x− q)‖2 ≤ 1} ⊂ Rnv . (4)

Here, P ∈ Rnv×nv is an invertible (possibly indefinite)
matrix that controls the shape and size of the ellipsoid, and
q ∈ Rnv is a vector that represents the center of the ellipsoid.

E. Ellipsoidal set and half-space intersection

In the proposed algorithm below, we will determine which
constraint index is included in A by evaluating if an ellipsoid
E(P , q) is entirely contained in the half-space defined by
an inequality constraint {w | wv ≤ c}. To this end, we
introduce the ellipsoid half-space intersection check,

‖wP−1‖2 ≤ |c−wq|. (5)

If (5) holds, then E(P , q) ∩ {w | wv ≤ c} = E(P , q),
assuming E(P , q) ∩ {w | wv ≤ c} 6= ∅. This assumption is
satisfied when ṽk does not violate any constraint [14].

III. SOFT-CONSTRAINED CA-MPC

In this section, we will present the soft-constrained ca-
MPC scheme. To this end, we will start by briefly summa-
rizing one of the key insights from [14], where a feasible
input sequence is used to bound the minimizer of a hard-
constrained MPC problem. A minimizer of a convex opti-
mization problem satisfies first-order optimality conditions,
i.e, the negative gradient of the cost function is an element
of the normal cone of the constraint set [18]. Hence, outer
approximations of the normal cone, based on a feasible
input sequence, can be used to compute an ellipsoidal bound
on the constrained minimizer. We will, similar to this key
idea in [14], use first-order optimality conditions to detect
and remove constraints. In addition, we will exploit a key
feature of soft constraints, i.e., it is trivial to generate feasible
solutions for (2).

Remark 2: The presented approach can be extended to
include the reachability analysis from [14] as well. We did
not do this here, as we specifically focus on first-order
optimality as this proved to be effective and requires minimal
effort from the user to implement.

The first step in our ca-MPC algorithm is to compute a
feasible solution (ṽk, ε̃k) to (2). To construct this solution,
we start with ṽk ∈ Rnv as our predicted input sequence at
time k. Then, we ensure feasibility by computing ε̃k as

ε̃k := max(0,Wṽk − c−Lzk). (6)

Trivially, ε̃k = 0nc
when ṽk satisfies Wṽk ≤ c+Lzk.

Based on the pair (ṽk, ε̃k), we seek an ellipsoidal bound
on the minimizer v?k ∈ E(P , q). This bound is then used to
remove constraints from the optimization problem using the
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result from Section II-E. Bounding only v?k instead of both
v?k and ε? is the key insight that enables the soft-constrained
ca-MPC scheme.

To obtain the ellipsoid bounding v?k, we compute the first-
order optimality conditions for the soft-constrained MPC
problem (2), which yields

−
[
Hv?k + Fzk

ρ

]
∈ N (v?k, ε

?
k), (7a)

where the normal cone N (v?k, ε
?
k) ⊆ Rnv+nc is given by

N (v?k, ε
?
k) = {p ∈ Rnv+nc | p>

([
v
ε

]
−
[
v?k
ε?k

])
≤ 0,

for all v, ε subject to (2b), (2c)}. (7b)

Instead of evaluating (7b) at all pairs (v, ε) subject to (2b),
(2c), we outer approximate the normal cone by evaluating
(7b) at (ṽk, ε̃k). By evaluating (7b) for a single pair, we
obtain the following necessary condition for the minimizer:

−
[
Hv?k + Fzk

ρ

]>([
ṽk
ε̃k

]
−
[
v?

