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Abstract— We show that the existence of a Lyapunov-
Krasovskii functional (LKF) with a point-wise dissipation suf-
fices for ISS of time-delay systems, provided that uniform global
stability can also be ensured using the same LKF. To prove this
result, we develop a stability theory, in which the behavior of
solutions is not assessed through the classical norm but rather
through a specific LKF, which may provide significantly tighter
estimates.

Keywords: nonlinear control systems, input-to-state sta-
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I. INTRODUCTION

Input-to-state stability (ISS), introduced by E.D. Sontag
in the late 1980s [20], has become a central tool in the
analysis and control of nonlinear dynamical systems [21],
[12]. Originally defined in the context of ordinary differential
equations (ODE), it has been extended more recently to
infinite-dimensional systems [13], [7], including time-delay
systems (TDS) [3].

For TDS, ISS can be established by means of Lyapunov-
Krasovskii functionals (LKFs) [19]. As for ODEs, ISS holds
if the LKF dissipates along the system’s solutions, modulo
a positive term involving the input norm. So far, the only
general conditions to ensure ISS based on LKF impose that
the dissipation can be expressed in terms of the LKF itself
(which is also a necessary requirement for ISS [8]).

It has been conjectured in [4] that a point-wise dissipation,
involving merely the norm of current value of the solution,
is enough to guarantee ISS. While this conjecture has been
proved for specific classes of systems [4], [2] and for the
weaker notion of integral ISS [1], it has not yet been proved
or disproved in its full generality. It is worth mentioning
that, in [6], the authors employed an ISS LKF in the so-
called “implication form” and showed that if a point-wise
dissipation holds whenever the LKF dominates the input
magnitude then ISS can be concluded. Still, this condition
remains significantly more conservative than the existence of
an ISS LKF with point-wise dissipation.
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Solving this conjecture would be interesting not only for
the sake of mathematical curiosity, but also for more practical
considerations, as a point-wise dissipation is usually easier to
obtain than an LKF-wise one. It would also unify the theory
with that of input-free systems, since it has been known for a
long time that a point-wise dissipation is enough to conclude
global asymptotic stability [9].

Despite significant efforts on this question, it is not even
known whether the conjecture is true if we additionally
assume that solutions are globally uniformly bounded or
even if the origin is uniformly globally stable (UGS). In
this paper, we partially solve this question by showing that
if the LKF that dissipates point-wisely can also be used to
establish UGS, then the ISS property holds.

Interestingly, our main result actually establishes a
stronger property, which we call V -ISS. This property is
similar to ISS, but measures the behavior of the system’s
solutions through a given LKF V rather than through the
classical sup norm of the state. We believe this notion may be
of some interest on its own as, depending on the considered
LKF, it may provide a tighter estimate of the solutions’ norm.

The paper is organized as follows. In Section II, we
recall some basics about TDS, introduce the V -ISS concept,
state our main result and highlight its added value with
respect to [6]. In Section III, we adapt some other classical
stability concepts, in the same spirit as V -ISS, and state
a superposition principle for V -ISS. We also provide some
LKF-based conditions to establish these properties, and give
some technical observations that are needed in the proof of
the main result, which is stated in Section IV. For input-
free systems, our results recover and, in fact, strengthen the
Krasovskii theorem for asymptotic stability [9].

Notation. For x ∈ Rn, |x| denotes its Euclidean norm
and |A| denotes the corresponding induced matrix norm of
A ∈ Rn×n. Given intervals I ,J ⊂ R, C(I ,J ) denotes
the set of continuous functions from I to J . “For all
t ∈ I a.e.” means for all t ∈ I , with the possible of
a set of measure zero. Given θ > 0, X := C([−θ ,0],R).
U denotes the set of all signals u : R≥0 → R that are
Lebesgue measurable and locally essentially bounded. Given
an interval I ⊂ R≥0 and a locally essentially bounded
signal u : I → Rm, ‖u‖ := ess supt∈I |u(t)|. Given u ∈U m,
uI : I → Rm denotes its restriction to the interval I , in
particular ‖uI ‖= ess supt∈I |u(t)|. Given T ∈R≥0∪{+∞},
θ > 0, x ∈ C([−θ ,T ),Rn) and t ∈ [0,T ), xt ∈ X n is the
history function defined as xt(τ) := x(t + τ) for all τ ∈
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[−θ ,0]. We also use the standard classes of comparison
functions:

