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Abstract— Social pressure is a key factor affecting the evolu-
tion of opinions on networks in many types of settings, pushing
people to conform to their neighbors’ opinions. To study this,
the interacting Pólya urn model was introduced by Jadbabaie
et al. [1], in which each agent has two kinds of opinion:
inherent beliefs, which are hidden from the other agents and
fixed; and declared opinions, which are randomly sampled at
each step from a distribution which depends on the agent’s
inherent belief and her neighbors’ past declared opinions (the
social pressure component), and which is then communicated
to their neighbors. Each agent also has a bias parameter
denoting her level of resistance to social pressure. At every step,
each agent updates her declared opinion (simultaneously with
all other agents) according to her neighbors’ aggregate past
declared opinions, her inherent belief, and her bias parameter.
We study the asymptotic behavior of this opinion dynamics
model and show that agents’ declaration probabilities converge
almost surely in the limit using Lyapunov theory and stochastic
approximation techniques. We also derive a sufficient condition
for the agents to approach consensus on their declared opinions.

I. INTRODUCTION AND RELATED WORK

Opinion dynamics – the modeling and study of how
people’s opinions change in a social setting (particularly
through communication on a network, whether online or
offline) – is an extremely useful tool for analyzing various
social and political phenomena such as consensus and social
learning [2] as well as for designing strategies for political,
marketing and information campaigns, such as the effort to
curb vaccine hesitancy [3]. It is generally assumed in such
models that the agents report their opinions truthfully. In
reality, however, there are many occasions in which people
make declarations contrary to their real views in order to
conform socially [4], a fact confirmed both by common sense
and by psychological studies [5]. This can make it difficult
to determine the true beliefs governing observed interactions.

In this work, we study an interacting Pólya urn model
for opinion dynamics, originating from [1], that captures
a system of agents who might be untruthful due to their
local social interactions. This model consists of n agents
on a fixed network communicating on an issue with two
basic sides, 0 and 1. Each agent has an inherent belief (true
and unchanging), which is either 0 or 1, and an honesty
parameter γ̃. Then the agents communicate their declared
opinions to their neighbors at discrete time steps: at each
step t = 1, 2, . . . , all the agents simultaneously declare one
of the two opinions (i.e. either ‘0’ or ‘1’), which is then
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observed by their neighbors; the declarations of all the agents
at any given step are made at random and independently
of each other but with probabilities determined by their
inherent belief, honesty parameter, and the ratio of the two
declared opinions observed by the agent up to the current
time. This can represent scenarios where agents (say, people
using social media) alter their statements to better fit in with
the opinions they have observed from others in the past; it
may also represent scenarios where the agents update their
opinions according to the declared opinions of others, but
retain a bias towards their original position. The goal of this
model is to shed light on how opinions might evolve in the
presence of social pressure.

Opinion dynamics originally grew from a need to math-
ematically understand psychological experiments on the be-
havior of individuals in group settings [6], [5], [7]. Notable
among these is the DeGroot model [8], where agents in
a network average their neighbors’ opinion in an iterative
manner. With this procedure, the entire group asymptotically
approaches a state where they all share a single opinion,
a phenomenon known as consensus. While the DeGroot
model is highly influential, it is clear that consensus is not
always approached in reality. This problematic aspect of the
DeGroot model and other similar models inspired follow-up
work aiming to account for disagreement among agents [9],
[10], [11].

However, opinions are often influenced not only by others’
opinions but by personal inclinations or beliefs; for instance,
each agent in the Friedkin-Johnsen model [9] updates her
opinion at each step by averaging her neighbors’ opinions
(as in the DeGroot model) and then averaging the result
with her initial opinion, which represents her innate beliefs.
Other models adjust whether interactions with neighbors
cause an agent to conform or be unique [12], [13]. Dandekar
et al. [14] look at bias assimilation, in which agents weigh
the average of their neighbors’ opinions by an additional
bias factor. Another relevant line of research is the com-
petitive contagion and product adoption in the marketing
literature [15], [16], [17], [18], where individuals’ choices
of products and services are influenced both by personal
tastes and desires and by others’ choices, a phenomenon
commonly known as the network effect. Authors in [19] use
a threshold diffusion model to numerically study cascades
of self?reinforcing support for a highly unpopular norm on
social networks.