ε?k

])
≤ 0. (8)

After expanding and collecting the terms, we obtain

(Hv?k + Fzk)>(v?k − ṽk) ≤ ρ>(ε̃k − ε?k). (9)

The inequality (9) denotes an ellipse in v?k that scales with
ρ>ε?k. To obtain an ellipsoidal bound on v?k, that does not
depend on ε?k, we use the observation that 0 ≤ ρ>ε?k, see
(2c). This observation enables the upper bound ρ>(ε̃k −
ε?k) ≤ ρ>ε̃k, which leads to the bound on v?k,

(Hv?k + Fzk)>(v?k − ṽk) ≤ ρ>ε̃k. (10)

Which is equivalent to v?k ∈ E(P , q), with

P =
1√
σ
G, q =

1

2
(ṽk −H−1Fzk), H = G>G, (11a)

σ = ρ>ε̃k +
1

4
‖G(ṽk +H−1Fzk)‖22. (11b)

Based on (11), we observe that v?k is bounded by an ellipse
centered at the mean between −H−1Fzk and ṽk, and
inflated based on the degree of infeasibility and distance
between ṽk and −H−1Fzk.

Remark 3: The expression for σ provides a guideline on
how we should choose ṽk, as, typically, we want σ to be
small. Hence, on one hand we want to be close to the uncon-
strained minimizer to reduce ‖G(ṽk +H−1Fzk)‖22, while
on the other hand we would like to reduce the infeasibility
of our prediction to make ρ>ε̃k small. Therefore, there is a
balancing act between reducing infeasibility and remaining
close to the unconstrained minimizer. Of course, when the
unconstrained minimizer is feasible, we have trivially solved
the optimization problem.

Based on the ellipsoidal bound, we use the inequality from
Section II-E to define the set-valued mapping A(zk, ṽk),

A(zk, ṽk) = {j ∈ N[1,nc] |
√
σ‖WjG

−1‖2 > (12)
|cj +Ljzk −Wjq|}.

Here, we use Wj to denote the j-th row from W (the same
holds for cj and Lj). An interesting observation is that (12)
does not explicitly specify that the constraints violated by

ṽk are included in A. As it turns out, depending on the
design of ρ, e.g., ρ sufficiently large [17], these constraints
are automatically included by (12). However, when ρ is
not sufficiently large, we may encounter the situation where
all elements of E(P , q) violate a particular constraint. This
violates the assumption that the intersection between the
ellipsoid and half-space for a particular inequality constraint
is non-empty, see Section II-E. To alleviate this problem
and avoid complex design rules on ρ, we modify (12) by
including all constraints that are violated by ṽk,

A(zk, ṽk) ={j ∈ N[1,nc] |
√
σ‖WjG

−1‖2 > (13)
|cj +Ljzk −Wjq| or ε̃j,k > 0},

where ε̃j,k denotes the j-th element of ε̃k.

Observe that a significant fraction of (13) can be either
pre-computed, e.g., ‖WjG

−1‖2, or is already required to
set up the MPC problem, e.g., Fzk and cj +Ljzk, so, these
do not lead to additional computational costs. The number
of operations specific to the ca-MPC framework is 2nc(nv +
1) + 3n2

v + nv + 1, which, crucially, scales linear in nc.

Last, we provide an overview of the method in Algo-
rithm 1. Note that the only ca-MPC specific offline setup is
pre-computing ‖WjG

−1‖2 in lines 2-5. In line 7, we mea-
sure zk, which is, for example, a stacked vector containing
the current state, previous input, and information regarding a
reference trajectory. In lines 8-11, we choose ṽk based on the
shifted previous optimal minimizer v?[nu+1:Nnu],k−1, where
the subscript [nu + 1 : Nnu], k − 1 denotes that we select
the (nu + 1)-th up to Nnu-th elements at time k− 1. When
the minimizer at time k − 1 is not available, e.g., at time
k = 0, we use the unconstrained minimizer −H−1Fzk.
Recall that the method allows all ṽk ∈ Rnv , but certain
choices show better constraint removal properties, see also
Remark 3 above. In line 20, we extract the rows from the
constraint matrices and vectors based on A; this is required
to build the reduced MPC problem. In lines 21-23, we solve
the quadratic program, compute the optimal input based on
the minimizer, and apply the input to the plant. Note that
vk does not necessarily contain the input, e.g., when we
optimize over delta’s of the input relative to uk−1.