K := {γ ∈C(R+,R+) |γ(0) = 0, γ is strictly increasing},
K∞ := {γ ∈K |γ is unbounded},
L := {γ ∈C(R+,R+) |γ is decreasing, lim

t→∞
γ(t) = 0},

K L := {β ∈C(R+×R+,R+ |β (·, t) ∈K ∀t ≥ 0,
β (r, ·) ∈L ∀r > 0}.

II. PRELIMINARIES AND MAIN RESULT

A. Time-delay systems

We consider retarded differential equations of the form

ẋ(t) = f (xt ,u(t)), (1)

where xt ∈X n, n ∈ N, denotes the history function defined
as xt(s) := x(t + s) for all s ∈ [−θ ,0], and θ > 0 is the fixed
maximal time-delay involved in the dynamics. The input u is
assumed to be in U m, m ∈N. The vector field f is assumed
to satisfy the following.

Assumption 1: The vector field f : X n×Rm→ Rn

(i) is Lipschitz continuous in its first argument on bounded
subsets of X n ×Rm, i.e., for all C > 0, there exists
L f (C) > 0, such that for all φ ,ϕ ∈X n with ‖φ‖ ≤C
and ‖ϕ‖ ≤C and all v ∈ Rm with |v| ≤C,

| f (φ ,v)− f (ϕ,v)| ≤ L f (C)‖φ −ϕ‖; (2)

(ii) is continuous jointly in both arguments;
(iii) satisfies f (0,0) = 0.

By [3, Theorem 2], Assumption 1 guarantees that, for any
initial condition x0 ∈X n and any input u ∈ U m, there is
a unique maximal solution (in Caratheodory sense) of (1),
which we denote by x(·,x0,u). Given t in the domain of
existence of this solution, the corresponding history function
is denoted by xt(x0,u)∈X n. The triple (X n,U m,ϕ), where
ϕ is the flow mapping (x0,u) and t in the maximal interval of
existence to ϕ(t,x0,u) := xt(x0,u) defines an abstract control
system in the sense of [15]. In view of Assumption 1,
the system (1) satisfies the boundedness-implies-continuation
(BIC) property, i.e., every maximal solution that is bounded
on its whole domain of existence is defined on R+, see [3,
Theorem 2].

B. Definitions

In this section, we introduce a variant of ISS, specifically
tailored to the analysis of delay systems using Lyapunov-
Krasovskii functionals. To this aim, we first recall the defi-
nition of Lyapunov-Krasovskii functional candidates [3].

Definition 2.1 (LKF candidate): A map V ∈ C(X n,R+)
is called a Lyapunov-Krasovskii functional candidate (LKF
candidate), if there are ψ1,ψ2 ∈K∞, so that

ψ1(|φ(0)|)≤V (φ)≤ ψ2(‖φ‖) ∀φ ∈X n. (3)

It is said to be coercive if, in addition,

ψ1(‖φ‖)≤V (φ)≤ ψ2(‖φ‖) ∀φ ∈X n.

Remark 2.2: We note that in [3], it is required that LKF
candidates are also Lipschitz continuous. For our results, we,
however, do not need this extra assumption.

Next, we revisit the notion of ISS by estimating the
system’s properties through an associated LKF candidate,
rather than through the standard norms.

Definition 2.3 (V -ISS / ISS): Given an LKF candidate V :
X n → R+, the system (1) is called V -input-to-state stable
(V -ISS) if there exist β ∈K L and γ ∈K∞ such that, for
all x0 ∈X n and all u ∈U m,

V (xt(x0,u))≤ β (V (x0), t)+ γ(‖u‖), ∀t ≥ 0. (4)

It is called input-to-state stable (ISS), if it is V -ISS with
V (φ) = ‖φ‖.