Besides the model in [1], several other models also include
the feature that agents do not always update their initial
beliefs [20], [21], [22]. Ye et al. [22] study a model in
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which each agent has both a private and expressed opinion,
which evolve differently. Agents’ private opinions evolve
using the same update as in the Friedkin-Johnsen model
whereas agents’ public opinion are an average of their own
private opinion and the public average opinion. Both [19]
and [22] are very similar to [1], since agents are willing to
express opinions they do not actually believe in. However,
unlike [1], [22] assumes opinions are precisely expressed
on a continuous interval, which is unrealistic for certain
applications. On the other hand [19] works with binary
opinions like [1], but with an additional reinforcement step
which adds complexity. The model in [1] captures the core
idea of [19] in a different way that is more tractable for
analysis. Additionally, the honesty parameter from [1] is
similar to the conformity parameter in [23], which measures
how likely an agent is to conform to others. Other types of
interacting Pólya urn models have also been used by [24],
[25] to study contagion networks.

A. Contributions

While [1] originally proposed an interacting Pólya urn
model for opinion dynamics, they studied it only in the spe-
cial case of a (unweighted) complete graph as the network,
with agents that all have the same honesty parameter γ̃. In
this work we remove these constraints and study this process
on arbitrary undirected graphs with agents whose honesty
parameters may differ. Our contributions are:

1) We establish that the behavior of agents (i.e. their
probabilities of declaring each opinion) almost surely
converges to a steady-state asymptotically.

2) We determine a sufficient condition for consensus. Due
to the stochastic nature of our model we define consen-
sus as a property of the declared opinions: the network
approaches consensus if all agents declare the same
opinion (either all 0 or all 1) with probability approach-
ing 1 as time goes to infinity. This corresponds to cases
where social pressure forces increasing conformity over
time, and makes estimating the agents’ inherent beliefs
from their behavior difficult, as shown in [1].

We discuss more details of these contributions and their
comparison with [1] below.

a) Convergence of Agent Declaration Probabilities:
We use Lyapunov theory and stochastic approximation to
determine convergence for the opinion dynamics model. We
show that on undirected networks, the probability that each
agent i declares 1 at the next step converges asymptoti-
cally to some (possibly random) value pi, and the values
p1, p2, . . . , pn represent an equilibrium point of the process.

b) Conditions for Consensus: An interesting result
from [1] is that if the proportion of agents (connected in
a complete graph) with inherent beliefs 0 or 1 passes a
certain threshold, then asymptotically the system almost
surely converges to a behavior where pi = 0 for all agents
or pi = 1 for all agents. In this work, we find an analogous
result for general networks, determining a condition under
which all agents in the network almost surely converge to
consensus (declaring the same opinion with probability 1).

The condition is derived by incorporating the structure of the
network, the inherent beliefs of the agents and their honesty
parameters.

c) Analysis of Simplified Community Network: We ap-
ply our convergence and consensus results to study in depth
a simplified community network. In this model, there are
two communities, a and b, which are represented as two
agents (or two vertices). To model that each community
is more connected to itself than to the other community,
vertices a and b have self-loops of greater weight than
the edge connecting them. This network is designed to
capture homophily, a property of real and online communities
where people with similar traits, opinions or interests tend
to form communities with relatively dense in-community
connections [14]. We show that whether or not all agents
in the network converge to declaring the same opinion (i.e.
approach consensus) depends on whether the ratio of the
proportion of in-community edges of each community is
greater than the honesty parameter.