IV. OFFSET-FREE OUTPUT TRACKING MPC

The soft-constrained ca-MPC scheme described in the
previous section applies to all MPC setups that can be
captured in the formulation (2), which includes a large class
of control problems for linear plant models. In this section,
we will focus on an offset-free output tracking problem as
it is both an industry-relevant MPC setup and particularly
well-suited to our soft-constrained ca-MPC scheme.

The offset-free output tracking MPC setup is given by the
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optimization problem [19]

minimize
N∑
i=1

‖Cxi|k − yref
k+i‖2Q + ‖∆ui−1|k‖2R, (14a)

+ ρ>x εx,i + ρ>u εu,i−1 + ρ>∆ε∆,i−1,

subject to xi+1|k = Axi|k +Bui|k, i ∈ N[0,N−1], (14b)
ui|k = ui−1|k + ∆ui|k, i ∈ N[0,N−1], (14c)
x0|k = xk, u−1|k = uk−1, (14d)
Mxxi|k ≤ gx + εx,i, i ∈ N[1,N ], (14e)
Muui|k ≤ gu + εu,i, i ∈ N[0,N−1], (14f)
M∆∆ui|k ≤ g∆ + ε∆,i, i ∈ N[0,N−1], (14g)
0 ≤ εx,i, i ∈ N[1,N ], (14h)
0 ≤ εu,i, 0 ≤ ε∆,i, i ∈ N[0,N−1]. (14i)

Here, we use ‖∆u‖2R to denote ∆u>R∆u and the i|k
subscripts denotes the i-th prediction step made at time
k. In (14), matrices Q ∈ Rny×ny and R ∈ Rnu×nu

denote a positive semi-definite and a positive definite matrix,
respectively. The vector yref

k ∈ Rny denotes the reference and
the matrix M and vector g define the inequality constraints
for, respectively, the state, input, and delta input, depending
on the subscript. We optimize (14) with respect to xi|k,
ui−1|k, ∆ui−1|k, εx,i, εu,i−1, and ε∆,i−1 for i ∈ N[1,N ].

To transform (14) into (2), we define

zk =[x>k u
>
k−1 y

ref>
k+1 · · · yref>

k+N ]>, (15a)

vk =[∆u>0|k · · · ∆u>N−1|k]>, (15b)

ε =[ε>x,1 ε
>
u,0 ε

>
∆,0 · · · ε>x,N ε>u,N−1 ε

>
∆,N−1]>, (15c)

after which transformations that condense the MPC problem
can be applied to obtain H , G, F , W , c, L, and ρ.

Based on the MPC formulation (14), we can analyze
why (14) is well-suited to the soft-constrained ca-MPC
scheme. First of all, the delta-input enables a particularly
good and easy-to-compute input sequence, namely, ṽk =
[∆u?>

1|k−1 · · · ∆u?>
N−1|k−1 0>nu

]>. Indeed, we can simply
extend the previous optimal solution with a zero input,
which is the steady-state solution for a constant reference.
Moreover, recall that the size of the ellipsoid bounding the
minimizers is determined, in part, by ρ>ε̃k. The particular
choice of ṽk is expected to result in small constraint viola-
tions, i.e., we expect ρ>ε̃k to be small.

The second reason why (14) is particularly well suited to
the soft-constrained ca-MPC scheme, is that the objective
is to track the reference well. In other words, we can
expect to be “close” to the reference in some sense. To
see why this is valuable, recall that the ellipsoid E(P , q)
also scales based on the distance between the unconstrained
minimizer −H−1Fzk, and the predicted input sequence
ṽk. This means that depending on the output reference,
the unconstrained minimizer is expected to be close to
the predicted input sequence. For example, when moving
between two set points, the unconstrained minimizer will
be closer to ṽk, when we ramp between them as opposed
to instantaneously switching. Hence, we expect to remove
more constraints when we have an appropriate reference that

connects the set points. We will demonstrate the effectiveness
of the constraint removal method on an offset-free output
tracking problem in the next section.