It is worth noting that V -ISS may provide a tighter
estimate on the solutions’ norm. For instance, consider the
following widely-used class of quadratic LKF candidates

V (φ) := φ(0)>Pφ(0)+
∫ 0

−θ

φ(τ)>Qφ(τ)dτ,

where P,Q ∈Rn×n denote symmetric positive definite matri-
ces. For such LKF candidates, V -ISS ensures an upper bound
on the solution’s norm in terms of |x0(0)|+

∫ 0
−θ
|x0(τ)|2dτ ,

whereas the classical ISS would upper-bound them in terms
of ‖x0‖, which may be significantly larger for some particular
initial states.

The following statement clarifies the properties induced
by V -ISS and relate it to the classical definition of ISS.

Proposition 2.4 (V -ISS ⇒ ISS): Given a LKF candidate
V : X n→ R+, consider the following statements:

i) System (1) is V -ISS.
ii) There exist β ∈ K L and γ ∈ K∞ such that, for all

x0 ∈X n and all u ∈U m, the flow of (1) satisfies

V (xt(x0,u))≤ β (‖x0‖, t)+ γ(‖u‖), ∀t ≥ 0. (5)

iii) There exist β ∈ K L and γ ∈ K∞ such that, for all
x0 ∈X n and all u ∈U m, the flow of (1) satisfies

|x(t,x0,u)| ≤ β (‖x0‖, t)+ γ(‖u‖), ∀t ≥ 0. (6)

iv) System (1) is ISS.

Then the following relations hold:
i) ⇒ ii) ⇔ iii) ⇔ iv).

If V is coercive, then all four statements are equivalent.

Proof: i) ⇒ ii) ⇒ iii) follows easily from the fact that
by definition V satisfies a sandwich condition as in (3). The
fact that iv) ⇒ ii) is also straightforward by noticing that
V (φ)≤ ψ2(‖φ‖) for certain ψ2 ∈K∞ and for all φ ∈X n.

The equivalence between the items iii), iv) can be found,
e.g., in [11, Proposition 1.4.2].

To analyse the V -ISS property using ISS Lyapunov-
Krasovskii functionals, we use the following notions of ISS
LKF. They all rely on the upper right-hand Dini derivative
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of a map V along the solutions of system (1), defined for all
φ ∈X n and u ∈U m as

V̇u(φ) := limsup
h→0+

V (xh(φ ,u))−V (φ)

h
.

Definition 2.5 (Point-wise/LKF-wise ISS LKF): A LKF
V : X n→ R+ is called:
• an ISS LKF with LKF-wise dissipation in implication

form for the system (1) if there exist α,χ ∈K∞ such
that, for all φ ∈X n and all u ∈U m,

V (φ)≥ χ(‖u‖) ⇒ V̇u(φ)≤−α(V (φ)). (7)

• an ISS LKF with point-wise dissipation in implication
form for the system (1) if there exist α,χ ∈K∞ such
that, for all φ ∈X n and all u ∈U m,

|φ(0)| ≥ χ(‖u‖) ⇒ V̇u(φ)≤−α(|φ(0)|). (8)

• an ISS LKF with point-wise dissipation in sum form for
the system (1) if there exist α,χ ∈K∞ such that, for
all φ ∈X n and all u ∈U m,

V̇u(φ)≤−α(|φ(0)|)+χ(‖u‖). (9)

The following result states that any ISS LKF with point-
wise dissipation sum form is also an ISS LKF with point-
wise dissipation in implication form.

Proposition 2.6 (Sum form ⇒ implication form): For
system (1), if V is an ISS LKF with point-wise dissipation
in sum form then it is also an ISS LKF with point-wise
dissipation in implication form.

