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Abstract— We extend to two populations a recently proposed
system theoretic framework for studying an epidemic influenced
by the strategic behavior of a single population’s agents.
Our framework couples the well-known susceptible-infected-
susceptible (SIS) epidemic model with a population game that
captures the strategic interactions among the agents of two large
populations. This framework can also be employed to study
a situation where a population of nonstrategic agents (such
as animals) serves as a disease reservoir. Equipped with the
framework, we investigate the problem of designing a suitable
control policy that assigns dynamic payoffs to incentivize the
agents to adopt costlier and more effective mitigating strategies
subject to a long-term budget constraint. We formulate a
non-convex constrained optimization program for minimizing
the disease transmission rate at an endemic equilibrium, and
explain how to obtain an approximate solution efficiently. A
solution to the optimization problem is an aggregate strategy
distribution for the population game which minimizes the basic
reproduction number, hence the disease transmission rate, at
the corresponding endemic equilibrium. We then propose a
dynamic payoff mechanism and use a Lyapunov function to
prove the convergence of i) the aggregate strategy distribution,
ii) infection levels, and iii) the dynamic payoffs; the aggre-
gate strategy distribution of the population converges to an
(approximate) solution to the optimization problem, and the
infection levels in the two populations converge to the endemic
equilibrium associated with the solution of the optimization.

I. INTRODUCTION
Policymakers seek to mitigate the effects of an epidemic

by using data and model-based precepts to devise effective
interventions. Successful policies should limit the conse-
quences and spread of the epidemic subject to curbs on the
policies’ economic costs [1]. Furthermore, sound policies
should take into account human behavior and the strategic
interactions among individuals, which determine their deci-
sions over time in response to their (perceived) payoffs and
risks.

Here, we extend the work in [2], [3], which studied the
problem of designing a policy that steers the epidemic toward
a more desirable endemic equilibrium. Unlike [2], [3] that
only considered a single population, we study an epidemic
in two populations that interact with each other. Hence,
the decisions by individuals in one population affect the
epidemic process in both populations.

A. Overview of [2] and [3]

The study in [2] introduced a new framework that com-
bines the strategic decision-making process of agents (evo-
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lutionary dynamics) and a compartmental epidemic model
(SIRS model) for a single population. This framework al-
lowed the authors to design a dynamic payoff mechanism that
ensures the convergence to an endemic equilibrium where the
disease transmission rate is minimized subject to a budget
constraint under an assumption that the disease death rate
is negligible. A follow-up study [3] relaxed this assumption
and proposed an analogous dynamic payoff mechanism that
achieves the same goal. A key contribution of these studies
is that they provide anytime bounds on the peak infection,
which are universal and hold for any protocol that meets
certain assumptions. A main difference between them is,
however, while [2] obtains the anytime bound by solving
a quasi-convex problem, when the disease death rate is non-
negligible, [3] requires solving a set of convex problems to
obtain an approximated bound with arbitrary accuracy.

B. Contributions

We generalize the framework and main results of [2], [3]
to two population scenarios, in which agents interact with
other agents from both populations, but possibly at different
rates. Considering two populations of strategic agents in
an epidemic leads to significant changes in the analysis
relative to the previous studies on a single population [2],
[3], including the construction of a new Lyapunov function to
prove convergence. Moreover, computing an optimal social
state that minimizes the disease transmission rate for a given
budget becomes harder; the optimization problem is non-
convex, and only an approximate solution can be obtained
via a line search over an equivalent problem constructed on
the basis of a key observation (Lemma 1). Finally, with the
help of a Lyapunov function, we design a stabilizing policy
that leads any arbitrary initial state to an optimal social state
where the disease transmission rate is minimized subject to
a long-term budget constraint.

C. Related works

Several studies investigated the problem of managing
an epidemic using control theory: di Lauro et al. [4] and
Sontag [5] studied the problem of identifying the optimal
timing for non-pharmaceutical interventions (NPIs), such as
quarantine and lockdowns, to minimize the peak infections.
Al-Radhawi et al. [6] examined the problem of tuning NPIs
to regulate infection rates as an adaptive control problem and
investigated the stability of disease-free and endemic steady
states. Godara et al. [7] studied the problem of controlling the
infection rate to minimize the total cost till herd immunity is
attained as an optimal control problem subject to a constraint
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on the fraction of infectious population. However, these
studies did not consider the strategic decision-making.

Game theory provides a natural framework to study inter-
actions among strategic agents. For this reason, several recent
studies employed game theory, including evolutionary or
population games, to study epidemic processes with strategic
agents [8]–[13]. For instance, [8] studied the effect of risk
perception on whether individuals choose to self-quarantine
or not, and how increased perceived risks could lead to
multiple infection peaks. Khazaei et al. [13] adopted the
SEIR epidemic model with the replicator dynamics to study
the interplay between the underlying epidemic state and the
behavioral response of a single population. They showed that
as the disease prevalence changes over time, the level of
public cooperation varies as well in response, which results
in oscillations of infection level.

