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Abstract— In this paper, we propose an adaptive prescribed-
time control algorithm for the fixed-wing unmanned aerial
vehicle (UAV). How to follow the desired trajectory within a
predetermined time is a problem worth investigating in fixed-
wing UAV tracking missions. To this end, a novel method based
on time-varying state feedback and segmented neural network
(SNN) is proposed, using practice prescribed-time input-to-
state stable to guarantee the convergence of all signals in the
prescribed time. Considering the input saturation and state
constraints, we give the basis for selecting the prescribed time
with different initial conditions, rather than an arbitrary one.
Finally, the simulation shows that the proposed method can
realize prescribed-time tracking control with input saturation,
despite large initial states, and the magnitude of the control
changes moderately.

I. INTRODUCTION

The system must reach the predefined position within a
prescribed time in many engineering practices, such as mis-
sile guidance and space station docking. The existing meth-
ods are mainly finite-time, fixed-time and prescribed-time
stabilization to meet the time constraint. The settling time
of the finite-time stabilization is related to the initial state
[1]. Fixed-time stabilization has overcomed this problem, but
its settling time is quite conservative [2]. Subsequently, the
prescribed-time controller has been proposed [3], and it is
explicitly classified into two approaches: time-based scaling
and state-based scaling.

A series of time-based scaling prescribed-time control
methods have been proposed [4][5]. However, the structure
of those methods is complex, and there are few practical
application cases. The state-based scaling approach was
first proposed and developed by Song [6]. Time-varying
functions are used to scale the states to achieve prescribed-
time convergence for the norm-form system [7]. Further,
the convergence rate is improved in [8], and prescribed-
time convergence is achieved with a state observer for the
canonical system [9].

It should be noted that none of the above methods
considers the input saturation, which must be addressed
in practical systems. A saturation function based on the
gaussian error function (GEF) is introduced to develop an
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adaptive prescribed-time sliding mode controller [10]; a time-
varying Barrier Lyapunov Function (BLF) is employed to
achieve the prescribed-time tracking [11].

The control of the UAV has been a research hotspot
in recent years, which is approvingly demanding in time
and space when performing tasks such as coordination,
formation, and siege. A prescribed-time sliding mode control
strategy is proposed for quadrotor UAVs [12]. In [13], the
trajectory tracking problem under the input saturation of a
quadrotor is solved with a prescribed-time stability control
method. With model uncertainty and external disturbances, a
fixed-time prescribed performance controller is proposed for
a longitudinal model of the fixed-wing UAV [14].

Although there are many studies on prescribed-time meth-
ods, how to choose the parameter of the prescribed time has
yet to be been considered. The prescribed-time controller
is developed for higher-order integrator systems based on
Time Base Generators (TBG) [15]. However, TBG has a
complex structure, which is hard to select parameters flexibly
in advance.

Inspired by the aforementioned works, the main contribu-
tions include the following:

(1) Combined with the model of the fixed-wing UAV, the
time-varying function and SNN, we propose a prescribed-
time control method under the input saturation and state con-
straints. Furthermore, the theoretical analysis for determining
of the parameter of the prescribed time is presented.

(2) The combination of SNN and the adaptive method
tackles external disturbances and the input saturation ef-
fectively, and the prescribed-time input-to-state stability is
proved by Lyapunov stability analysis, which guarantees the
prescribed-time convergence of all closed-loop signals. Com-
pared with [10][16], the proposed method can compensate
disturbances in a better way, and the adoption of SNN has
a better adaptability to different initial states.

(3) To our best knowledge, it is the first time that a two-
segment method to select the parameter of the prescribed
time is proposed. Compared with [17], the proposed method
is more tolerant to the initial states and the magnitude of
control changes moderately. Moreover, the selected parame-
ter of the prescribed time is reasonable, which is verified by
the simulation.

The rest of the paper is organized as follows. First, we give
the necessary preliminaries in Section II. Then in Section
III, we present the design and analysis of the proposed
controller and the basis for selecting the parameter of the
prescribed time. Section IV demonstrates our simulation
results and compares them with the existing work. Finally,
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the conclusion is drawn in Section V.
Notations: Throughout this paper, as for any vector

x(t) ∈ Rn, the norm of x(t) is defined as ∥x(t)∥ =√
x2

1(t)+ · · ·+ x2
n(t) and x2 = xT x. Besides, the term λmin(A)

with A ∈ Rn×n denotes the minimum eigenvalue of A, and
exp(x) represents ex.

