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Abstract— The trajectory-based traveling salesman problem
represents an extension of the classical traveling salesman
problem, aimed at determining the most optimal trajectory that
passes through a designated set of points. This paper introduces
a novel formulation, termed the Energy-Optimal Trajectory-
Based Traveling Salesman Problem (EOTB-TSP), which is
grounded in an innovative energy assessment model. This model
takes into account the intricate dynamics of unmanned aerial
vehicles (UAVs). In addition, the EOTB-TSP is cast as a bilevel
optimization challenge. To tackle this complex problem, we
introduce a modified genetic algorithm specifically tailored for
its resolution. To validate the effectiveness of our proposed
approach, we conduct a series of experiments and apply it to
real-world scenarios. Our evaluation and comparative analyses
unequivocally demonstrate the high efficiency of our method in
minimizing energy consumption.

I. INTRODUCTION

The Traveling Salesman Problem (TSP) stands as a classic
combinatorial optimization challenge. Its primary objective
revolves around identifying the most efficient tour within
a provided set of cities, ensuring that each city is visited
precisely once. The TSP has a wide range of applications, in-
cluding search and rescue [1], [2], [3], infrastructure inspec-
tion [4], [5], [6], [7], and logistics [8], [9], [10]. However,
in many real-world scenarios, the generated path may not be
directly executable on robots due to dynamic constraints such
as velocity and acceleration limits. This highlights the need
for incorporating dynamic constraints into TSP to generate
feasible trajectories for real robot systems.

For trajectory-based TSP, the path of robots is often for-
mulated as Dubins path or Bézier curves. In [11], to address
the air-ground coordination problem, the UAV is modeled as
a Dubins vehicle. The path planning of the UAV is defined
as a Dubins traveling salesman problem with the dynamic
neighborhood to determine the shortest path that permits the
UAV to visit all moving unmanned ground vehicles (UGVs).
They also proposed an efficient memetic algorithm to solve
this problem. In contrast with Dubins path where only the
turning radius and forward velocity are considered in the
generated trajectory, Jan and Petr [12] proposed to use Bézier
curves to simulate the movement trajectory of the UAV.
This approach seeks to find a fast and smooth trajectory in
three-dimensional space, enabling more precise control over
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the speed and curvature of the trajectory than Dubins path.
For any shape trajectory-based TSP, Fabian and Katharina
[13] discrete the velocity and direction when traversing
each point to find the trajectory with the shortest distance.
This approach is effective in improving the performance of
TSP problems involving complex trajectories or non-uniform
motion patterns.

The above works aim to find the trajectory with the
shortest distance or minimum time, which can be considered
as the simplification of energy consumption since it reduces
the amount of work required by the propulsion system
to move the robot from one point to another. However,
these approaches do not capture all of the factors that
influence energy consumption, such as the robot’s mass,
the efficiency of its propulsion system, and environmental
conditions like wind resistance or friction, to better estimate
energy consumption, many researchers focus on building
accurate energy models to generate the energy optimal
trajectory. It is claimed in [14] that a large amount of
energy is consumed by the propeller during the operation
of the UAV, and the optimal energy is to minimize the
product of torque generated by the motor and its speed.
Fabio et al. [15] built the energy model of the UAV based
on electrical consumption. This model integrates the UAV’s
dynamic model with the electrical model of its brushless DC
motor, allowing for the calculation of energy consumption
using current and voltage measurements through the motor.
However, implementing it in online trajectory optimization
can be challenging due to the complexity of the energy
consumption models. As a result, Rashid et.al [16] proposed
a simplified energy consumption model which has been
verified through lots of experiments.