The dynamics of epidemic processes on networks have
been studied extensively, e.g., [14]–[18]. Other studies also
considered epidemics with multiple populations [19], [20];
each population represents a group of similar agents, a com-
munity or a geographic area (e.g., a city). The interactions
among populations are often modeled using a graph, in
which an edge weight indicates the contact or interactions
rates across different populations. Considering multiple pop-
ulations complicates the analysis of epidemic models, even
without modeling agents’ strategic interactions and leads to
richer dynamics [19]. The impact of asymptomatic infections
over complex networks has also been studied, along with
seasonal transmission rate changes, e.g., a high tourist season
or the start of a new school year [21].

Kuniya and Muroya [20] studied a multi-group SIS model
with population migration and established global conver-
gence to the endemic equilibrium when the basic reproduc-
tion number exceeds one, and to the disease free equilibrium
otherwise. These studies, however, assume fixed transmission
rates that do not depend on the strategies chosen by the
agents in different populations.

Organization of the paper: Section II introduces the
population game theory, followed by the description of the
two-population epidemic population game in Section III.
Section IV outlines the problem formulation and the goal
of our study. Our proposed policy and its analysis is dis-
cussed in Section V. A special case in which one of the
two populations serves as a disease reservoir is studied in
Section VI. We conclude in Section VII.

II. EVOLUTIONARY DYNAMICS MODELS
We consider two populations, and each agent belongs

to only one population. The agents are not permitted to
move between the two populations (over the time horizon
of interest). However, they interact with agents in both
populations at fixed, but possibly different contact rates.
These two populations can be viewed, for example, as two
disjoint communities to which the agents belong.

Each agent in the l-th population, l ∈ {1, 2}, must choose
from a finite set of available strategies A(l) := {1, . . . , nl}.
Throughout the paper we will assume that nl ≥ 2 for both

populations except for in Section VI where one of the two
populations serves as a disease reservoir and has only one
available strategy. Each strategy in A(l) will have an impact
on the transmission rates of the epidemic model, which will
be defined shortly. At every time t in IR≥0, each agent
follows one strategy, but can revise it repeatedly on the basis
of a payoff vector. The payoff vector for the l-th population
is a vector in IRnl , which is defined as

p(l)(t) := r(l)(t)− c(l), (1)

where c(l) = (c
(l)
i : i ∈ A(l)) comprises the intrinsic costs

of available strategies in A(l), and r(l)(t) = (r
(l)
i (t) : i ∈

A(l)) is the incentive (or reward) vector that stipulates the
rewards provided by a policymaker for each strategy at time
t. In other words, c(l)i is the inherent cost associated with
employing the i-th strategy, and r(l)i (t) is the reward offered
for the i-th strategy designed to incentivize agents to adopt
safer, yet costlier strategies. Hereafter, we assume that the
available strategies are ordered by decreasing intrinsic cost,
i.e., c(l)1 > c

(l)
2 > · · · > c

(l)
nl , l = 1, 2. Moreover, without loss

of generality, we assume c(l)nl = 0, l = 1, 2.
The population state of the l-th population at time t is

denoted by x(l)(t), where x(l)i (t) indicates the fraction of the
l-th population which adopts the i-th strategy in A(l) at time
t. It takes values in the standard simplex X(l) defined as
follows:

X(l) :=
{
x ∈ [0, 1]nl

∣∣∣∑j∈A(l) xj = 1
}
, l = 1, 2. (2)

We define x(t) := (x(1)(t), x(2)(t)), which takes values from
X := X(1) × X(2), to be the social state consisting of the
population states.

Following the approach in [22, Sec. 4.1.2], for each popu-
lation l, the dynamics of its population state x(l) is governed
by the following evolutionary dynamics model (EDM) in the
large-population limit:

ẋ(l)(t) = V(l)(x(l)(t), p(l)(t)), t ≥ 0, (EDMa)

where the i-th component of V(l) is specified as

V(l)
i (x(l)(t), p(l)(t)) :=

∑nl

j=1,j 6=i x
(l)
j (t)T (l)

ji (x(l)(t), p(l)(t))︸ ︷︷ ︸
inflow switching to strategy i

−
∑nl

j=1,j 6=i x
(l)
i (t)T (l)

ij (x(l)(t), p(l)(t)).︸ ︷︷ ︸
outflow switching away from strategy i

(EDMb)

A Lipschitz continuous map T (l) : X(l) × Rnl →
[0, T ]nl×nl , with upper bound T (l)

> 0, is referred to as
the revision protocol for the l-th population and models the
agents’ strategy revision preferences. In [22, Part II] and
[23, Sec. 13.3-13.5] there is a comprehensive discussion
on protocols types and the classes of bounded rationality
rules they model. The use of (EDM) as a deterministic
approximation when a dynamic payoff mechanism generates
the payoff vector p(t) := (p(1)(t), p(2)(t)), as it is the case in
our study, is established in [24, Sec. IV].
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III. TWO-POPULATION EPIDEMIC POPULATION GAME

We adopt a well-known epidemic model, namely
susceptible-infected-susceptible (SIS) model, to approximate
the transmission of a disease in the two populations: at any
time t each agent is at either the ‘susceptible’ or ‘infected’
state. To facilitate our analysis, we employ the following
normalized SIS model: I(t) := (I(1)(t), I(2)(t)) and S(t) :=
(S(1)(t), S(2)(t)), where I(l)(t) and S(l)(t) are the fraction
of the l-th population that are infected and susceptible,
respectively, at time t. Note that since S(l)(t) = 1 − I(l)(t)
for both l = 1, 2, it suffices to model either I(t) or S(t).