II. PRELIMINARIES

In this section, we give the model of the fixed-wing UAV
first, and some relevant definitions and lemmas are presented.

A. Model of Fixed-wing UAV

Refer to our previous work [18], the model of the fixed-
wing UAV with external disturbances and unmodeled dy-
namics can be expressed as

ẋ = vcosψcosγ +wx

ẏ = vsinψcosγ +wy

ż = vsinγ +wz

v̇ =
F
m

(1)

ψ̇ =
g
v

tanφc

γ̇ = τ0(γc − γ),

where x,y,z represent the position of the UAV, v,ψ,γ repre-
sent the airspeed, course angle and path angle, respectively.
F,φc,γc respectively denote the combined external force,
commanded roll angle and commanded path angle as the
control inputs. m,g are the mass and gravitational acceler-
ation, and τ0 is the time constant. wx,wy,wz represent the
bounded disturbances along x,y,z, with unknown boundaries
of |wi| ≤ wim, i = x,y,z.

As a practical system, the fixed-wing UAV is constrained
by the control inputs and the rate of states, therefore the
constraints and the input saturation are introduced as follows:

|ψ̇| ≤ ψ̇m, |γ|<
π

2
, |γ̇| ≤ γ̇m, v ≤ v ≤ v̄, |v̇| ≤ v̇m,

|ui| ≤ uim, i = 1,2,3, (2)

where u1 = F
m , u2 = g

v tanφc, u3 = τ0(γc − γ) represent
acceleration, heading angular rate and pitch angular rate,
whose maximum values are v̇m, ψ̇m, γ̇m, respectively, i.e.
u1m = v̇m, u2m = ψ̇m, u3m = γ̇m.

To restrict the control inputs in this paper, we use the
following function [17]:

ρ(α) = ι
∗tanh(

α

ι∗
) = ι

∗ eα/ι∗ − e−α/ι∗

eα/ι∗ + e−α/ι∗
, (3)

where ι∗ is a positive constant. Apparently, ρ(α) is a
smooth function with the boundary of (−ι∗, ι∗), which is
differentiable at α = 0. By the median theorem, it follows

ρ(α) =
∂ρ(ᾱ)

∂α
(α −α0)+ρ(α0), (4)

∂ρ(ᾱ)

∂α
=

4
(eα/ι∗ + e−α/ι∗)2 ≤ 1,

where ᾱ ∈ (α0,α), α0 < α .

For simplicity of calculation, we choose α0 = 0, then (4)
can be expressed as

ρ(α) =
∂ρ(ᾱ)

∂α
α = ρ

∗
α,

where 0 ≤ ρ∗ ≤ 1.
Denote p1 = [x,y,z]T , p̄2 = [ fx, fy, fz]

T , U = [u1,u2,u3]
T ,

where fx = vcosψcosγ, fy = vsinψcosγ, fz = vsinγ, v =√
f 2
x + f 2

y + f 2
z ∈ [v, v̄], and further v ≤ | fi| ≤ v̄, i = x,y,z.

Then denote p2 = p̄2 − [ v+v̄
2 , v+v̄

2 , v+v̄
2 ]T with |p2i| ≤

v̄−v
2 , i =

x,y,z.
Thus, (1) can be simplified as:

ṗ1 = p2 +[
v+ v̄

2
,

v+ v̄
2

,
v+ v̄

2
]T +w,

ṗ2 = BU, (5)

where w = [wx,wy,wz]
T ,

B =

cosψcosγ −vsinψcosγ −vsinψsinγ

sinψcosγ vcosψcosγ −vsinψsinγ

sinγ 0 vcosγ

.

From (2)(3), U can be expressed as U = ρ(U) + ∆U
with the boundary of Um = [u1m,u2m,u3m]

T , where ∆U =
[∆u1,∆u2,∆u3]

T . Then we introduce the following assump-
tion:

Assumption 1: For i = 1,2,3, assume |∆ui| ≤ di(t)ηi(ui),
where di(t) has an unknown boundary denoted as |di(t)| ≤
dim, t ∈ [t0, t0 +T ), and ηi(ui)≥ 0 is a known scalar contin-
uous function.