For the integration of energy optimal trajectory optimiza-
tion and trajectory-based traveling salesman problem, Wang
et.al [17] proposed a general energy minimization traveling
salesman problem, where the energy consumption is related
to travel distance and payload. Kevin et al. [18] used a
generalized traveling salesman problem with neighborhoods
to model the mission of UAV and use a genetic algorithm
with the incorporation of an energy model to solve it. How-
ever, these approaches stay in the path stage, the dynamic
constraints of robots are not considered in the formulation.
The EOTB-TSP is a particularly challenging problem, as
it involves both trajectory optimization and TSP, both of
which are known to be NP-hard problems. Developing an
effective formulation that accounts for dynamic constraints
while remaining computationally tractable is an ongoing
research challenge in the field of robotics.
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Motivated by the challenges and limitations of existing
approaches, this paper proposes a new formulation for solv-
ing the energy-optimal trajectory-based traveling salesman
problem in UAV applications. Our approach represents an
improvement over previous methods by explicitly accounting
for dynamic constraints and energy evaluation in the opti-
mization process. Specifically, the TSP and trajectory gen-
eration are integrated as a bilevel optimization problem that
can be solved efficiently using a modified genetic algorithm.
To evaluate the effectiveness of our proposed approach,
we conduct a series of real-world experiments and also
apply the approach in real building inspection applications.
The results of these experiments demonstrate the better
performance of our approach compared to other methods,
including classical TSP algorithms and other trajectory-based
TSP algorithms. The major contributions of this paper are
summarized as follows: i) The formulation of the energy-
optimal trajectory-based traveling salesman problem, which
considers dynamic constraints and trajectory feasibility of
the UAV; ii) the decomposition of the complex EOTB-
TSP into two optimization problems and their solutions
with an efficient modified genetic algorithm; and iii) the
implementation of the proposed technique for tackling a real
industrial application.

The remainder of this paper is organized as follows.
In Section II, we give some preliminaries of the traveling
salesman problem and the energy consumption model of
UAV. Section III shows the problem formulation of EOTB-
TSP. The proposed modified genetic algorithm is presented
in Section IV. Section V presents the experiments. The real
application of the proposed approach is shown in Section VI.
Conclusions are presented in Section VII.

II. PRELIMINARIES

In this section, we give a brief introduction to the traveling
salesman problem and the energy consumption model of
UAV. In TSP, there are n cities located at different locations,
the goal is to find the shortest path that travels through all
these cities without repetition. Define the cost of traveling
from city vi to the city v j, i, j = 1, . . . ,n, i ̸= j as ci j, the TSP
can be formulated into the following optimization problem:

min
n

∑
i=1

n

∑
j=1

ci jvi j

s.t. ∑
j

vi j = 1, ∀i

∑
i

vi j = 1, ∀ j

ui−u j +nvi j ≤ n−1, ∀i, j ̸= 0
vi j ∈ {0,1}, ∀i, j

ui,u j ∈ R, ∀i, j.

(1)

The first two constraints are used to guarantee that each city
is visited and only visited once, and the third constraint en-
sures that there is no sub-tour. In classical TSP, ci j represents
the Euclidean distance between two cities. As a result, by

solving the above optimization problem, the shortest path
can be found.

For the energy consumption model, we adopt the model
presented in [16]. The rate at which a UAV consumes battery
power is dependent on the sum of forces acting against it,
namely the forces of acceleration and aerodynamic drag. This
can be simplified by expressing it as a linear combination of
variables including velocity, acceleration, and mass. Define
the energy consumption as E, it can be written in the
following form:

E =

 β1
β2
β3

T ∥∥⃗vxy
∥∥∥∥⃗axy
∥∥∥∥⃗vxy

∥∥∥∥⃗axy
∥∥

+

 β4
β5
β6

T ∥⃗vz∥
∥⃗az∥
∥⃗vz∥∥⃗az∥


+

 β7
β8
β9

T m
v⃗xy · w⃗xy

1

 (2)

where β1, . . . ,β9 are the coefficients to be calculated, v⃗xy and
a⃗xy are the velocity and acceleration in the horizontal plane,
v⃗z and a⃗z are the velocity and acceleration in the vertical
plane, m is the payload weight, and w⃗xy is the wind speed
in horizontal plane.

III. PROBLEM FORMULATION

In this section, we formulate the problem of finding the
energy optimal trajectory that travels through a set of points
as a bilevel optimization problem. Let xi be the ith point,
i= 1, . . . ,N, and p(xi)∈R3 be the position of xi. To calculate
the trajectory, let S be the set of the order of the tours as
follows:

S =

{
X | X = [x1, . . . ,xN],

N⋃
k=1

xk = A

}
(3)

where A= {x1, . . . ,xN} is the set of all points. X = [x1, . . . ,xN]
represents all the possible touring orders that satisfy each
point is visited only once. As a result, there are a total of N!
elements in the set S, and each element represents one order
of touring.