Our earlier work in [2] and [3] adopted the SIRS model
for a single population. Employing the SIRS model for
our problem with two populations would lead to a similar
analysis with additional technical complications, especially
when the disease-related death rate is non-negligible. For
this reason, we chose to use the SIS model instead. This
simplifies our analysis, while still providing insights into the
studied problem.

Suppose that θ, ζ, γ and δ denote the birth rate, natural
death rate, recovery rate, and disease-related death rate, re-
spectively. We assume that these parameters are non-negative
and common to both populations. The population size vector
N (t) := (N (1)(t), N (2)(t)), where N (l)(t) approximates the
l-th population’s cardinality at time t, is obtained as the
solution of Ṅ = (θ − ζ − δI) ◦ N , where ◦ denotes the
Hadamard product, i.e., the element-wise multiplication of
two vectors. We assume that N (l)(0), l = 1, 2, are large
and the population sizes do not change much within the
time interval of interest. Below we describe the epidemic
population game:

İ(t) = −(θ + γ)I(t) + S(t) ◦ (B(t)I(t))

− δI(t) ◦ S(t) (EPGa)

q̇(l)(t) = G(l)(I(t), x(t), q(t)), (EPGb)

r(l)(t) = H(l)(I(t), x(t), q(t)), (EPGc)

Here, B(t) is a 2×2 matrix whose element Bl,l′ (t) denotes
the rate at which susceptible agents in population l contract
the disease from (contacts with) infected agents in population
l′ at time t. This is described in Fig. 1. Equations (EPGb,c),
where G and H are Lipschitz continuous functions, describe
a dynamic payoff mechanism that we aim to design, where
r(t) := (r(1)(t), r(2)(t)) is the reward vector in (1), and
q(t) := (q(1)(t), q(2)(t)) ∈ Rm, m ≥ 2. In our design, q(l)(t),
l = 1, 2, are scalars and m = 2.

In our model, the matrix B(t) depends on the social state
x(t) and thus is time-varying in general:

B(t) ≡ B̄(x(t)) = diag (f(x(t))) Θ, (5)

where f(x) =
(
f (1)(x(1)), f (2)(x(2))

)
with f (l)(x(l)) =

β(l)′x(l), l = 1, 2. The vector β(l) = (β
(l)
i : i ∈ A(l)),

l = 1, 2, specifies the disease transmission rates for sus-
ceptible agents adopting various strategies available for the
l-th population, which are assumed strictly positive. Since
the available strategies are ordered by decreasing intrinsic

cost, we assume β
(l)
1 < β

(l)
2 < · · · < β

(l)
nl , l = 1, 2.

This is consistent with the expectation that costlier strategies
are more effective at preventing the transmission of disease.
Finally, Θ is a 2×2 positive matrix and models the contact
rates among the agents within each population and across the
two populations, and also captures the relative sizes of the
two populations. Since we assume that the population sizes
do not change much during the time interval of interest, we
consider Θ to be constant. We note that, since B̄(x(t)) is
strictly positive, it is also irreducible.

B1,1(t)
B2,1(t)

B1,2(t)

B2,2(t)

pop. 1
agents

pop. 2
agents

Fig. 1: Disease transmission rates described by B(t).

We are interested in scenarios where it is too costly to
eradicate the disease from the populations and the disease
outbreak becomes endemic. As we will show shortly, the
following assumption ensures the existence of an endemic
equilibrium of (EPGa) for any x in X.

Assumption 1: 0 < δ+ θ+ γ < min{β(1)
1 Θ11, β

(2)
1 Θ22}.

IV. PROBLEM FORMULATION

We seek to minimize the disease transmission rate at an
endemic state by providing suitable incentives for available
strategies via a dynamic payoff mechanism. In order to for-
mulate our problem, we make use of the observation that the
spectral radius of the transmission rate matrix corresponds
to the basic reproduction number of the epidemic model in
(EPGa) [20].

We formulate our problem as a constrained optimization
problem in which the objective function is the spectral radius
of the transmission rate matrix (or the basic reproduction
number) subject to a long-term budget constraint on rewards
offered to offset cost differentials:

minimizex∈X λmax

(
B̄(x)

)
(6)

subject to
∑2
l=1 c

(l)′x(l) ≤ c∗

where c∗ > 0 is a budget. We denote an optimal point of this
optimization problem by x∗ with B∗ := diag (f(x∗)) Θ.