II. MODEL DESCRIPTION

Our model is a slight generalization of the model from
[1], with the addition that each edge in the network has a
(nonnegative) weight denoting how much the two agents’
declared opinions influence each other. As mentioned, we
also extend the model by permitting agents to have different
honesty parameters.

A. Graph Notation

Let (undirected) graph G = (V,E) be a network of n
agents (corresponding to the vertices) labeled i = 1, 2, . . . , n,
so V = [n]. The graph G can have self-loops. For each edge
(i, j) ∈ E, there is a weight ai,j ≥ 0, where by convention
we let ai,j = 0 if (i, j) 6∈ E. We denote the matrix of these
weights as A ∈ Rn×n, i.e. the weighted adjacency matrix of
G; since G is undirected, A is symmetric.

The vector of degrees of all agents is denoted as

d
4
= [deg(1), deg(2), . . . , deg(n)] (1)

and its diagonalization is denoted D = diag(d), i.e. the
diagonal matrix of the degrees. Let the normalized adjacency
matrix be W = D−1A . The matrix W can be interpreted
as the transition matrix for a random walk on G, where
the probability of choosing an edge at a given step is
proportional to its weight. We assume that W is irreducible
(G is connected) and not bipartite.

B. Inherent Beliefs and Declared Opinions

Each agent i has an inherent belief φi ∈ {0, 1}, which
does not change. At each time step t ∈ Z+, each agent i
(simultaneously) announces a declared opinion ψi,t ∈ {0, 1}.
At time t, we denote by Ht the history of the process,
consisting of all ψi,τ for τ ≤ t. The declarations ψi,t are
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based on the following probabilistic rule:

ψi,t
4
=


1 with probability pi,t−1 if φi = 1
0 with probability 1− pi,t−1 if φi = 1
1 with probability qi,t−1 if φi = 0
0 with probability 1− qi,t−1 if φi = 0

(2)

where the parameters pi,t−1 and qi,t−1 depend on the history
Ht−1 via an interacting Pólya urn process in the following
way. Each agent i has honesty parameter γ̃i ≥ 1 (we permit
heterogeneous honesty parameters, while γ̃1 = . . . = γ̃n = γ
in [1]).

Then for t ∈ Z+ let

M0
i (t) = m0

i +

t∑
τ=2

n∑
j=1

ai,jI[ψj,τ = 0] (3)

M1
i (t) = m1

i +

t∑
τ=2

n∑
j=1

ai,jI[ψj,τ = 1] (4)

where m0
i ,m

1
i > 0 represent the initial settings of the

model. (Initial settings are used in place of declared opinions
at time 1. Some requirements for the initial settings are
given shortly.) The quantity M0

i (t) represents the (weighted)
number of times agent i observed a neighbor declare opinion
0 up to step t (plus initial settings), and M1

i (t) represents the
analogous total of observed 1’s. If each ai,j ∈ {0, 1}, then
M0
i (t) and M1

i (t) represent counts of agent’s neighbors’
declarations (plus initial settings). The ratio of M1

i (t) to
M0
i (t) can be viewed as the social pressure on agent i to

declare opinion 1. Then for t ≥ 1:

pi,t =
γ̃iM

1
i (t)

γ̃iM1
i (t) +M0

i (t)
(5)

qi,t =
M1
i (t)

M1
i (t) + γ̃iM0

i (t)
. (6)

C. Declaration Proportions

Let Mi(t)
4
= m0

i +m1
i + (t− 1) deg(i) = M0

i (t) +M1
i (t)

and

µ0
i (t)

4
= M0

i (t)/Mi(t) (7)

µ1
i (t)

4
= M1

i (t)/Mi(t) . (8)

The parameter µ1
i (t) is essentially the sufficient statistic

that summarizes the proportion of declared opinions in the
neighborhood of given agent i up to time t. Since µ0

i (t) =

1− µ1
i (t), we simplify the notation to µi(t)

4
= µ1

i (t) .
We also define a sufficient statistic that summarizes agent

i’s declarations. Let b0i , b
1
i > 0 (the initialization) be such

that b0i + b1i = 1 for each i and

m0
i =

n∑
j=1

ai,jb
0
j and m1

i =

n∑
j=1

ai,jb
1
j . (9)

For t ∈ Z+, let

B0
i (t) = b0i +

t∑
τ=2

(1− ψi,τ ), B1
i (t) = b1i +

t∑
τ=2

ψi,τ (10)

β0
i (t) =

b0i
t

+
1

t

t∑
τ=2

(1− ψi,τ ), β1
i (t) =

b1i
t

+
1

t

t∑
τ=2

ψi,τ .

