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Abstract— This work proposes a novel approach to approx-
imate optimal linear filters for discrete-time linear Gaussian
systems with infinite-dimensional measurements and finite-
dimensional states. Assuming scalar-valued states for simplicity,
we formulate the problem in terms of optimally selecting N
points at which to sample the infinite-dimensional measurement,
in order to minimize the mean-squared filtering error. We show
that for large N , this problem can be expressed using the
notion of an asymptotic point density function from the field of
high-resolution quantization theory. To the best of the authors’
knowledge, this method has not been considered in infinite-
dimensional filtering previously. This leads to a characterization
in terms of an Urysohn integral equation, which can be solved
numerically to yield an asymptotically optimal N -point filter.
The mean-squared approximation error is proportional to N−4,
which is faster than the typical N−2 decay of high-resolution
quantization and suggests that this approximation method will
be useful even for moderate or small N . These properties are
verified by simulations based on a linearized pinhole camera
measurement model.

I. INTRODUCTION

State estimation in systems with low-dimensional states
and high-dimensional observations is a relevant and ongoing
challenge in a number of areas, such as autonomous naviga-
tion. In such systems, the state is often 6 degree-of-freedom
pose data, while the measurements arise from high-resolution
LIDAR scans or cameras [1], [2]. In recent work, an optimal
linear filter has been developed for discrete-time Gaussian
linear systems with infinite-dimensional measurements but
finite-dimensional states [3]. However this filter involves
performing an integral over the measurement domain during
the online update, which can cause computational delays.
For real-time applications it is preferable to deal with a finite
number of measurements, raising the question of where to
take these measurements.

In this paper, we propose an N -point approximation of
our previously derived optimal filter [3] and demonstrate its
asymptotic optimality for sufficiently large N , in terms of
minimizing the mean squared estimation error. The feasi-
bility of the approach is shown for scalar-valued states, with
infinite-dimensional Gaussian measurements on a continuous
domain (the generalization of this analysis to vector values
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is straightforward and will be presented in future work). De-
spite infinite-dimensional (or distributed-parameter) Kalman
filtering having a long history (see [4]–[6] and references
therein), the vast majority of past works have focused on
situations in which the state and measurement spaces are
both infinite-dimensional. Although there has been previ-
ous work on performing estimation based on a finite set
of observable points, e.g. [7], none appear to explore the
approximation of filters for our setting in which the state
space is finite-dimensional but the measurement space is
infinite-dimensional.

The key element of our approach is an N -point sampling
density function defined over the measurement domain (Def.
3.5), a notion borrowed from the field of asymptotic quanti-
zation [8]. As N grows large this density function approaches
a well-defined density function λ over the measurement
domain. We then reformulate the minimization of the N -
point filter MSE as a constrained optimization problem in
terms of λ (Lemma 3.3). We show that the asymptotically
optimal density function is the solution to an Urysohn-
like integral equation [9, Section 14.1-2], which we solve
numerically via successive approximations (Thm. 3.4, eq.
(49)). In the scalar estimation case, this leads to a non-
uniform sampling strategy which is asymptotically optimal.
These properties are verified by simulations which suggest
that the approach works well even for moderate N .

Optimal sensor placement for linear filters has been ex-
plored previously for finite and infinite-time horizons, under
various cost functions. Although not globally optimal, a
number of papers employ greedy algorithms which select the
next optimal sensor to place given the previous sensors are
optimally placed [10], [11], and analysis has been performed
on theoretical performance guarantees on these sequential
sensor placing algorithms [12]. The approximation filter
proposed in this paper is globally optimal, although only in
the asymptotic case. A surprising result of our approach is
that the N -point mean-squared approximation error decays
as N−4, compared to the decay rate of N−2 which is
commonly seen in high resolution scalar quantization [13,
Section 5.6] and similar work in this area [14]. This suggests
that fewer sample points are needed to achieve a feasible state
estimation. Due to space limitations, the asymptotic analysis
presented here is formal. The technical conditions required
for convergence with large N are similar to asymptotic
quantization [13], [8] and will be discussed in a longer
version.

A property of the optimal asymptotic sampling density
function λ is that it depends on the second and higher
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derivatives of the measurement noise covariance and mea-
surement function. This is interesting since, particularly in
image processing, second derivatives often arise in heuristic
algorithms used for edge detection [15], [16]. Though λ is
currently computed off-line based on known system parame-
ters, we envisage that our approach can be extended to form
a principled basis for online feature detection.

The rest of this paper is structured as follows. Section II
introduces necessary preliminary results and formulates the
problem. Section III derives an asymptotically optimal N -
point approximation based on the given criteria. Section IV
simulates the derived N -point filter based on a linearized
pinhole camera measurement model, and compares it with a
filter that employs uniform sampling.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

This article analyzes approximation schemes for a linear
filter performing state estimation on a system with finite-
dimensional states and infinite-dimensional observations. A
derivation and discussion of this filter is given in [3]. A brief
description of the system and the corresponding filter is now
provided.