The dynamic payoff mechanism in (EPGb,c) should ensure
the convergence of the social state to an optimal point x∗

where the disease transmission is minimized subject to the
budget constraint. To this end, we introduce the following
assumption on the intrinsic costs, which can be viewed as
the law of diminishing returns.

Assumption 2: For each population l, if nl ≥ 3, the
following holds:

c
(l)
i − c

(l)
i+1

β
(l)
i+1 − β

(l)
i

>
c
(l)
i+1 − c

(l)
i+2

β
(l)
i+2 − β

(l)
i+1

, 1 ≤ i ≤ nl − 2 (7)
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Assumption 2 means that as the agents attempt to curtail
the risk of contracting the disease by adopting costlier
strategies, it gets more expensive to reduce the risk further.

The optimization problem (6) is non-convex and cannot
be efficiently solved even when the number of available
strategies for each population is modest. In order to devise a
computationally efficient method for approximately solving
(6), we take advantage of the following observation: for each
x in X, define h(x) =

∑2
l=1 f

(l)(x(l)).
Lemma 1: If x∗ in X solves (6), it also solves the follow-

ing optimization problem:

minimizex∈X h(x) (8)

subject to c(l)
′
x(l) ≤ η(l), l = 1, 2

where η(1) = c(1)
′
x∗(1) and η(2) = c∗ − η(1).

Note that the optimization problem (8) has a separable
objective function with independent constraints for the two
populations and can be solved separately for each population.
This observation suggests the following efficient approach to
solving (6) : for each η ∈ [0, c∗], let h̄(η) be the optimal value
of (8) with budget constraints η(1) = η and η(2) = c∗−η for
populations 1 and 2, respectively. For fixed η ∈ [0, c∗], the
solution to (8) for each population can be found efficiently
from [2, Remark 3]: fix η ∈ [0, c∗] and denote the optimal
point of (8) by x̄(η). (Case 1): If η < c

(1)
1 , there is i∗ ∈

{1, . . . , n1 − 1} such that c(1)i∗+1 < η ≤ c
(1)
i∗ and we have

x̄
(1)
i∗ (η) = (η−c(1)i∗+1)/(c

(1)
i∗ −c

(1)
i∗+1), x̄(1)i∗+1(η) = 1−x̄(1)i∗ (η)

and x̄(1)i (η) = 0 for i 6∈ {i∗, i∗ + 1}. (Case 2): If η ≥ c
(1)
1 ,

then x̄(1)1 (η) = 1 and x̄(1)i (η) = 0 for all i > 1. The optimal
point for population 2 can be found analogously.

An optimal point of (6) can now be obtained by solving
the following equivalent problem:

minimizeη∈[0,c∗] λmax

(
B̄(x̄(η))

)
(9)

Although an exact solution may be difficult to obtain, an ap-
proximate solution can be found via a line search. Since the
objective function of (6) is continuous, a small perturbation
of the optimization variables causes a minor change in the
spectral radius.

A. Lyapunov Stability with a Fixed Social State

Before we consider a general setting with time-varying
social state, we first establish the existence of a unique
endemic equilibrium of (EPGa) for each fixed social state
x in X. Note from (5) that when the social state x is fixed,
so is the transmission rate matrix B̄(x).

Lemma 2: Suppose that Assumption 1 holds. For each
fixed social state x in X, there is a non-empty set Ix ⊂ (0, 1]2

such that every Ix in Ix satisfies

−(θ + γ)Ix + Sx ◦
(
B̄(x)Ix

)
− δIx ◦ Sx = 0, (10)

where Sx = 1− Ix, and 1 and 0 are vectors of 1’s and 0’s,
respectively, of appropriate dimension.

The proof of the lemma follows steps similar to those
used in [25, Sec. 2.2] to establish the existence of a strongly
endemic equilibrium and is omitted here.

Lemma 2 states that, for fixed social state x in X, there
is at least one endemic equilibrium of (EPGa). We will
now show that, for fixed social state x, I(t) converges to
a unique equilibrium in (0, 1]2, which we call the endemic
state and denote by Īx. Let I∗(x) be an element of Ix, thus
an equilibrium of (EPGa) for fixed x in X. Define a function
g : R>0 → R≥0 with g(z) := z − 1 − ln(z), z > 0. Note
that g(z) ≥ 0 for z > 0, and g(z) = 0 only for z = 1.
Consider the following function, which is a modification of
the Lyapunov function used in [20].

Ux(I) :=
∑2
l=1 wl(x)I

(l)
∗ (x)g

(
I(l)/I

(l)
∗ (x)

)
(11)

where w1(x) := B̃2,1(x), w2(x) := B̃1,2(x), and B̃l,l′(x) :=

S
(l)
∗ (x)B̄l,l′(x)I

(l′)
∗ (x).

Lemma 3: For (EPGa) with a fixed social state x in X,
Ux(I) is a Lyapunov function.

Proof: Note from (5) that w1(x) and w2(x) are positive.
Since g

(
I(l)/I

(l)
∗ (x)

)
= 0 if and only if I(l) = I

(l)
∗ (x), we

have Ux(I) > 0 for all I ∈ (0, 1]2 \ {I∗(x)}. To simplify
our notation, we do not indicate the dependence of B̄, S∗, I∗
and wl, l = 1, 2, on the social state x below.