Consequently, the EOTB-TSP can be formulated as an
energy minimization problem over the set S, seeking to
identify the trajectory of the least energy consumption. The
mathematical formulation of this optimization problem is
provided below:

min E(T (X))

s.t. X ∈ S

p(Xi) ∈T (X), ∀i ∈ N.

(4)

where Xi denotes the ith element of X , while T (X) repre-
sents the optimal energy trajectory that traverses all points
in the order stipulated by X . The second constraint ensures
that the energy-optimal trajectory must pass through all
positions corresponding to the set of points. However, this
problem is too complex to be solved; consequently, we
employ a decoupling strategy to address it through a bilevel
optimization procedure.
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For the energy optimal trajectory generation of one se-
quence of touring X . It can be divided into N−1 segments.
Let T denote the total travel time and Ti denote the elapsed
time of Xi. To define the trajectory that travels these N points,
we design a polynomial function of order n as follows:

f (t) =



n

∑
k=0

λ1,ktk 0≤ t < T1

n

∑
k=0

λ2,ktk T1 ≤ t < T2

...
n

∑
k=0

λN−1,ktk TN−1 ≤ t ≤ TN.

(5)

The velocity and acceleration of the trajectory can be defined
by Eq. 6:

v(t) =
∂ f
∂ t

, a(t) =
∂ 2 f
∂ t2 . (6)

According to Eq. 2, the energy consumption of segment i
can be defined as follows:

Ei =
∫ Ti

Ti−1

(C1v(t)+C2a(t)+C3v(t)a(t))dt (7)

where C1,C2,C3 ∈ R3 are the coefficients determined by
the UAV. Combining Eqs. 5–7, Ei can be rewritten as the
following equation:

Ei =
1
2

λ
T
i Hiλi +FT

i λi (8)

where

λi = [λi,0,λi,1, · · · ,λi,n]
T, (9)

and

Fi =
∫ Ti

Ti−1


0

C1
...

C1ktk−1 +C2k(k−1)tk−2

dt. (10)

Hi can be calculated by the following equation:

Hi =
∫ Ti

Ti−1

C(QT
i +Qi)dt (11)

where

Qi =


0 0 0 · · · 0
0 0 2 · · · 5ntn−2

...
...

...
. . .

...
0 0 2ntn−1 · · · 20ntn+2


(n+1)×(n+1)

. (12)

As a result, the problem of energy optimal trajectory gen-
eration of one sequence can be written in the following

optimization problem:

min
1
2

λ
THλ +FT

λ

s.t. f1(0) = P(X1)

fN−1(TN) = P(XN)

fi+1(Ti) = fi(Ti)

vi+1(Ti) = vi(Ti)

ai+1(Ti) = ai(Ti)

∥v(t)∥< vmax, ∀t ∈ [0,TN]

∥a(t)∥< amax, ∀t ∈ [0,TN]

i = 1, . . . ,N−2

(13)

where λ T = [λ T
1 , . . . ,λ

T
N−1], FT = [FT

1 , . . . ,FT
N−1], and H =

block diag(H1, · · · ,HN−1). The first and second constraints
ensure that the generated trajectory must pass through the
first and last points. fi, vi, and ai represent the ith segment of
function f , v, and a. The third to fifth constraints ensure the
continuity of position, velocity, and acceleration between any
two trajectories. The variables vmax and amax represent the
maximum velocity and acceleration, respectively. The sixth
and seventh constraints impose bounds on the velocity and
acceleration of the UAV, limiting their magnitudes within
the values specified by vmax and amax. This problem is
a quadratic programming problem, in which the objective
function is to minimize the energy cost of the trajectory.
Solving the aforementioned optimization problem, we can
get the minimum energy cost value of each X in S. As a
result, the EOTB-TSP becomes the problem of finding the
element of S with the smallest value.