Algorithm 1: The soft-constrained ca-MPC scheme

1: k ← 0, H ∈ Rnv×nv
�0 , G ∈ Rnv×nv , F ∈ Rnv×nz ,

W ∈ Rnc×nv , L ∈ Rnc×nz , c ∈ Rnc , ρ ∈ Rnc
>0, j ← 1

2: for j ≤ nc do
3: ζj ← ‖WjG

−1‖2
4: j ← j + 1

5: while true do
6: MEASURE zk
7: if k = 0 then
8: ṽk ← −H−1Fzk
9: else

10: ṽk ← [v?>
[nu+1:Nnu],k−1 0>nu

]>

11: ε̃k ← max(0,Wṽk − c−Lzk)
12: q ← 1

2
(ṽk −H−1Fzk)

13: σ ← ρ>ε̃k + 1
4
‖G(ṽk +H−1Fzk)‖22

14: j ← 1, A← ∅
15: for j ≤ nc do
16: if

√
σζj > |cj +Ljzk −Wjq| or ε̃j,k > 0 then

17: A← A ∪ {j}
18: j ← j + 1

19: EXTRACT WA, LA, cA, ρA
20: (v?

k, ε
?
A)← SOLVE (3)

21: EXTRACT uk ← (v?
k,zk)

22: APPLY uk TO PLANT
23: k = k + 1

V. NUMERICAL CASE STUDY

In this section, we will demonstrate the soft-constrained
ca-MPC scheme using a two-dimensional thermal regulation
example. Here, we aim to heat a particular region without
exceeding temperature upper bounds on our entire two-
dimensional domain, see Figure 1. This type of problem
is relevant for hyperthermia-enhanced cancer treatments,
see, e.g., [20]. We will start by defining our system and
MPC setup. Hereafter, we will compare the computational
complexity of our ca-MPC scheme and the original MPC.

A. System definition and MPC setup

We consider a thermal system modeled by the following
partial differential equation

Ṫ (r, t) = α∇2T (r, t) + βT (r, t) +
∑3

j=1 γjuj(t), (16a)

for r ∈ Ω, with boundary condition

α∇T (r, t) · n = T (r, t), r ∈ ∂Ω. (16b)

Here, Ω = [0, 1]× [0, 1], T : Ω×R≥0 → R, α = 2.5 · 10−4,
β = 2 · 10−2, γj : Ω → R≥0, uj : R≥0 → R≥0,
and n ∈ R2, denote the domain, temperature, diffusivity,
damping, distributed heat load, control input, and outward
facing surface normal, respectively. As mentioned, we con-
strain the temperature below an upper bound, as given by
T (r, t) ≤ T̄ (r) for r ∈ Ω, see Figure 1.

After spatially and temporally discretizing (16) on a square
20 × 20 grid with a sample time of 1 second, we obtain a
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discrete-time state-space model (1) with nx = 400 states
and ny = 25 outputs, again, see Figure 1. To obtain an
offset-free MPC scheme, we write the input in incremental
form: uk+1 = uk + ∆uk. The heat loads γi on the discrete
spatial grid are shown in Figure 2. Similarly, discretization
of the temperature upper bound gives Mx = Inx

and
gx = T̄ ∈ Rnx , where Inx

denotes the identity matrix
of size nx and T̄ is shown in Figure 1. Additionally, we
constrain our input to be non-negative and limited in power
by Mu = Inu

⊗
[

1
−1

]
and gu = 1m ⊗ [ 1

0 ], where ⊗
denotes the Kronecker product. The non-negative input in
combination with the non-negative γi ensure we cannot
actively apply cooling, as is typical in hyperthermia cancer
treatments. We choose Q = Iny , R = Inu , and ρ = 1nc .
Using Mx, gx, Mu, gu, Q, R and choosing a horizon
N = 5, we can transform the output tracking MPC (14) to
(2) using the definitions from Section IV. Note that our MPC
scheme has a total of nc = 2030 constraints and nv = 15
control inputs. Recall that we obtain many constraints as the
upper bound on the continuous spatial domain is discretized.
We define the output reference as a linear ramp to the
target temperature, yref

k = 1ny
min(10, 10 k

30 ). We solve the
resulting quadratic programs using a primal-dual interior
point solver from the Matlab MPC toolbox [21].