Proof: If V is an ISS LKF with point-wise dissipation
in sum form, then (9) holds with some α,χ ∈K∞. Thus,

|φ(0)| ≥ α
−1 ◦2χ(‖u‖) ⇒ V̇u(φ)≤−

1
2

α(|φ(0)|),

and the claim follows.

Our main result will also exploit the following relaxation
of the concept of ISS LKF in implication form.

Definition 2.7 (UGS LKF): A LKF candidate V : X n →
R+ is called a UGS LKF for (1) if, for all φ ∈X n and all
u ∈U m,

V (φ)≥ χ(‖u‖) ⇒ V̇u(φ)≤ 0. (10)

As will be formalized in Section III-C, the existence of a
UGS LKF ensures uniform global stability of solutions.

C. Main result

In [4], it has been conjectured that the existence of an ISS
LKF with point-wise dissipation in sum form is enough to
ensure ISS. In light of Proposition 2.6, this conjecture would
be solved if we managed to show that the existence of an
ISS LKF V with point-wise dissipation in implication form
is enough to ensure ISS. To date, this conjecture remains
open, but our main result states that ISS (and, actually, V -
ISS) indeed holds if V is also a UGS LKF.

Theorem 2.8 (ISS under point-wise dissipation): Let As-
sumption 1 hold. If there exists a LKF candidate V : X n→
R+ which is simultaneously an ISS LKF with point-wise
dissipation (in either implication or sum form) and a UGS
LKF for (1), then (1) is V -ISS and, in particular, ISS.

The proof of this result requires the introduction of further
notions related to V -stability and related LKF tools. It is
therefore postponed to Section IV.

Let us briefly discuss the novelty of Theorem 2.8. In [6],
the authors have considered a variant of ISS LKF, which
imposes the following implication:

V (φ)≥ γ(‖u‖) ⇒ V̇u(φ)≤−α(|φ(0)|). (11)

This condition lies halfway between (7) and (8), in the sense
that the dissipation is requested in a point-wise manner but
it needs to hold whenever the LKF qualitatively dominates
the input norm. It has been shown in [6, Theorem 2] that
it is sufficient to ensure ISS. This result can be seen as a
corollary of Theorem 2.8 as (11) implies that V is both an
ISS LKF with point-wise dissipation in implication form, and
a UGS LKF. Our result therefore strengthens [6, Theorem
2] in three different ways. First, Theorem 2.8 ensures not
merely ISS but also V -ISS, which is a potentially stronger
property. Second, our requirements on V are also weaker
than those in [6, Theorem 2], as V is requested to decay
only when |φ(0)| ≥ γ(‖u‖). Finally, our requirements on the
nonlinearity f (Assumption 1) are weaker than those in [6,
Theorem 2]. Namely, we do not assume Lipschitz continuity
of f with respect to its second argument (the input u), which
was important in [6].

The proof indicates that if the gain χ in (8) is identically
zero, the gain γ in the V -ISS estimate (4) can also be picked
null. This observation yields the following.

Corollary 2.9 (V -ISS with zero gain): If (1) admits an
ISS LKF with point-wise dissipation (in implication or sum
form) with gain χ ≡ 0 (in (8) or (9)), then it is V -ISS with
gain γ ≡ 0 in (4).

Proof: Checking the proof and Theorem 2.8 (and, in
particular, the proof of Proposition 3.4 that we use there),
we see that the system (1) satisfies the V -UGS property with
0 gain and V -ULIM property with 0 gain. This implies by
arguments similar to those in [16, Theorem 2] that (1) is
V -ISS with zero gain.