The derivative of U(I(t)) along trajectories is

U̇x(I(t)) = −
2∑
l=1

wlS
(l)
∗

2∑
l′=1

B̄l,l′I
(l′)
∗ g

(
I(l
′)(t)I

(l)
∗

I(l)(t)I
(l′)
∗

)

+

2∑
l=1

wl

(
δ −

2∑
l′=1

B̄l,l′
I(l
′)(t)

I(l)(t)

)
(I

(l)
∗ − I(l)(t))2. (12)

By Assumption 1, δ < minl B̄l,l, and U̇x(I(t)) < 0 for all
I(t) ∈ (0, 1]2 \ {I∗(x)}. Hence, Ux is a Lyapunov function,
and Īx = I∗(x) is the unique element of Ix.

The following lemma tells us that Īx is continuously
differentiable in social state x. Its proof can be obtained using
Lemma 3 and the implicit function theorem.

Lemma 4: The unique endemic state Īx is continuously
differentiable in x. Also, from (10) for all x in X we have
Īx ≥ I := Ī((1,0,...,0),(1,0,...,0)) > 0. This follows from the
fact that Īx is non-decreasing in each f (l)(x(l)).

V. LYAPUNOV FUNCTION AND DETERMINING A
STABILIZING POLICY

A. Nash Stationarity and δ-Passivity Assumption

The following two assumptions on (EDM) will be crucial
to our analysis. The first assumption guarantees that the
population state of a population remains constant if it is a
best response to its current payoff vector, while the second
assumption will be useful when analyzing the long-term
behavior of (I, x, p)(t) and originates from the δ-passivity
concept originally proposed in [26] and generalized in [24],
[27], [28].

Assumption 3: (Nash Stationarity) We assume that T (l),
l = 1, 2, is “Nash stationary”, i.e., it satisfies the following:

V(l)(x(l), p(l)) = 0 ⇔ x(l) ∈M (l)(p(l)), p(l) ∈ Rnl

(NS)
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where M (l) : Rnl → 2X
(l)

is the following best response
map:

M (l)(p(l)) := arg max
x(l)∈X(l)

p(l)
′
x(l), p(l) ∈ Rnl .

For a revision protocol that satisfies (NS), a social state
x is an equilibrium of (EDM) if and only x(l) is a best
response to p(l) for both populations. Any impartial pairwise
comparison (IPC) protocol (see [29]) satisfies (NS), as do
other large classes of protocols (see [23, Sec. 13.5.3] [24,
Sec. 13.5.3]). For instance, the so-called Smith’s protocol is
an example of IPC revision protocol [30].

Assumption 4: For each population l, l = 1, 2, there exist
(i) a differentiable function S(l) : X(l) × Rnl → R≥0 and (ii)
a Lipschitz continuous function P(l) : X(l) × Rnl → R≥0,
which satisfy the following inequality for all x(l), p(l) and
u(l) in X(l), Rnl and Rnl , respectively:

∂S(l)(x(l), p(l))
∂x(l)

V(l)(x(l), p(l)) +
∂S(l)(x(l), p(l))

∂p(l)
u(l)

≤ −P(l)(x(l), p(l)) + u(l)
′
V(l)(x(l), p(l)) (13a)

where S(l) and P(l) must also satisfy the equivalences below:

S(l)(x(l), p(l)) = 0 ⇔ V(l)(x(l), p(l)) = 0 (13b)

P(l)(x(l), p(l)) = 0 ⇔ V(l)(x(l), p(l)) = 0. (13c)

In addition, the following inequality (not required in standard
δ-passivity) must hold for all x(l) in X(l) and p(l) in Rnl :

P(l)(x(l), αp(l)) ≥ P(l)(x(l), p(l)), α ≥ 1. (13d)

B. Specifying G, and H , and Lyapunov Function

Throughout this subsection, we fix an optimal point x∗ to
(6) and, to simplify the notation, omit the dependence of (i)
I, p, x, w, Īx and S̄x on t and (ii) w1, w2 and B̄ on x(t), and
indicate the dependence only when necessary.

Define the function

S (I(t), x(t)) = Ux(t)(I(t)) + υ‖B̄(x(t))−B∗‖2F , (14)

where B∗ := B̄(x∗), Ux(t)(I(t)) is defined in (11), υ is a
design parameter, and ‖·‖F denotes the Frobenius norm. The
derivative of S (I(t), x(t)) along the trajectories is given by

Ṡ (I, x) =
∂Ux(I)

∂I
İ +

2∑
l=1

∂S (I, x)

∂f (l)(x(l))
β(l)′ ẋ(l). (15)

Note that the first term cannot be positive from (12). More-
over, recall from (5) that the dynamics of I(t) depends on
the social state x(t) only through f(x(t)). Thus, the second
term in (15) captures (∂S (I, x)/∂x)ẋ.