(11)

These are counts and proportions of declarations of each
opinion (or “time-averaged declarations”) for each agent
(plus initial conditions). We similarly use βi(t)

4
= β1

i (t).
It then follows that

µi(t) =
1

deg(i)

n∑
j=1

ai,jβj(t) . (12)

Finally, we define the vectors of observed declared opinions
and given declared opinions for each agent at time t as

µ(t)
4
= [µ1(t), ...µn(t)]

> (13)

β(t)
4
= [β1(t), ...βn(t)]

>
. (14)

D. Bias Parameters

One simplification to the notation from [1] is to combine
the inherent belief φi and honesty parameter γ̃i into a single
parameter we call the bias parameter γi > 0:

γi =

{
γ̃i if φi = 1

1/γ̃i if φi = 0
(15)

and γ = [γ1, . . . , γn] is the set of bias parameters.
Define the function (note that µ, γ are scalars)

f(µ, γ)
4
=

γµ

1 + (γ − 1)µ
=

1

1 + 1
γ

(
1
µ − 1

) (16)

which then satisfies

f(µi(t), γi) =

{
pi,t if φi = 1

qi,t if φi = 0
(17)

so (2) can be rewritten as

ψi,t+1
4
=

{
1 with probability f(µi(t), γi)
0 with probability 1− f(µi(t), γi)

. (18)

Note that the bias parameter γi is always defined as agent
i’s bias towards opinion 1. However, the model is symmetric
in the following way: a γ bias towards 1 is equivalent to a
1/γ bias towards 0, which is captured by the equation

f(µ1
i (t), γ) = 1− f(µ0

i (t), 1/γ) . (19)

Define the diagonal matrix with γ along the diagonal as

Γ = diag(γ) . (20)

We assume for this work that Γ 6= I . This parallels the
assumption γ̃i > 1 used in [1].
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E. Stochastic and Deterministic Expected Dynamics

Using (10), the recursive equations that govern the count
of declared opinions by agent i are:

B0
i (t+ 1) = B0

i (t) + (1− ψi,t+1) (21)

B1
i (t+ 1) = B1

i (t) + ψi,t+1. (22)

To work with βi(t) instead of B1
i (t+ 1), we rewrite (21) as

βi(t+ 1) =
t

t+ 1
βi(t) +

1

t+ 1
ψi,t+1. (23)

Conditioned on the history Ht (which contains all infor-
mation declared up to and including time t), the expected
value of βi(t+ 1) is

E[βi(t+ 1)|Ht] =
t

t+ 1
βi(t) +

1

t+ 1
f(µi(t), γi) . (24)

We then put the dynamics in (24) together for all the agents
in the network, to get

E[β(t+ 1)|Ht] =
t

t+ 1
β(t) +

1

t+ 1


f(µ1(t), γ1)
f(µ2(t), γ2)

...
f(µn(t), γn)


(25)

=
t

t+ 1
β(t) +

1

t+ 1
f(µ(t),γ), (26)

or alternatively

E[β(t+ 1)− β(t)|Ht] =
1

t+ 1
(f(µ(t),γ)− β(t)). (27)

Definition 1. The deterministic expected dynamics are

β(t+ 1)− β(t) =
1

t+ 1
(F (β(t),γ)− β(t)) (28)

where F (β(t),γ) = [F1(β(t),γ), . . . , Fn(β(t),γ)] and

Fi(β(t),γ) = f(µi(t), γi) . (29)

We refer to original dynamics governed by (18) and (23)
as the full stochastic dynamics.