The property of ISS with zero gain is sometimes referred
to as uniform global asymptotic stability [16], which finds its
roots in the ISS literature on finite-dimensional systems and
was instrumental for the derivation of converse Lyapunov
results [10]. Corollary 2.9 thus extends the classical global
asymptotic result by Krasovskii [5, Chapter 5, Theorem 2.1,
p. 132] from input-free systems to systems with inputs, and
we even obtain V -ISS with zero gain, in contrast to ISS with
zero gain as claimed in the original statement.
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III. V -STABILITY THEORY

On our way to proving Theorem 2.8, we develop the theory
of V -stability notions, in which the solutions’ behavior is
not evaluated through the classical ‖ · ‖-norm, but rather
through a particular LKF. This section aims to introduce
other useful V -stability notions, to provide LKF conditions
to establish them in practice, and, more importantly, to give
a superposition theorem for V -ISS in this new setup.

A. Definitions

In the same way as the classical ISS notion can be
extended to V -ISS, we can consider the following notions.

Definition 3.1 (V -stability notions): Given a LKF candi-
date V : X n→ R+, the system (1) is called

• V -uniformly globally stable (V -UGS) if there exist
σ ,γ ∈K∞ such that, for all x0 ∈X n and all u ∈U m,

V (xt(x0,u))≤ σ(V (x0))+ γ(‖u‖), ∀t ≥ 0. (12)

• V -uniform limit property (V -ULIM) if there exists γ ∈
K∞∪{0} so that, for every ε,r > 0, there exists a τ =
τ(ε,r) ≥ 0 such that, for all x0 with V (x0) ≤ r and all
u ∈U m with ‖u‖ ≤ r, there is a t ∈ [0,τ] such that

V (xt(x0,u))≤ ε + γ(‖u‖). (13)

The system (1) is called UGS, if it is V -UGS with V (φ) =
‖φ‖, and similarly for ULIM.

The UGS property has already been used in the TDS
literature [14], [18]. The ULIM notion shares some simi-
larities with the more classical LIM property [22], [13], at
the difference that the maximal time needed for (13) is here
required to be uniform on bounded balls of both initial states
and inputs. The following result can be shown analogously
to Proposition 2.4.

Proposition 3.2 (V -UGS ⇒ UGS): Given a LKF candi-
date V : X n→ R+, if (1) is V -UGS, then it is UGS.

B. Superposition theorem for V -ISS

In the same way as their classical counterparts [14], [18],
we can characterize V -ISS based on the combination of V -
ULIM and V -UGS.

Theorem 3.3 (V -ISS superposition theorem): Given a
LKF candidate V : X n → R+, the system (1) is V -ISS if
and only if (1) is both V -UGS and V -ULIM.

If V (x) = ‖x‖ for all x ∈ X n, Theorem 3.3 reduces to
part of the ISS superposition theorem for general control
systems proved in [15]. Although this result is instrumental
for the proof of our main result, its proof is too long to
be included in this paper and is thus omitted. The proof
goes along the lines of the proof of the corresponding result
in [15], and consists of several lemmas relating the ULIM
and UGS notions with other central properties including the
uniform asymptotic gain property.

C. Lyapunov-Krasovskii condition for V -UGS

The next result states that the existence of a UGS LKF V ,
as introduced in Definition 2.7, guarantees V -UGS.

Proposition 3.4 (LKF condition for V -UGS): If (1) ad-
mits a UGS LKF V then it is V -UGS (and thus UGS).

Proof: By assumption, there exists χ ∈K∞ such that
(10) holds for all φ ∈X n and all u∈U m. Pick any x0 ∈X n

and any u ∈ U m. Then the maximal solution x(·,x0,u) of
(1) exists on some interval [−θ , tm(x0,u)) with tm(x0,u) ∈
(0,+∞]. We consider two cases, whether or not V (x0) ≤
χ(‖u‖). First let V (x0) ≤ χ(‖u‖). Seeking a contradiction,
assume that there is a time t2 ∈ (0, tm(x0,u)) such that
V (xt2(x0,u)) > χ(‖u‖). Let t1 be maximal time t ∈ [0, t2)
such that V (xt(x0,u)) = χ(‖u‖), which exists by continuity
of solutions.