We can now define the dynamic payoff mechanism used
in (EPGb,c). As in [2], we can choose for each population
l = 1, 2 the following dynamic payoff mechanism

G(l)(I, x, q) = − ∂S (I, x)

∂f (l)(x(l))
, (16)

H(l)(I, x, q) = q(l)(t)β(l) + ř(l) + c(l), (17)

where ř(l) = (ř
(l)
i : i ∈ A(l)) with

ř
(l)
i =

{
0 if x∗(l)i > 0,

−ρ if x∗(l)i = 0,
(18)

and ρ is a design parameter. This leads to p(l)(t) =
q(l)(t)β(l) + ř(l), l = 1, 2.

Let us define

L(I, x, p) = S (I, x) +

2∑
l=1

S(l)(x(l), p(l)), (19)

which is positive-definite by Assumption 4 and (16). From
(12), (13a), (15), (16) and (17), we get

L̇(I, x, p) ≤ −P(1)(x(1), p(1))− P(2)(x(2), p(2))

−
2∑
l=1

wlS̄
(l)
x

2∑
l′=1

B̄l,l′ Ī
(l′)
x g

(
I(l
′)Ī

(l)
x

I(l)Ī
(l′)
x

)

+

2∑
l=1

wl

(
δ −

2∑
l′=1

B̄l,l′
I(l
′)

I(l)

)
(Ī(l)x − I(l))2. (20)

Recall that Īx denotes the unique endemic state associated
with social state x and S̄(l)

x = 1− Ī(l)x , l = 1, 2.
Substitute (11) and (14) in (16) to obtain

G(l)(I, x, q) = −
2∑

l′=1

((
∂f(l)wl′

)
Ī(l
′)

x g

(
I(l
′)

Ī
(l′)
x

)

+ wl′
(
∂f(l) Ī(l

′)
x

)
g

(
I(l
′)

Ī
(l′)
x

)
+wl′ Ī

(l′)
x

(
∂f(l)g

(
I(l
′)

Ī
(l′)
x

)))
− 2υf (l)(x(l) − x∗(l))(ΘΘ′)l,l, (21)

where ∂f(l) denotes the partial derivative with respect to
f (l)(x(l)). The derivatives ∂f(l) Īx and ∂f(l)wl′ , l, l′ ∈ {1, 2},
can be obtained by solving the following system of linear
equations:

∂f(l) Īx = −J−1 diag
(
S̄x
)

diag
(
∂f(l)f(x)

)
ΘĪx,

J = (θ + γ)
(
diag

(
S̄x
)
D − diag

(
DĪx

)
− I2

)
,

D =
B̄(x)− δI2
θ + γ

,

∂f(l)w1 = B̄2,1(x)
(
S̄(2)
x (∂f(l) Ī(1)x )− (∂f(l) Ī(2)x )Ī(1)x

)
+ S̄(2)

x Ī(1)x (∂f(l)B̄2,1(x)), and

∂f(l)w2 = B̄1,2(x)
(
S̄(1)
x (∂f(l) Ī(2)x )− (∂f(l) Ī(1)x )Ī(2)x

)
+ S̄(1)

x Ī(2)x (∂f(l)B̄1,2(x)).

C. Stability Notion and Main Result
Suppose that we adopt a dynamic payoff mechanism given

by (17) and (21) for the fixed optimal point x∗. Let I∗ = Īx∗ .
Theorem 1: Let the protocol defining (EDM) and the

design parameters υ > 0, ρ > 0 and c∗ > 0 be given such
that, for both populations l = 1, 2, we have c(l)1 > c(l)

′
x∗(l)>

0. If (NS) and Assumption 1-4 hold, then for G given by
(21) the set E∗ := (I∗, x∗) × Q is globally asymptotically
stable,

(I, x, q)(t) −−−−→
t−→∞ (I∗, x∗)×Q,
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where Q := Q(1) × Q(2) and, for each l = 1, 2, (a) if
c(l)
′
x∗(l) 6∈ {c(l)1 , . . . , c

(l)
nl }, Q(l) = {0} and (b) otherwise,

Q(l) = [−ρ(β(l)
nl
− f (l)(x∗(l)))−1, ρ(f (l)(x∗(l))− β(l)

1 )−1].

Lastly, if Q = {0}, then limt−→∞
∑2
l=1 r

(l)(t)′x(l)(t) = c∗.

Sketch of a proof for Theorem 1: To prove the theorem
we first remark that L(I, x, q)→∞ as any component of I
approaches zero. Let Y(0) := (I, x, q)(0) be an element of

Y := {(I, x, q) | I ∈ (0, 1]2, x ∈ X, q ∈ R2}.