Fig. 1: Left: the union between the black and white pixels
denote the domain Ω and the white pixels denote the outputs.
Right: the (Gaussian) temperature upper bound.

Fig. 2: The spatially distributed heat loads γ1, γ2, and γ3

(from left to right).

B. Results

In this section, we present the results comparing the soft-
constrained ca-MPC scheme to the MPC setup (2). Recall
that the ca-MPC setup has the exact same closed-loop behav-
ior original soft-constrained MPC setup. Interestingly, when
ρ is sufficiently large, the soft-constrained MPC scheme
is equivalent to the corresponding hard-constrained MPC
setup [17]. First, in Figure 3, we show the temperature
evolution over time for the ca-MPC scheme in combination
with a visualization of the constraints that are included in

the reduced MPC problem. As expected, the temperature in
the center rises to follow the reference. However, crucially,
only a small number of constraints at the discrete locations
are considered in the reduced MPC problem. In Figure 4, we
show how the number of constraints evolves over time. Note
that the number of constraints does not exceed 62, which is
3.1% of the original number of constraints.

The significant reduction in constraints is also reflected
in the computation time, see Figure 5. Here, our ca-MPC
setup obtains a three orders of magnitude improvement in
computation time compared to the original MPC setup. From
Figure 5, we observe that the time spent to compute A is
negligible with respect to solving the resulting simplified
quadratic program (QP), let alone compared to solving the
original QP. This observation exemplifies the effectiveness
and computational efficiency of the ca-MPC method. Indeed,
for many MPC problems, determining which constraints can
be excluded from the QP (computing A) can be performed
in a negligible amount of time. Recall that by using soft
constraints, removing a constraint from the optimization
problem simultaneously removes a decision variable from
the QP, further simplifying the resulting ca-MPC scheme.

Fig. 3: Top: the temperature at time steps 15, 30, and 45,
respectively. Bottom: white pixels indicate that the corre-
sponding constraint is added to A for at least one step in the
horizon. Note that at time step 30, we approximately obtain
the maximum number of constraints in the MPC problem.

Fig. 4: The number of constraints in the reduced MPC
problem over time. The maximum number of constraints (62)
is obtained at time step 27. Recall that the total number of
constraints is 2030.
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Fig. 5: Computation time comparison between the original
MPC setup (2) ( ), and the ca-MPC setup (3) ( ). The
time spent by soft-constrained ca-MPC is broken down in all
time requited to compute A ( ) and solving the resulting
quadratic program ( ).

VI. CONCLUSION AND OUTLOOK

In this paper, we presented an extension to ca-MPC that
allows for online constraint removal using easy-to-compute
input sequences for soft-constrained MPC. Crucially, our
constraint removal scheme does not change the minimizer
of the original MPC problem and, thus, the ca-MPC scheme
inherits all stability and performance properties from the
original MPC setup. The presented method uses an a priori
generated input sequence to compute ellipsoidal bounds on
the constrained minimizer to detect and remove inequality
constraints that cannot be reached within the ellipsoidal
bound. Similar to existing ca-MPC schemes, our extension
has a low computational overhead, making it applicable
to a large class of linear systems and MPC setups. We
demonstrated the ca-MPC scheme on a two-dimensional
thermal regulation problem with a temperature upper bound.
The regular MPC setup had 2030 constraints, while our ca-
MPC scheme only required a maximum of 62, while guar-
anteeing the same closed-loop performance. This resulted in
a computational speed-up of three orders of magnitude.

Exploiting the optimality properties of MPC proves to
be effective at accelerating the computation of the online
optimization problem. Future research interests include ex-
tensions to different cost functions and direct integration
into specific optimization solvers, such as interior-point and
active-set solvers. Other subjects of interest include differ-
ent handling of the soft constraints, e.g., using one slack
variable to bound all constraints and extensions to different
slack variable penalties, such as mixed quadratic and linear
penalties. Extensions to proximal point methods are also of
interest. These methods solve a sequence of well-conditioned
optimization problems, where each minimizer is close to
the previous one. This property has the potential for highly
effective constraint removal schemes.
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