F. Intuition for Interacting Pólya Urn Model

In this section, we consider how the interacting Pólya
urn model is meaningful for opinion dynamics with social
pressure. (For this, we use the case when ai,j is either 0 or 1.)
Typically, urn models start with some composition of balls
of different colors in an urn. At each step, a ball is drawn
(independent of previous draws given the urn composition)
from the urn and additional balls are added based on the
drawn ball according to some urn functions. In the interacting
Pólya urn model, when a neighbor of agent i declares an
opinion, this is modeled as agent i putting a corresponding
ball (labeled 0 or 1) into her own urn.

Then, when agent i declares an opinion, it is modeled by
the following: she draws a ball from her urn and declares the
corresponding opinion; each ball corresponding with opinion
1 is γi times as likely to be drawn as one with opinion 0.
Note that if γi = 1 then agent i is (stochastically) mimicking

the opinions her neighbors have declared in the past (plus
her initial state, which becomes asymptotically negligible).
We remark that the bias parameter is similar to the initial
opinions in the Friedkin-Johnsen model [9] since they both
are fixed parameters that influence all steps; however, note
that there is a significant difference as the bias parameter can
be overwhelmed over time by social pressure, thus leading
to consensus.

III. CONVERGENCE ANALYSIS

A. Equilibria of the Expected Dynamics

Definition 2. A vector β is an equilibrium point of the
expected dynamics if F (β,γ) = β .

Note that vector 1 and vector 0 are always equilibrium
points. We call these boundary equilibrium points, while
other equilibrium points are interior equilibrium points.
Equivalently, an interior equilibrium point is an equilibrium
point β where 0 < βi < 1 for all i (see Lemma 1).

Lemma 1. Suppose that a finite network of agents is
connected. Then, if β∗ is an equilibrium point such that for
some i, β∗i = 0 (or β∗i = 1), then it must be that for all i,
β∗i = 0 (or respectively for all i, β∗i = 1).

Proof. Suppose that β∗i = 0. The only way for this to occur
at an equilibrium point is for each of agent i’s neighbors j to
also have β∗j = 0. If any β∗j > 0, then β∗i > 0 since βi gets
a positive contribution from βj in its sum. We continue by
inducting on the neighbors of neighbors, and it gives that all
agents j in the connected network must have β∗j = 0.

Finding an exact analytic expression for the equilibrium
points is unfortunately difficult in general. In Section V,
we show how to find equilibrium points for the simplified
community network, which is possible because it is a small
example. However, the following results can be used to solve
for them numerically.

Proposition 1. The equilibrium points of the expected dy-
namics are given by β such that for all i,

0 = (γi − 1)βiµi + βi − γiµi (30)

Proof. This follows from the fact that at any equilibrium,

βi = f(µi, γi) =
γiµi

1 + (γi − 1)µi
. (31)

B. Tools from Stochastic Approximation

In order to prove the convergence of the full stochastic
dynamics to the equilibrium points of the expected dynamics,
we use results on the long-term behavior of path-dependent
stochastic processes. In summary, [26, Theorem 3.1] uses
stochastic approximation to show that dynamics using gen-
eralized urn functions converge an equilibrium point if a
Lyapunov function V can be found that satisfies a certain
set of conditions. One important condition is that V > 0
needs to satisfy 〈F (β,γ) − β,∇V (β)〉 < 0 except in a
small neighborhood of points around the equilibria.
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C. Convergence for General Networks

One of the primary contributions of the present work is to
show the convergence of the time-averaged declared opinions
β(t) to an equilibrium point, under the stochastic dynamics
of (18) and (23) in any network. To carry out this result, we
take advantage of two key properties of f(µ, γ):
• f : [0, 1] → [0, 1] is bijective in µ (this can be shown

by the fact that f(f(µ, 1/γ), γ) = µ)
• f is monotonic in µ.