For any Y(0) ∈ Y, from (20) we have L(Y(t)) < ∞ for all
t ≥ 0. Then, we can apply the steps used in [2, Appen.
A.2-A.3] to each population to obtain that q(t) remains
bounded for all t ≥ 0, and that there exist some positive
ε and finite t̄ ≥ 0 such that, for all t ≥ t̄, q(t) lies in
Qε := {q | minq′∈Q ‖q−q′‖ ≤ ε}. Without loss of generality
we can assume t̄ = 0 and study the stability of Y(t) that
belongs to the bounded set

Yε := {(I, x, q) | I ∈ (0, 1]2, x ∈ X, q ∈ Qε},

for all t ≥ 0.
By [31, Lemma 4.1] we have that for any trajectory, as

t→∞, Y(t) will approach the positive limit set L+, which is
a nonempty, compact, invariant set contained in the closure of
Yε. Since L(Y(t)) is continuous and non-increasing in t, it is
bounded from below and has a limit as t→∞. Because the
closure of Yε is compact, we can find an increasing sequence
{tk : k ∈ N} such that, as k → ∞, (a) tk → ∞ and (b)
Y(tk) → y+ for some y+ = (I+, x+, q+) in L+. Note that
I+ ≥ I > 0 and, thus, y+ lies in Yε and L+ ⊂ Yε.

By the continuity of L and L̇(Y(t)) ≤ 0 for any Y(t) ∈
Yε from (12) and (20), we have L(Y(t)) → L(y+) and
L̇(Y(t)) → 0 as t → ∞. Note that L̇(y) = 0 for any
y ∈ L+. Define M to be the largest invariant subset such
that L̇(y) = 0 for all y ∈M . Then, for any Y(0) in M ,

I(t) = Īx(t) (22a)

x(l)(t) ∈M (q(l)(t)β(l) + ř(l)), l = 1, 2. (22b)

For trajectories starting in the invariant set M , by (NS) and
(22b), we obtain that ẋ(t) = 0 and x(t) = x(0) for all t ≥ 0.
This in turn means from (21) that q̇(t) is constant, as G
depends only on x(t) and I(t), which are constant.

Suppose that q̇(l)(t) 6= 0 for some l ∈ {1, 2}. This implies
that q(t) will leave Qε after a finite amount of time, which
is a contradiction. Thus, q̇(t) = 0 and q(t) = q(0) for all
t ≥ 0. Since q(t) = q(0) for all t ≥ 0, using an argument
similar to that used in [2, Appen. A.1 (Cases I & II)], we can
conclude that q(t) lies in Q. This observation, in conjunction
with (18) and (22b), tells us x(0) = x(t) = x∗. Because (a)
Y(t) converges to the limit set L+ ⊂ M and (b) any y in
M satisfies I(0) = I∗, x(0) = x∗ and q(0) ∈ Q and hence
belongs to E∗, we have L+ ⊂ E∗.

If both populations satisfy c(l)
′
x∗(l) 6= c

(l)
i for all i

in A(l), then we have Q = {0} and the long-term

budget constraint is satisfied from (17) and (18), i.e.,
limt−→∞

∑2
l=1 r

(l)(t)′x(l)(t) = c∗.

Remark 1: It can be shown that L(I, x, p) = 0 if and only
if I = Īx, each x(l) ∈M (q(l)(t)β(l) + ř(l)) and B̄(x) = B∗.
This implies that L(I, x, p(q)) = 0 if and only if I = Ī∗,
x = x∗ and q ∈ Q. Thus, when Q = {0}, the system is
Lyapunov stable.

Remark 2: Suppose that the optimal solution x∗ of (6) is
such that x∗(l)i∗ = 1 for some population l and a strategy i∗

in A(l), i.e, all agents of population l adopt strategy i∗ at
the optimal point. As pointed out earlier, since the objective
function of (6) is continuous, minor perturbations to x∗ will
only have a small effect on the spectral radius. Thus, we can
find a perturbation x̃ close to the optimal point x∗, which
is a feasible point satisfying all constraints, so that, for both
l = 1, 2, we have x̃(l)il , x̃

(l)
il+1 > 0 for some 1 ≤ il < nl and

x̃
(l)
j = 0 for j /∈ {il, il+1}. This will ensure λmax(B(x̃)) ≈
λmax(B(x∗)) and, since Q = {0}, the theorem guarantees
the global asymptotic stability to the unique equilibrium.

D. Numerical Example

Example 1: We consider two populations with parameters
θ = 0.0002, δ = 0.0005 and γ = 0.14 (mean recovery pe-
riod ∼ 7 days). Each population has access to two strategies:
β(1) = β(2) = (0.15, 0.19) and costs c(1) = (0.35, 0), and

c(2) = (0.4, 0). The contact rate matrix is Θ =

[
1 0.3

0.1 1

]
,

and the available budget is c∗ = 0.3. This yields an
optimal point of (9) equal to x∗(1) ≈ (46.4%, 53.5%) and
x∗(2) ≈ (34.4%, 65.6%), and the corresponding endemic
equilibrium is I∗ ≈ (34.4%, 28.8%). We assume that each
population was using its costlier strategy at t = 0 and
I(0) = (0.1%, 0.11%). By using the dynamic payoff, (EPGb)
and (EPGc), we obtain that for any ρ > 0, the state converges
to (I∗, x∗). For the simulation1, we selected the parameter
value υ = 4.