IV. PROPOSED MODIFIED GENETIC ALGORITHM

In this section, we present the modified genetic algorithm
that can solve EOTB-TSP efficiently. The overall framework
of the proposed problem and solver is shown in Fig. 1. Given
a set of points that need to be traveled, every order of visit
is regarded as one gene. Every gene is checked to see if it is
present in the gene graph for each iteration. If it is a brand-
new one, an energy-optimal trajectory generation process
will be performed to determine the adaption of this gene and
record it in the gene graph. The genes with high adaption are
more likely to be chosen as the next generation. After the
result convergence, the optimal trajectory that travels through
all these points can be generated.

Fig. 1. Overall framework of the proposed EOTB-TSP.

The process of the proposed modified genetic algorithm
is detailed in Alg. 1. The input of the algorithm is the
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points X that needs to be visited, the maximum number
of iterations iter, the number of total genes Ng, the rate of
cross γc, and the rate of mutation γm. According to [19],
the performance of the genetic algorithm is related to the
initial genes. As a result, at initialization configuration, we
use the distance between two points to seek potential good
genes. The detailed process is shown in Alg. 2. Initially,
one point is randomly selected from X as the departing
point (lines 3-4). The other point in X that has the shortest
distance to xs is selected as the next point and recorded
in set Gene until all the points are visited (lines 5-12).
card() denotes the number of elements of a set. After genes
initialization, iterations are performed to update and select
genes gradually, meanwhile a gene map is maintained to
record the order of visits, generated trajectory, and energy
cost. Each step checks each gene in G to see if it is listed
on the gene map. The energy cost and the trajectory can be
directly acquired if they have already been recorded (lines
4-6). The method greatly reduces calculation complexity. For
those genes that have not been recorded, an energy-optimal
trajectory generation process is used to get trajectory and
energy cost (line 8). The trajectory generation is formulated
into an optimization problem using Eq. 13. After solving
the optimization problem, the adaption of each gene and
the gene map can be updated (lines 9-10). The genes with
higher adaption are chosen as the next generation (line 11).
According to the rate of the cross, genes are randomly
selected to exchange their sequences (line 12). Furthermore,
a mutation process is performed to avoid the local optimal
(line 13). Finally, the trajectory with the lowest energy cost
can be extracted from the gene map (line 14).

Algorithm 1: Modified Genetic Algorithm
Input: X , iter,Ng,γc,γm
Output: T

1 G← GreedInit(X ,Ng);
2 M←{};
3 while i≤ iter do
4 foreach gene g ∈ G do
5 if InGeneMap(g,M) then
6 Eg,Tg←CheckGeneMap(g,M);
7 else
8 Eg,Tg← Tra jectoryGeneration(g);

9 adapg← 1
Eg

10 M←U pdateGeneMap(Eg,Tg);
11 G←Choose(G,adap);
12 G←Cross(G,γc);
13 G←Mutation(G,γc);

14 E,T ← FindLowestEnergy(M);

V. EVALUATION AND COMPARISON

In this section, we implement the proposed algorithm
in outdoor environments using a self-developed UAV plat-
form depicted in Fig. 2. The UAV has a gross weight of

Algorithm 2: GreedInit
Input: X ,Ng
Output: G

1 G←{};
2 while card(G)≤ Ng do
3 xs← RandomSelect(X );
4 Gene←{xs};
5 while card(Gene)≤ card(X ) do
6 mindistance← 0;
7 xl ← Last(Gene);
8 foreach x ∈X ,x /∈ Gene do
9 if Distance(x,xl) then

10 mindistance← Distance(x,xl);
11 xB← x;

12 Gene←{Gene,xB}
13 G←{G,Gene};

1.5 kg and employs a Pixhawk flight controller. Xavier
NX serves as the onboard computer for trajectory exe-
cution, the RTK module provides precise localization in-
formation, and the power measurement unit records the
energy consumption. The velocity and acceleration limits
are set as vmax = [3.0,3.0,2.5] and amax = [2.5,2.5,2.0].
Based on the data collected from experiments, the least
square is used to get the value of coefficients. The co-
efficients of the self-develop UAV are as follows: C1 =
[0.3652,0.6612,0.6819], C2 = [2.9709,1.4287,0.2507], and
C3 = [−1.9457,−1.1289,−0.2041].

Fig. 2. Self-developed UAV equipped with RTK, FPV camera, power
measurement unit, and onboard computer.