Due to the continuity of solutions, V (xt(x0,u)) > χ(‖u‖)
for all t ∈ (t1, t2), and hence it holds from (10) that

V̇u(t+·)(xt(x0,u))≤ 0, ∀t ∈ (t1, t2),

and thus V (xt(x0,u)) ≤ V (xt1(x0,u)) = χ(‖u‖) for all t ∈
(t1, t2), a contradiction. We conclude for the case V (x0) ≤
χ(‖u‖) that

V (xt(x0,u))≤ χ(‖u‖), ∀t ∈ [0, tm(x0,u)). (14)

We now proceed to the second case, namely when V (x0)>
χ(‖u‖). Then either V (xt(x0,u)) > χ(‖u‖) for all t ∈
[0, tm(x0,u)), or there is some minimal time t3 > 0 so that
V (xt3(x0,u)) = χ(‖u‖) ≤ V (x0). Arguing as above, we see
that in that case

V (xt(x0,u))≤V (x0), ∀t ∈ [0, t3). (15)

For t > t3 we have by cocycle property and above argu-
ments that for all t ∈ [t3, tm(x0,u))

V (xt(x0,u)) =V (xt−t3(xt3(x0,u),u(t3 + ·)))≤ χ(‖u‖). (16)

We conclude from (14) and (15) that, in all cases,

V (xt(x0,u))≤max{V (x0),χ(‖u‖)}, ∀t ∈ [0, tm(x0,u)). (17)

Since (1) satisfies the BIC property (see, e.g., [3, Theorem
2]), (17) ensures that tm(x0,u) = +∞, and thus this estimate
holds for all t ≥ 0, and V -UGS follows. UGS is then a
consequence of Proposition 3.5.

D. Bounds on solutions’ norm

We finally present some technical results providing bounds
on the solutions (and on their derivative) of a V -UGS system.

While the definition of V -UGS provides an upper bound
on V (xt), a bound on the whole history norm can be obtained
after one full delay period.

Proposition 3.5 (Bound on history norm): Given a LKF
candidate V : X n → R+, if (1) is V -UGS then there are
σ ,γ ∈K∞ such that, for all x0 ∈X n and all u ∈U m,

‖xt(x0,u)‖ ≤ σ(V (x0))+ γ(‖u‖), ∀t ≥ θ . (18)
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Proof: Since V is a LKF candidate and (1) is V -UGS,
there are ψ1, σ̃ , γ̃ ∈K∞ so that, for all x0 ∈X n and u∈U m,

ψ1(|x(t,x0,u)|)≤ σ̃(V (x0))+ γ̃(‖u‖), ∀t ≥ 0.

As ψ
−1
1 (a+b)≤ ψ

−1
1 (2a)+ψ

−1
1 (2b) ∀a,b≥ 0, we have

|x(t,x0,u)| ≤ ψ
−1
1
(
2σ̃(V (x0))

)
+ψ

−1
1
(
2γ̃(‖u‖)

)
.

Consequently, for all t ≥ θ ,

‖xt(x0,u)‖= max
τ∈[−θ ,0]

|x(t + τ,x0,u)| ≤ σ(V (x0))+ γ(‖u‖),

with σ := ψ
−1
1 ◦2σ̃ and γ := ψ

−1
1 ◦2γ̃ .

V -UGS also provides a bound on the solutions’ derivative
after a full delay period. To establish this fact, we first make
the following observation.

Proposition 3.6 (Bound on vector field): Under Assump-
tion 1, there exist ξ1,ξ2 ∈K∞ such that

| f (φ ,v)| ≤ ξ1(‖φ‖)+ξ2(|v|), ∀φ ∈X n, v ∈ Rm. (19)

Proof: Pick any φ ∈ X n and any v ∈ Rm. Due to
Lipschitz continuity of f on bounded balls w.r.t. the first
argument, there is a strictly increasing continuous function
L (characterizing a Lipschitz constant of f ), so that

| f (φ ,v)| ≤ | f (0,v)|+ | f (φ ,v)− f (0,v)|
≤ ξ (|v|)+L(max{‖φ‖, |v|})‖φ‖,

where ξ (s) := max|v|≤s | f (0,v)| for all s≥ 0. As f (0,0) = 0
it holds that ξ (0) = 0. Since f is continuous in its second
argument, it also holds that ξ is a continuous nondecreas-
ing function: see [12, Lemma A.27], and hence it can be
upperbounded by K∞-function. Furthermore, we have

| f (φ ,v)| ≤ ξ (|v|)+L(max{‖φ‖, |v|})max{‖φ‖, |v|}
≤ ξ (|v|)+L(‖φ‖)‖φ‖+L(|v|)|v|.