Remark 1: This assumption is reasonable and can be
found in [19] for reference.

B. Definitions and Lemmas

The design of the prescribed-time controller is mainly
based on the following monotonically increasing time-
varying function:

ζ1(t − t0) =
T

T + t0 − t
, t ∈ [t0, t0 +T ) ,

where T > 0, and ζ1(0) = 1,ζ1(T ) = +∞. In this paper, we
choose t0 = 0.

Definition 1: [6] The system ẋ = f (x, t,dw) is said to be
PT-ISS+C in time T and converge to zero if there exist class
KL functions σ and σ f , and a class K function γ , such that,
for all t ∈ [t0, t0 +T ),

|x(t)| ≤ σ f (σ(|x0|, t − t0)+ γ(|dw|),ζ1(t − t0)−1).
Lemma 1: [6] Consider the function

ζ (t − t0) =
T n+m

(T + t0 − t)n+m = ζ1(t − t0)n+m, (6)

on t ∈ [t0, t0 +T ), with positive integers m, n. If a con-
tinuously differentiable function V : [t0, t0 +T ) → [0,+∞)
satisfies

V̇ (t)≤−2kζ (t − t0)V (t)+
ζ (t − t0)

4ϖ
d2

w(t)+ζ (t − t0)Γ,

for positive constants k, ϖ and Γ, then

V (t)≤ µ(t − t0)2kV (t0)+
|dw|2

8kϖ
+

Γ

2k
, (7)
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where µ is the monotonically decreasing function

µ(t − t0) = e
T

m+n−1 (1−ζ1(t−t0)m+n−1), (8)

with the properties that µ(0) = 1 and µ(T ) = 0.
Lemma 2: [20] For any κ > 0 and χ ∈ R, the inequality

0 ≤ |χ|−χ tanh
(

χ

κ

)
≤ κ0κ holds, where κ0 is a constant that

satisfies κ0 = exp(−(κ0 +1)).

C. Segmented Neural Networks

For any continuous function f (·) and any given constant
εm > 0, there exists a NN Wφi(χ) with enough nodes r, such
that

f (·) =W T
φi(χ)+ ε, ∥ε∥ ≤ εm,

where W = [W1,W2, . . . ,Wr]
T represents the ideal estimated

weight parameter, and ε and φi(χ) represent the estimated
residual and the basis function vector, respectively. And
generally the Gaussian function is used for φi(χ):

φi(χ) = exp
(
−
(χ −µχi)

T (χ −µχi)

ρ2
i

)
, i = 1,2, . . . ,r,

where µχi and ρi represent the center and the width of the
basis function, respectively.

Within a small tight compact, NN has a relatively effective
approximation, however, to match the approximation more
closely to the real value. To this end, SNN is utilized [20],
[21] and [22]. The following function is introduced to switch
between segments.

Definition 2: Define constants 0 < ξi1 < ξi2 as the bound-
aries of the compact subsets Ωi, and switching functions is
given as

mi(χ̄i)≜
i

∏
k=1

Mk(χk),

Mk(χk)≜


1, |χk|< ξk1

ξ 2
k2 −χ2

k

ξ 2
k2 −ξ 2

k1
e
−
(

χ2
k −ξ 2

k1
λ (ξ 2

k2−ξ 2
k1)

)2b

, ξk1 ≤ |χk| ≤ ξk2

0, |χk|> ξk2

where χ̄i = [χ1, . . . ,χi]
T , and λ > 0, b ≥ 1 being the spread

and the order of the function Mk(χk), respectively.

III. MAIN WORK

The main work is organized into the following two parts:
III-A introduces the design of the prescribed-time controller,
and III-B presents the basis for selecting the parameter of
the prescribed time.

A. Controller Design

This section uses the backstepping method to design
control and adaptive laws for (5). According to (5), n = 2 in
(6), i.e. ζ (t − t0) = ζ

2+m
1 (t − t0).

Define s1 = ζ (p1 − pr), s2 = ζ (p2 − ρ(α1)), where α1
is the virtual controller with the boundary of ι∗1 = v̄−v

2 . The
desired trajectory is denoted as pr = [xr,yr,zr]

T with |ṗri| ≤
ṗrim.