Theorem 1. Let µi = 1
deg(i)

∑n
j=1 ai,jβj and

F (β,γ) =

h (µ1, γ1)
...

h (µn, γn)

 (32)

Suppose that the network associated with the adjacency ma-
trix A is undirected. Then, there exists a Lyapunov function
V , where V ≥ 0 such that

〈F (β,γ)− β,∇V (β)〉 ≤ 0 (33)

so long as
• h(·, γ) is bijective from [0, 1] to [0, 1]
• h(·, γ) is monotonic.

Equality in (33) holds iff F (β,γ) = β.

Proof. Because h(·, γ) is bijective from [0, 1] to [0, 1], there
exists an inverse h−1(·, γ). The function h−1(·, γ) is also
(strictly) monotonically increasing. We use the notation

H(µ, γ) =

∫ µ

0

h−1(ν, γ)dν . (34)

Let

V (β) =

n∑
i=1

n∑
j=1

ai,j

(
H (βi, γi)−

1

2
βiβj

)
+ C (35)

(where C is a constant to make V positive). Taking the partial
derivatives gives that

∂V

∂βi
= deg(i)h−1 (βi, γi)−

n∑
j=1

ai,jβj (36)

= deg(i)

h−1 (βi, γi)−
1

deg(i)

n∑
j=1

ai,jβj

 (37)

= deg(i)
(
h−1 (βi, γi)− µi

)
. (38)

(The property that A is symmetric is necessary for (36).) We
can write the ith entry in vector F (β,γ)− β as

(F (β,γ)− β)i = h (µi, γi)− βi . (39)

Then

〈F (β,γ)− β,∇V (β)〉

=

n∑
i=1

deg(i)
(
h−1 (βi, γi)− µi

)(
h (µi, γi)− βi

)
. (40)

Suppose h (µi, γi) > βi. Then since h is (strictly) monotone,

h (µi, γi) > βi (41)

⇐⇒ h−1 (h (µi, γi) , γi) > h−1 (βi, γi) (42)

⇐⇒ µi > h−1 (βi, γi) . (43)

We can conclude that in the case of h (µi, γi) 6= βi the sign
of the terms

(
h−1 (βi, γi)− µi

)
and (h (µi, γi)− βi) are

necessarily different. Hence, their product must be negative.
When h (µi, γi) = βi, then the values of both h (µi, γi)−βi
and h (µi, γi)− βi are zero.

Each term in the sum of (40) must be nonpositive and thus

〈F (β,γ)− β,∇V (β)〉 ≤ 0 . (44)

Equality holds when all terms in the sum of (40) are zero,
which only occurs when h (µi, γi) = βi for all i. This means
that (40) is zero if and only if β is an equilibrium.

Note that Theorem 1 holds for all h satisfying the given
conditions (not just the specific f defined in (16)), and
hence is a general result showing the existence of Lyapunov
functions for any dynamics satisfying the given conditions
on undirected graphs (which do not need to be connected).

Theorem 2. The time-averaged declared opinions β(t)
under the stochastic opinion dynamics governed by (18) and
(23) almost surely converges to an equilibrium point of the
expected dynamics, that is a fixed point of F (·,γ).

Proof. This follows from Theorem 1 and [26, Thm 3.1].

IV. CONVERGENCE TO CONSENSUS

The previous section showed that the opinion dynamics
under social pressure almost surely converges to an equilib-
rium point, but does not specify which equilibrium point the
system converges to. Since there are multiple equilibrium
points (not all necessarily stable) in any opinion dynamics
system, in this section we explore conditions under which the
system asymptotically converges to a boundary equilibrium
point or an interior equilibrium point. When the system
converges to a boundary equilibrium point (both 0 and
1 are boundary equilibrium points of F (β,γ)), we say
that the agents approach consensus. Consensus occurs when
all agents (asymptotically) converge to declaring the same
opinion with probability 1.