From Figure 2 we observe that for the first 300 days
both populations use the costlier strategy with a lower
transmission rate. After the 300-day mark the social state
approaches x∗ and we observe a second hike in the infection
level, as the social state converges q(t) also approaches zero,
as Theorem 1 indicates. Throughout the simulation both
populations maintain a similar level of infection.

VI. VIRAL RESERVOIR CASE

One interesting application of our model and results is
the case in which only one population can be incentivized
while the other population comprises nonstrategic agents that
follow a single fixed strategy, which serves as a disease
reservoir, e.g., animal disease reservoir. Without loss of
generality we assume that the agents in the first population
have more than one available strategies and are targeted with
incentives, and the agents from the second population stay
with a fixed strategy.

1The code used to generate Figs. 2 and 3 and an interactive simulation
tool based on Example 1 can be found at github.com/jcert/E2PG/tree/v1.0.
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Fig. 2: Simulation for Example 1 using υ as shown, and a
Smith’s protocol specified by λ = 0.1 and T̄ = 0.1.

Even though the agents from the second population cannot
revise their strategies, modeling them is still important be-
cause of the interaction between the two populations: the
infection rates seen by the agents of the first population
depend on the fraction of infected agents in the second
population, and vice versa. This special case of the two-
population model is degenerate in that q(2) is not needed as
no incentive is needed for the second population and can be
dropped from model. Moreover, in this case the optimization
problem in (6) for finding an optimal state x∗ can be solved
exactly, since it equates to solving (8) with η(1) = c∗ and
η(2) = 0. The convergence of (I, x, q(1))(t) to (I∗, x∗, q(1)∗)
in this case can be proved similarly to Theorem 1.

Corollary 1: Let the protocol defining (EDM) and the
design parameters υ > 0, ρ > 0 and c∗ > 0 be given, and
assume c∗ < c

(1)
1 . If (NS) and Assumption 1-4 hold, then

for G(1)given by (21) the set E∗ := (I∗, x∗)×Q is globally
asymptotically stable2 and (I, x, q(1))(t) −−−−→

t−→∞ (I∗, x∗)×Q,

where (a) if c∗ 6∈ {c(1)1 , . . . , c
(1)
n1 }, then Q := {0} and (b)

otherwise, we have

Q = [−ρ(β(1)
n1
− f (1)(x∗(1)))−1, ρ(f (1)(x∗(1))− β(1)

1 )−1].

Moreover, limt→∞ r(1)(t)′x(1)(t) = c∗ when Q = {0}.
Example 2: For the numerical example, we use the same

setup, parameter values and initial conditions in Example 1
except that the second population has only one available
strategy, which is the second available strategy in Example 1
with β(2) = 0.19. Solving (9), we obtain the optimal
population state x∗(1) ≈ (85.7%, 14.3%), and the endemic
state associated with it is given by I∗ ≈ (31.2%, 32.5%).
We assume that the first population was using the costlier
strategy at t = 0. By using the dynamic payoff, (EPGb) and
(EPGc), we obtain that for any ρ > 0, the state converges to
(I∗, x∗). For simulation, we select υ = 4 as in Example 1.

2Since the second population follows a fixed strategy, G(2) and q(2) have
no impact on the trajectory (I, x, q(1))(t) and can be removed from the
model.
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Fig. 3: Simulation for Example 2 using υ as shown, and a
Smith’s protocol specified by λ = 0.1 and T̄ = 0.1.

We use the same budget c∗ = 0.3 used for Example 1.
Figure 3 shows that (I, x, q(1))(t) converges to (I∗, x∗, 0),
as stated in Corollary 3. In addition, Figure 3 indicates that
the infection levels of the two populations differ more than
they do in Example 1; the first population enjoys a lower
infected level at the equilibrium by 3.2 percentage points,
which comes at the expense of a higher infection level for
the second population (by 3.7 percentage points). This is
expected because only the first population is incentivized,
and the second population receives no incentive.

Note that the second example is identical to the first
example, except for the additional constraint on the second
population; its population state is fixed at (0, 1) since only
the second strategy is available to the agents of the second
population. Hence, when we solve the optimization problem
in (6), we need to impose this additional constraint. For this
reason, the optimal value, which is the reproduction number
corresponding to the optimal state, of Example 2 cannot be
smaller than that of Example 1. In fact, the reproduction
numbers associated with the optimal states for Examples 1
and 2 are 0.2039 and 0.2072, respectively.

VII. CONCLUSION

We studied the problem of designing a policy that can
steer an epidemic in two populations toward a desired
endemic equilibrium at which the basic reproduction number
is minimized, subject to a long-term budget constraint. First,
we extended to two populations the framework that was
proposed for modeling the coupled dynamics between an
epidemic state and the decision-making process of strategic
agents in a single population. Using this new framework, we
devised a policy with provable convergence to an optimal
social state that we can select by solving a non-convex
constrained optimization problem. Moreover, we showed that
our framework can also be employed to study the interplay
between a strategic population and a disease reservoir, e.g.,
animal disease reservoir.
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