Remark 2: From [23], we can know that there exist pos-
itive constants b̄, b such that b ≤ λmin((B+BT )/2). This is
the basis for b in Theorem 1.

Theorem 1: Consider the fixed-wing UAV (1), in which
the unknown input saturation is estimated by SNN, and the
adaptive controller α1, U, θ̂i, Ĥi are given by:

α1 =−2+m
T

s1 − k1s1 −m1us
1 − (1−m1)uc

1, (9)

U =
1
b

[
− s1

ζ
− 2+m

T
s2 − k2s2 −ϖϑ

2s2 −m2us
2

−(1−m2)uc
2] , (10)

us
i = sT

i θ̂iφ
T
i φi, uc

i = sT
i Ĥitanh(

s2
i

κi
),

˙̂
θi = s2

i ζ miφ
T
i φi −ζ θ̂i, (11)

˙̂Hi = s2
i ζ (1−mi)tanh(

s2
i

κi
)−ζ Ĥi, i = 1,2, (12)

where κi > 0, ϑ = [η1,η2,η3]
T , us

i , uc
i represent the SNN

controller and the convergent controller, respectively, and θ̂i
is the estimation of θi = W T

i Wi, Ĥi is the estimation of Hi.
Hi, ki will be defined later.

Based on (9)(10), the following conclusions can be ob-
tained within t ∈ [t0, t0+T ): (1) The system (1) can track the
desired trajectory and achieve the practical prescribed-time
convergence. (2) With the time-varying state feedback, the
controller can ensure that all signals are remained bounded.

Proof: Step 1: The derivative of s1 gives:

ṡ1 = ζ̇ (p1 −pr)+ζ p2 +ζ [ι∗1 , ι
∗
1 , ι

∗
1 ]

T +ζ w−ζ ṗr

= ζ̇ (p1 −pr)+ s2 +ζ ρ(α1)+ζ h1, (13)

where h1 = [ι∗1 , ι
∗
1 , ι

∗
1 ]

T +w− ṗr. Since w is a bounded dis-
turbance and ṗr has a known boundary, h1 can be estimated
by

ζ h1 = ζ
(
W T

1 φ1 + ε1
)
,∥h1∥ ≤ ∥[ι∗1 , ι∗1 , ι∗1 ]T +wm + ṗrm∥= H1,

(14)

where H1 is the upper boundary of ∥h1∥, which is unknown
but can be estimated by SNN.

Substituting (14) into (13), we have

ṡ1 = ζ̇ (p1 −pr)+ s2 +ζ ρ(α1)+ζ m1
(
W T

1 φ1 + ε1
)

+ζ (1−m1)h1.

Choose Lyapunov function as V1 = 1
2 s2

1 +
1
2 θ̃ 2

1 + 1
2 H̃2

1 ,
derivation of V1 gives:

V̇1 = sT
1 ṡ1 + θ̃

T
1

˙̃
θ1 + H̃T

1
˙̃H1

= sT
1 ζ̇ (p1 −pr)+ sT

1 s2 + sT
1 ζ ρ(α1)+ sT

1 ζ (1−m1)h1

+ sT
1 ζ m1

(
W T

1 φ1 + ε1
)
− θ̃

T
1

˙̂
θ1 − H̃T

1
˙̂H1, (15)

where θ̃1 = θ1 − θ̂1, H̃1 = H1 − Ĥ1.
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For (15), the following inequalities are obtained by
Young’s inequality:

sT
1 ζ̇ (p1 −pr)≤ sT

1 ζ
2+m

T
ρ
∗
ζ (p1 −pr) = s2

1ζ
2+m

T
ρ
∗,

sT
1 ζ m1

(
W T

1 φ1 + ε1
)

≤ ζ m1

4ρ∗ +ζ m1s2
1ρ

∗
θ1φ

T
1 φ1 + sT

1 ζ m1ε1,

sT
1 ζ (1−m1)h1 ≤

ζ (1−m1)H1

4ρ∗ +ζ (1−m1)s2
1ρ

∗H1,

sT
1 ζ ρ(α1)≤ sT

1 ζ ρ
∗
α1,

where ρ∗ is chosen as:

ρ
∗ =

{
1, t = t0

ρ0 ∈ [ζ
−(1+m)
1 ,1]. t ∈ (t0,T )

According to Lemma 2, we have

ζ (1−m1)ρ
∗H1

(
s2

1 − s2
1tanh(

s2
1

κ1
)

)
≤ ζ (1−m1)ρ

∗H1κ0κ1.