The function L(·) can be majorized by a continuous increas-
ing function, and thus r 7→ L(r)r can be majorized by a K∞

function. These considerations establish Proposition 3.6.

Based on this, we have the following.

Lemma 3.7 (Bound on solutions’ derivative): Given a
LKF candidate V : X n → R+, assume that (1) is V -UGS,
and let Assumption 1 hold. Then there exist µ1,µ2 ∈K∞ so
that, for all x0 ∈X n and all u ∈U m,

|ẋ(t,x0,u)| ≤ µ1(V (x0))+µ2(‖u‖), ∀t ≥ θ a.e. (20)

Proof: By Proposition 3.5, there exist σ1,σ2 ∈K∞ such
that, for all x0 ∈X n and all u ∈U m,

‖xt(x0,u)‖ ≤ σ1(V (x0))+σ2(‖u‖), ∀t ≥ θ .

It follows from Proposition 3.6 that there exist ξ1,ξ2 ∈K∞

such that, for almost all t ≥ θ ,

|ẋ(t,x0,u)|=
∣∣ f (xt(x0,u),u(t))

∣∣
≤ ξ1(‖xt(x0,u)‖)+ξ2(|u(t)|)
≤ ξ1

(
σ1(V (x0))+σ2(‖u‖)

)
+ξ2(‖u‖)

≤ ξ1
(
2σ1(V (x0))

)
+ξ1

(
2σ2(‖u‖)

)
+ξ2(‖u‖)

and Lemma 3.7 follows with µ1 := ξ1 ◦ 2σ1 and µ2 := ξ1 ◦
2σ2 +ξ2.

IV. PROOF OF THEOREM 2.8

Now we can establish our main result. In view of Propo-
sition 2.6, it is enough to assume that V is both an ISS
LKF with point-wise dissipation in implication form and
a UGS LKF. The proof consists in exploiting the V -ISS
superposition theorem (Theorem 3.3) and thus to show that
(1) is both V -UGS and V -ULIM. The former is a direct
consequence of Proposition 3.4. For the latter, seeking a
contradiction, assume that the system (1) does not have V -
ULIM property with some function τ to be defined later and
with the gain γ := ψ2 ◦ 2χ , where χ ∈K∞ is a Lyapunov
gain as in Definitions 2.7 and 2.5 (if the Lyapunov gains
are different, we can define χ as the maximum of both)
and ψ2 ∈K∞ is an upper bound on V as in the sandwich
condition (3). Hence, there are some r,ε > 0, some x0 ∈X n

with V (x0)≤ r, and some u ∈U m with ‖u‖ ≤ r such that

V (xt(x0,u))≥ ε + γ(‖u‖), ∀t ∈ [0,τ(r,ε)]. (21)

By (3), it follows that

ψ2(‖xt(x0,u)‖)≥ ε +ψ2 ◦2χ(‖u‖), ∀t ∈ [0,τ(r,ε)], (22)

which in turn implies that

‖xt(x0,u)‖ ≥max
{

ψ
−1
2 (ε),2χ(‖u‖)

}
, ∀t ∈ [0,τ(r,ε)].