Definition 3. Consensus is approached if

β(t)→ 1 or β(t)→ 0 as t→∞ . (45)

In this section, we establish a sufficient condition for
convergence to consensus. Recall that β is the vector (over
the agents) of the fraction of declared opinion 1 over time
(plus initial conditions). Definition 3 does not imply that
any agent will always declare the same opinion, only that
her ratio of declared opinions tends to 0 or 1.

Which equilibrium point β(t) converges to (either bound-
ary and interior) is closely related to the Jacobian matrix of
F (·,γ). To calculate the Jacobian ∂

∂βF (β,γ), recall

Fi(β,γ) = f(µi, γi) =
γiµi

1 + (γi − 1)µi
(46)
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where we denote µi = 1
deg(i)

∑n
j=1 ai,jβj . As a result,

∂

∂µi
Fi(β,γ) =

γi
(1 + (γi − 1)µi)2

. (47)

Finally,

∂

∂β
F (β,γ) =

∂

∂µ
F (β,γ)

dµ

dβ
(48)

= diag




γ1
(1+(γ1−1)µ1)2

...
γn

(1+(γn−1)µn)2


W . (49)

We define for each vector x where xi ∈ [0, 1],

Jx
4
= diag




γ1
(1+(γ1−1) 1

deg(1)

∑
j a1,jx1)2

...
γn

(1+(γn−1) 1
deg(n)

∑
j an,jxn)2


W . (50)

Importantly, Jx has all real eigenvalues.
The Jacobian at boundary equilibrium points 0 and 1 are

J1 =
∂

∂β
F (β,γ)|β=1 = Γ−1W (51)

J0 =
∂

∂β
F (β,γ)|β=0 = ΓW , (52)

where Γ is defined in (20).
We will prove that properties of J0 and J1 suffice to

determine whether β(t) approaches a boundary equilibrium
point or not.

Theorem 3. Let x be a boundary equilibrium point (either 0
or 1). If λmax(Jx) ≤ 1, then β(t) converges to a boundary
equilibrium point almost surely.

Proof. We assume WLOG that J1 has all eigenvalues less
than or equal to 1. Let λ = λmax(J1) and let v be the
corresponding eigenvector. Let vi be the ith element of v.
Scale v so that vT1 = 1. We will use the fact vi ≥ 0 (shown
by Perron-Frobenius) and vTJ1 = λvT .

Observe that (as 1
E[X] ≤ E[1/X] by Jensen’s Inequality)

n∑
i=1

vi

(
1

f(µi, γi)
− 1

)
=

n∑
i=1

vi
γi

(
1

µi
− 1

)
(53)

≤
n∑
i=1

vi
γideg(i)

n∑
j=1

ai,j

(
1

βj
− 1

)
. (54)

Then
n∑
i=1

vi

(
1

f(µi, γi)
− 1

)
=

n∑
j=1

(
1

βj
− 1

) n∑
i=1

vi
γideg(i)

ai,j

(55)

= λ

n∑
j=1

vj

(
1

βj
− 1

)
≤

n∑
j=1

vj

(
1

βj
− 1

)
(56)

=⇒
n∑
i=1

vi
f(µi, γi)

≤
n∑
i=1

vi
βi
. (57)

Fig. 1. The simplified community network used to study community
structure. Agent a has bias parameter γ and agent b has bias parameter
1/γ.

Interior equilibrium points must have that βi = f(µi, γi)
for all i. Inequality (57) is a strict inequality when λ < 1,
in which case there must not exist any interior equilibrium
points β. When λ = 1, (57) can only be an equality if (54) is
an equality. Since 1/x is a strictly convex function, equality
in (54) only holds if all βj’s are equal for all j which is a
neighbor of i. Since the graph is not bipartite and connected,
this implies that all βj are the same for each j. (We can see
this since the non-bipartite property implies that there is a
path with an even number of nodes connecting any node i
to node j. The nodes at odd positions in the path will force
the pair of two adjacent even position nodes to be the same.)
However, the only way β can be an equilibrium point with
this condition that βj’s are all equal is if β = 1 or β = 0,
or if γi = 1 for all i. Thus, if λ < 1 or λ = 1, the only
equilibrium points are 1 and 0.