Thus (15) can be reduced to

V̇1 ≤ sT
1 s2 − s2

1ζ ρ
∗k1 + sT

1 ζ m1ε1 +ζ θ̃
T
1 θ̂1 +ζ H̃T

1 Ĥ1

+ζ (1−m1)ρ
∗H1κ0κ1 +

ζ m1

4ρ∗ +
ζ (1−m1)H1

4ρ∗ .

Step 2: Derivation for s2 yields:

ṡ2 = ζ̇ (p2 −ρ(α1))+ζ (BU− α̇1)

= ζ̇ (p2 −ρ(α1))+ζ BU+ζ h2, (16)

where h2 =−α̇1.
Remark 3: Here α̇1 = ∂α1

s1
ṡ1 +

∂α1
θ̂1

˙̂
θ1 +

∂α1
Ĥ1

˙̂H1, which is
bounded. The similar conclusion can be found in [23].

Since α̇1 is bounded and ∂ρ(α1)
∂α1

has the boundary of 1,
h2 can be estimated by

ζ h2 = ζ
(
W T

2 φ2 + ε2
)
, ∥h2∥ ≤ H2, (17)

where H2 is the upper bound of ∥h2∥, which is unknown but
can be estimated by SNN.

Substituting (17) into (16), we get

ṡ2 = ζ̇ (p2 −ρ(α1))+ζ Bρ(U)+ζ B∆U
+ζ m2

(
W T

2 φ2 + ε2
)
+ζ (1−m2)h2,

where ι∗2 =Um = ∥Um∥.
Choose Lyapunov function V2 =

1
2 s2

2 +
1
2 θ̃ 2

2 + 1
2 H̃2

2 , where
θ̃2 = θ2 − θ̂2, H̃2 = H2 − Ĥ2. Similar to Step 1, combined
with the following inequality:

sT
2 ζ B∆U ≤ sT

2 ζ Bd(t)ϑ(u)≤ s2
2ζ ϖϑ

2 +
ζ

4ϖ
(Bd)2,

where ϖ > 0. The derivative of V2 gives

V̇2 ≤−sT
2 ρ

∗s1 − s2
2ζ ρ

∗k2 +
ζ

4ϖ
(Bd)2 +

ζ m2

4ρ∗

+ sT
2 ζ m2ε2 +

ζ (1−m2)H2

4ρ∗ +ζ θ̃
T
2 θ̂2 +ζ H̃T

2 Ĥ2

+ζ (1−m2)ρ
∗H2κ0κ2.

Choose V =V1 +V2, and derivation for V yields:

V̇ = V̇1 +V̇2

≤
2

∑
i=1

(
−ζ ρ

∗kis2
i +ζ θ̃

T
i θ̂i +ζ H̃T

i Ĥi + sT
i ζ miεi

+
ζ mi

4ρ∗ +
ζ (1−mi)Hi

4ρ∗ 1+ζ (1−mi)ρ
∗Hiκ0κi

)
+(1−ρ

∗)sT
1 s2 +

ζ

4ϖ
(Bd)2.

According to Young’s inequality, we have

(1−ρ
∗)sT

1 s2 ≤ (1−ρ
∗)
∣∣sT

1 s2
∣∣

≤ 1
2

ζ (1−ρ
∗)s2

1 +
1
2

ζ (1−ρ
∗)s2

2

ζ θ̃
T
i θ̂i ≤

1
2

ζ |θi|2 −
1
2

ζ |θ̃i|2

ζ H̃T
i Ĥi ≤

1
2

ζ |Hi|2 −
1
2

ζ |H̃i|2

sT
i ζ miεi ≤

1
2

ζ s2
i +

1
2

ζ ε
2
im,

where i = 1,2. Thus

V̇ ≤−2kζV +
ζ

4ϖ
(Bd)2 +ζ Γ, (18)

where k = 1
2 min{ρ∗k1 +

1
2 ρ∗ − 1,ρ∗k2 +

1
2 ρ∗ − 1,1} with

k1,k2 >
2−ρ∗

2ρ∗ and Γ = ∑
2
i=1

(
1
2 |θi|2 + 1

2 |Hi|2 + 1
2 ε2

im + mi
4ρ∗

+ (1−mi)Hi
4ρ∗+(1−mi)ρ∗Hiκ0κi

)
. Here the proof is completed.