To evaluate the performance of the proposed algorithm,
we conduct experiments in both small and large-scale en-
vironments. The small-scale scenario is defined as having
a point-to-point distance of up to 10m, which aligns more
closely with the requirements of power line and building
inspection. Conversely, the large-scale environment is char-
acterized by point-to-point distances exceeding 50m, which
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are more relevant to the needs of logistics, search, and
rescue operations. We compare the proposed approach with
several trajectory-based TSP algorithms. Euclidean-TSP is
the traditional traveling salesman problem to minimize the
total travel distance. Bézier-TSP-D [12] is another trajectory-
based TSP where the points are connected with the Bézier
curve, and the objective is to minimize the trajectory length.
Bézier-TSP-E is the modified version of Bézier-TSP-D where
we insert our energy evaluation model to find the Bézier
curve with the lowest energy cost. TSP-TG [7] is a two-
stage method, the shortest path is generated in the first stage
by solving TSP, and then trajectory optimization is used to
convert the path into a trajectory.

The detailed comparison result is shown in Table I.
The proposed EOTB-TSP method performs better than the
other trajectory-based TSP on both small and large scales,
especially in small scales. This is due to the concentration
of points within small-scale scenes, which necessitates con-
tinuous acceleration and deceleration by the UAV during
movement, resulting in significant increases in energy con-
sumption. In several experimental scenarios, our proposed
approach demonstrated smaller finish times and energy costs
than alternative methods, despite having a longer path length.
This suggests that the EOTB-TSP method enables more
mission points to be completed in a single flight, while also
achieving faster execution speeds.

VI. REAL APPLICATION

To verify the performance of the proposed EOTB-TSP
in real applications, we deploy the proposed system for a
real-world inspection task. Three UAVs equipped with RGB
and infrared cameras are used to conduct an inspection and
reconstruction task for a logistics center building with a
dimension of 36m × 27m × 100m as shown in Fig. 3.
There are numerous flaws of various degrees, some of which
call for more thorough inspections to guarantee the security
of the surrounding built environment. To comprehensively
survey this building, approximately 3600 viewpoints must
be reached by UAVs to capture images. However, the whole
work is time-consuming in a such large-scale environment,
batteries need to be changed frequently during the operation.
As a result, we divide the task for each UAV and implement
the proposed EOTB-TSP on each UAV to make full use of
the battery to collect more images during one flight.

In this task, the viewpoints are generated in a vertical
direction at a fixed distance of 10 meters above the building
surface. Fig. 4 is the real flight trajectory generated by
EOTB-TSP and Euclidean distance TSP. This trajectory
travels through 66 viewpoints, the UAV takes pictures at
each viewpoint. The velocity limit for the flight is set as
1 m/s. Notably, while the path distances generated by these
two methods are similar, executing the EOTB-TSP trajectory
requires only 6 minutes and 35 seconds, with an energy
consumption of 1050 mAh, indicating a 19% improvement in
efficiency compared to the Euclidean distance TSP method.

Fig. 3. Three UAVs cooperative inspection for a logistics center building.

In addition, we provide a summary of the correlation between

Fig. 4. The real flight trajectory of Euclidean-TSP and EOTB-TSP (66
viewpoints are given).

battery power and the number of feasible viewpoints that can
be executed. Table II illustrates that with increasing battery
power, the trajectory generated by the EOTB-TSP method
can access a larger number of viewpoints. Specifically,
when using a UAV with a 3850 mAh battery, our proposed
approach can cover 63 additional points in a single flight.
The experimental video is available at Youtube.

VII. CONCLUSION

We have introduced in this work an innovative EOTB-
TSP, specifically tailored for real-world applications. Our
approach seamlessly combines energy-efficient trajectory
planning with the classic traveling salesman problem, thus
framing them within the context of a bilevel optimization
problem. To effectively tackle this intricate challenge, we
have introduced a highly efficient modified genetic algo-
rithm, custom-designed to address the unique demands of
the EOTB-TSP. Our comparative analysis reveals that our
approach not only demonstrates practical feasibility but
also outperforms alternative methods. Notably, it achieves
remarkable energy savings when contrasted with other ap-
proaches.
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