Then by Theorem 2, β(t) must converge to one of the two
boundary equilibrium points almost surely.

Next we examine when consensus fails to occur; this
is related to a similar condition on the eigenvalues of the
Jacobian matrix for interior equilibria. (Proof omitted.)

Proposition 2. For an interior equilibrium point x, if all the
eigenvalues of the Jacobian matrix ∂

∂βF (β,γ)|β=x are less
than 1, then P[β(t)→ x] > 0.

V. COMMUNITY NETWORK EXAMPLE

In this section, we apply our results to get explicit results
for the simplified community network, which is a two-agent
network simulating the interaction of two communities.

The simplified community network has two vertices, agent
a and agent b. Agent a has bias parameter γ where γ > 1
and agent b has bias parameter 1/γ. The transition matrix
for the edge weights between the two agents is given by

W =

[
p1 1− p1

1− p2 p2

]
(58)

where p1, p2 ∈ [0, 1] and p1 represents the proportion
of in-community edges for agent a and p2 represents the
proportion of in-community edges for agent b. (See Figure 1
for a diagram.) The property that the agents have more in-
community edges occurs when p1 > 1/2 and p2 > 1/2.

To analyze this network, we first find the equilibrium
points.

Proposition 3. The equilibrium points of the simplified
community network are: 0 = (0, 0); 1 = (1, 1); and, when
max{p1p2 ,

p2
p1
} < γ, the interior equilibrium point β∗ =
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(β∗a, β
∗
b ) where

β∗a =
γ
(
(γ + 1)p1p2 − 2p2 +

√
p1p2∆

)
(γ − 1)((γ + 1)p1p2 +

√
p1p2∆)

(59)

β∗b =
2γp1 − (γ + 1)p1p2 −

√
p1p2∆

(γ − 1)((γ + 1)p1p2 +
√
p1p2∆)

(60)

where ∆ =
√

4γ(1− p1 − p2) + (γ + 1)2p1p2 .

The calculations are omitted. To apply Theorem 1, we
need the underlying adjacency matrix A = DW to be
symmetric. We choose

D =

[
(1− p2) 0

0 (1− p1)

]
(61)

which results in a symmetric A.
Then we apply Theorem 1 as desired to show that asymp-

totically the dynamics on the simplified community network
almost surely converges to one of the equilibrium points.
Next we determine under what conditions the dynamics
asymptotically approaches consensus.

Proposition 4. For the simplified community network,

lim
t→∞

β(t) =


β∗ if max{p1p2 ,

p2
p1
} < γ

1 if γ ≤ p1
p2

0 if γ ≤ p2
p1

(62)

almost surely where β∗ is given by Proposition 3.

(The proof is omitted.) By Theorem 3, when the conditions
γ ≤ p1

p2
or γ ≤ p2

p1
do not hold, there are in fact no

interior equilibrium points. This matches the conclusion of
Proposition 3.

VI. CONCLUSION

In this work, we studied the interacting Pólya urn model of
opinion dynamics under social pressure. We expanded upon
[1] by showing results for arbitrary networks and general
bias parameters. To show that the probability of declared
opinions converges asymptotically, we used an appropriate
Lyapunov function and applied stochastic approximation,
thus guaranteeing that in arbitrary networks, the behavior
of agents almost surely converges. We also gave an easily-
computable sufficient condition, for when the dynamics
approach consensus. Our results provide insight as to how
and when social pressure can force conformity of (expressed)
opinions even against the true beliefs of some individuals.

A possible direction for further work is to find what
consequences our techniques have for other models. Other
directions include finding the interior equilibrium points for
arbitrary networks and determining whether it is possible to
infer inherent opinions in arbitrary networks.
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