B. Selection of the Prescribed Time Tp

The parameter of prescribed time is organized in two
segments, as shown in Fig 1. o is a small neighborhood
near the origin, which indicates the practical prescribed-time
convergence; ξp is the region of initial states that can be
tolerated based on the practical situation. The initial states
in [o,ξp] can be unified by the state-scaling function to
the boundary ξp. In other words, calculating the prescribed
time of the boundary ξp can guarantee the prescribed-time
convergence of the initial states in [o,ξp].

Under the input saturation, T1 is the time of converging
to o when the initial state is within ξp, and T2 is the time
of convergence from an arbitrary position to ξp. Therefore,
the total convergence time T with any initial states is the
combination of these two segments, i.e.

T = T1 +aT2, a =

{
0, si ∈ [o,ξp]

1, si ∈ [ξp,+∞)
,

where i = 1,2.
1) T1: In the first segment, ξp1 = ∥s1∥ = ∥ζ (pp1 −

pr)∥, ξp2 = ∥s2∥= ∥ζ (pp2 −ρ(α1))∥.
From (9)(10), we have:

∥α1∥ ≤
∣∣∣∣2+m

T
+ k1 + k1

∣∣∣∣∥s1∥=
(

2+m
T

+ k1 + k1

)
ξp1,

∥U∥ ≤ ∥s1∥
b

+
1
b

∣∣∣∣2+m
T

+ k2 +ϖϑ
2 + k2

∣∣∣∣∥s2∥

=
1
b

ξp1 +
1
b

(
2+m

T
+ k2 +ϖϑ

2 + k2

)
ξp2,
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Fig. 1. Two segments of prescribed-time convergence.

where ϕi = φ T
i φi is a fixed value, and tanh( s2

i
κi
) ≤ π

2 , ki =

miθ̂iϕi +(1−mi)Ĥi
π

2 > 0, i = 1,2.
The boundary of the controller α1 and U are ι∗1 =

v̄−v
2 , ι∗2 = Um, respectively. To make the controller satisfy

the constraint, then(
2+m

T
+ k1 + k1

)
ξp1 ≤

v̄− v
2

,

1
b

ξp1 +
1
b

(
2+m

T
+ k2 +ϖϑ

2 + k2

)
ξp2 ≤Um, (19)

Solving the above inequalities yields

T1 ≥ Tm1 = max{Tm11,Tm12} , (20)

where Tm11 =
2ξp1(2+m)

v̄−v−2ξp1(k1+k1)
, and

Tm12 =
ξp2(2+m)

bUm−ξp1−ξp2(ϖϑ 2+k2+k2)
.

2) T2: In the second segment, ξδ1 = ∥s1∥−ξp1 = ∥ζ (p1−
p̄r)∥, ξδ2 = ∥s2∥−ξp2 = ∥ζ (p2 − ρ̄(α1))∥, where p̄r = pr −
pp1, ρ̄(α1) = ρ(α1)−pp2.

According to (9)(10)(18), we have

∥α1∥ ≤
(

2+m
T

+ k1 + k1

)
ξδ1,

∥U∥ ≤ 1
b

ξδ1 +
1
b

(
2+m

T
+ k2 +ϖϑ

2 + k2

)
ξδ2,

V̇ ≤−2kζV +
ζ

4ϖ
(Bd)2 +ζ Γ,

and combined with (7)(8), we have

1
2

s2
1 +

1
2

s2
2 ≤V ≤ µ(t − t0)2kV (t0)+

∥Bd∥2

8kϖ
+

Γ

2k
≤ 1

2
Ξ

2,

where Ξ =

√
2V (t0)+

∥Bd∥2

4kϖ
+ Γ

k . Then we have ∥s1∥ ≤
Ξ , ∥s2∥ ≤ Ξ , i.e.