Hence, there exists an increasing finite sequence of time
instants tk ∈ [0,τ(r,ε)], k ∈ {0,1, . . . ,K}, K ∈ N, satisfying
tk− tk−1 ≤ θ for all such k, such that

|x(tk,x0,u)| ≥max
{

ψ
−1
2 (ε),2χ(‖u‖)

}
. (23)

Note that

K ≥ τ(ε,r)
θ
−1. (24)

By Lemma 3.7, there exist µ1,µ2 ∈K∞ such that

|ẋ(t,x0,u)| ≤ µ1(V (x0))+µ2(‖u‖)≤ µ(r), ∀t ≥ θ a.e., (25)

where µ := µ1 +µ2. For each k, consider the interval

Ik :=

[
tk−

ψ
−1
2 (ε)

2µ(r)
, tk +

ψ
−1
2 (ε)

2µ(r)

]
.

As ψ2 is an upper bound for V , it can be chosen arbitrarily
large. Thus, we can assume that ψ2(s) ≥ s for all s ≥ 0

and that ψ
−1
2 is picked such that ψ

−1
2 (ε)

µ(r) ≤ θ , so that the
above intervals do not overlap. In view of (25), for all
k ∈ {0, . . . ,K}, we have for all t ∈ Ik that

|x(t,x0,u)| ≥max

{
ψ
−1
2 (ε)

2
,2χ(‖u‖)−

ψ
−1
2 (ε)

2

}
.

Note that if c > max{a,2b− a} for some a,b,c ≥ 0, then
c > max{a,b} (consider a > b and a≤ b). It follows that

|x(t,x0,u)| ≥max
{

1
2

ψ
−1
2 (ε),χ(‖u‖)

}
, ∀t ∈ Ik. (26)
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Since ψ2(s)≥ s for all s≥ 0, (21) ensures that

V (xt(x0,u))≥ χ(‖u‖), ∀t ∈ [0,τ(r,ε)].

Consequently, we get from (10) that

V̇u(t+·)(xt(x0,u))≤ 0, ∀t ∈ [0,τ(r,ε)]. (27)

Using first [17, Lemma 3.4], and then (27), it follows that

V (xτ(r,ε)(x0,u))−V (x0)≤
∫

τ(r,ε)

0
V̇u(t+·)(xt(x0,u))dt

≤
K

∑
k=0

∫
Ik

V̇u(t+·)(xt(x0,u))dt.

Using (8) and (26) on the intervals Ik, we get that

V (xτ(r,ε)(x0,u))−V (x0)≤−
K

∑
k=0

∫
Ik

α(|x(t,x0,u)|)dt

≤−
K

∑
k=0

∫
Ik

α ◦ 1
2

ψ
−1
2 (ε)dt

≤−(K +1)
ψ
−1
2 (ε)

µ(r)
α ◦ 1

2
ψ
−1
2 (ε)

≤−
τ(r,ε)ψ−1

2 (ε)

θ µ(r)
α ◦ 1

2
ψ
−1
2 (ε),

where the last inequality results from (24). This implies that

r ≥V (x0)≥
τ(r,ε)ψ−1

2 (ε)

θ µ(r)
α ◦ 1

2
ψ
−1
2 (ε). (28)

For the particular choice

τ(r,ε) :=
4rθ µ(r)

ψ
−1
2 (ε)α ◦ 1

2 ψ
−1
2 (ε)

, (29)

(28) yields a contradiction. Thus, (1) satisfies the V -ULIM
estimate (13) with the function τ given in (29) and the gain
γ = ψ2 ◦2χ , which concludes the proof.

V. CONCLUSION AND PERSPECTIVES

We have demonstrated that ISS can be derived from an
ISS LKF with point-wise dissipation, provided that the same
LKF can be used to establish UGS. For this, we have relied
on a superposition principle for a variant of ISS, in which
solutions are estimated through the LKF rather than through
the classical ‖ · ‖-norm of the state.

While our result relaxes the ISS conditions imposed in
[6], it is still far from solving the original question posed
in [4], namely whether a point-wise dissipation is enough
to guarantee ISS. A potential next step in that direction
would be to show that ISS indeed holds under a point-wise
dissipation if the system is assumed to be UGS, thus without
assuming a common LKF for both ISS and UGS.
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