ξδ1 ≤ Ξ −ξp1,ξδ2 ≤ Ξ −ξp2.

In a similar way to (19), we can obtain

T2 ≥ Tm2 = max{Tm21,Tm22} , (21)

where Tm21 =
2(Ξ−ξp1)(2+m)

v̄−v−2(Ξ−ξp1)(k1+k1)
,

Tm22 =
(Ξ−ξp2)(2+m)

bUm−(Ξ−ξp1)−(Ξ−ξp2)(ϖϑ 2+k2+k2)
.

Combine (20) and (21), and select the parameter of the
prescribed time as follows

Tp = Tm1 +Tm2 = max{Tm11 +Tm21,Tm12 +Tm22} .

Fig. 2. Tracking performance under different prescribed time T .

IV. SIMULATION

In this section, we perform the following simulations: in
section IV-A, the basis for selecting of the time is verified,
and in section IV-B, we compare the tracking performance
of our work with [17].

Some of the parameters in the simulation are set as
follows: m = 1, v̄ = 34, v = 20, ι∗1 = 27, ι∗2 = 100. The
initial state of the fixed-wing UAV is x(1) = y(1) = z(1) =
0, v(1) = 20, ψ(1) = 0, γ(1) = 0. Moreover, assume a
virtual fixed-wing UAV with initial state of xr = 10, yr =
5, zr =−10, vr = 22, ψr = π/4, γr = 0.2 and ar = 0, ψ̇r =
0.3, γ̇r = 0, whose trajectory is considered as the desired.
All simulations are realized under Matlab R2020b.

A. Selection of Tp

Firstly, sp1 = 55, sp2 = 5 is chosen to obtain Tm1 = 1.6s
based on (20).

To verify the result in III-B, we choose three prescribed
times T = 1s, T = 1.6s and T = 4s, as shown in Fig 2. It is
evident that under the input saturation, the controller cannot
track the desired trajectory when T = 1s, which indicates
that the prescribed time cannot be chosen arbitrarily. When
T = 1.6s, the system tracks the desired trajectory precisely,
and when T = 4s, the system has already tracked the desired
trajectory at t = 2.2s, thus the choice of T = 4s loses the
advantage of the prescribed-time method.

B. Comparison with the Exiting Method

Based on IV-A, we choose T = 2s as the paremeter of the
prescribed time in this section. A comparison between the
methods of us and [6] is demonstrated in Fig 3. The initial
states of [6] are the same as the proposed’s.

Remark 4: In the method of [6], the convergence problem
is considered, but the simulation reveals that the method of
[6] does not converge under some specific initial states. To
have a better comparison, the following transformations are
done for states p1, p2 while calculating the control inputs:
p̄1 = p1−p1r, p̄2 = p2−p2r. Therefore, in Fig.3, the method
[6] has the opposite convergence direction of x,y,z compared
to the proposed.

It can be seen that:
(1) Both methods can track the time-varying trajectory

at the prescribed time. However, it is obvious that the pro-
posed method converges faster and has higher convergence
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(a) States of the fixed-wing UAV.

(b) Magnitude of the control.

(c) The SNN estimation.
Fig. 3. Tracking performance compared with [6], T = 2s.

accuracy. In addition, the proposed method uses a lesser
order of the time-varying function than that in [6], which
is less computationally intensive and suitable for onboard
computation. Therefore, in the case of large initial states,
the proposed method performs better and is more applicable
to the practical fixed-wing UAV.

(2) The proposed method can achieve the prescribed-
time tracking with moderate control changes under the input
saturation, while the input of the method proposed in [6]
being enormous (almost 13×104), which is not allowed in
the practical system.

V. CONCLUSIONS

In this paper, an adaptive prescribed-time control based
on the time-varying function and SNN is presented for the
fixed-wing UAV, and the basis for selecting the parameter
of the prescribed time of the controller is presented. SNN
is used to estimate the unknown parameters, and PT-ISS+C
is used to deal with unknown disturbances conveniently,
which guarantee the prescribed-time convergence of all
closed-loop signals simultaneously. The simulations show
the advantages of the proposed method, through comparing
with the existing method, including high tolerance for initial
states and moderate changes of the magnitude of the control.
In addition, selecting the parameter of the prescribed time
avoids unreasonable configuration in advance.
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