Let the discrete-time stochastic linear system (A,Γ) be
described by the equations

xk+1 = Axk + wk (1)
zk(i) = γ(i)xk + vk(i), (2)

where xk ∈ Rn is the state, wk ∈ Rn is the process noise,
and zk(i) ∈ Rm and vk(i) ∈ Rm are the measurement and
measurement noise, respectively, on the spatial domain i ∈
Rd. Both the states and measurements are indexed by time
step k ∈ N, and A ∈ Rn×n is the state transition matrix.
The measurements are infinite-dimensional, and as such the
linear observation function γ(i) ∈ Rm×n for all i ∈ Rd. The
mapping function γ is assumed to be square and absolutely
integrable over domain Rd. The process and measurement
noise are Gaussian with

E[wk] = 0, E
[
wkw

⊤
k

]
= Q ∈ Rn×n (3)

E[vk(i)] = 0, E
[
vk(i)vk(i

′)⊤
]
= R(i− i′) ∀i, i′ ∈ Rd.

Note that the infinite-dimensional measurement noise is
represented by a stationary Gaussian field. The definition
and properties of Gaussian fields can be found in a number
of texts [17], [18].

The form of the linear filter for system (A,Γ) is given by

x̂∞k = Ax̂∞k−1 +

∫
Rd

κk(i) (zk(i)− ẑk(i)) di

ẑk(i) = γ(i)Ax̂∞k−1, (4)

where κk : Rm → Rn and represents the optimal gain, in
the sense of minimizing the mean squared estimate error
E
[
∥xk − x̂∞k ∥2

]
at each time step k. The procedure for

deriving this optimal gain function is derived in [3] and

the resulting Procedure 1 is presented in Appendix A. The
optimal state estimate then takes the form

x̂∞k = Ax̂∞k−1 + Pk

∫
Rd

f(i)(zk(i)− γ(i)Ax̂∞k−1)di, (5)

where f(·) ≜ F−1{F{γ}⊤F{R}−1}, Pk represents the
covariance of the error (xk − x̂∞k ), F{·} denotes the d-
dimensional Fourier transform, and F−1{·} denotes the
corresponding inverse Fourier transform.

In the rest of this paper, to simplify our analysis we
consider only scalar-valued states, measurements, and mea-
surement domains.

B. Problem Formulation

In real-world digital systems, it is not possible for a sensor
to sample continuously over the measurement domain in
order to implement the integral in (5). Instead the sensor
must perform measurements at discrete points within the
domain. For this reason, linear filters of the form (4) are
not implementable, and some approximation scheme must be
employed. Assuming scalar states, let x̂N be some approxi-
mation of x̂∞, based on sampling the measurement domain
at N sample points. Let the cost of a given state estimator
x̂N be given by the steady-state mean-squared error

J(x̂N ) ≜ lim sup
k→∞

E
[(
xk − x̂Nk

)2]
. (6)

In Section III, we will show that for sufficiently large N we
may derive the asymptotically optimal N -point approxima-
tion for the system described thus far.

III. N-POINT FILTER APPROXIMATION

In this section we will derive an N -point approximation
filter that solves (6) as N grows large. In Section III-A we
will start with some useful definitions and reformulate the
cost function to a form more amenable to analysis. In Section
III-B we will derive an update rule for the covariance of
the N -point filters error. In Section III-C we will derive
approximations of this filter error for sufficiently large N ,
and introduce an idealized point density function. Finally, in
Section III-D we will determine the necessary conditions for
this point density function to minimize the cost function (6)
and use the result to design a corresponding filter in Section
IV.

A. Definitions and Cost Function Reformulation

Let C = {C1, C2, ..., CN+2} be a partition of the space
R into N + 2 intervals, with each bounded interval Cj

possessing an assigned length Vj and sample point ij ∈
Cj . This partition will also have two unbounded (overload)
intervals CN+1 and CN+2 which are assumed to be far
enough to the left and right of the real axis to be negligible.
We therefore restrict our analysis to the first N bounded
(granular) intervals of C. Motivated by (5), we begin by
proposing the following form for our N -point approximation.
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Definition 3.1 (N-Point State Estimate): We define

x̂Nk ≜ Ax̂Nk−1 + Pk

N∑
j=1

Vjf(ij)

[
zk(ij)− γ(ij)Ax̂

N
k−1

]
,

(7)
as the N -point state estimate at time k ≥ 0. This is simply
approximating the integral operator by a Riemann sum with
non-uniform partition intervals. In this work we assume that
the partition is time-invariant and chosen off-line.

The error between the optimal filter estimate and the N -
point approximation is then defined as follows.

Definition 3.2 (Error Term): The error associated with
the N -point state estimate x̂Nk is

ek ≜ x̂∞k − x̂Nk , (8)
where x̂∞k is given by (5) (see also line 8 in Procedure 1).

With these definitions, it can be shown that minimizing
the cost function (6) is equivalent to reducing the “expected
distance” between x̂∞k and x̂Nk , i.e.

argmin
x̂N

J(x̂N ) = argmin
x̂N

lim sup
k→∞

E
[
e2k
]
. (9)

B. Error Covariance Update Rule
We now will furnish the following definitions for clarity

and ease of exposition.
Definition 3.3 (S Approximation and Error):

S ≜
∫
D
s(i) di, Ŝ ≜

N∑
j=1

Vjs(ij) (10)

s(i) ≜ f(i)γ(i) S̃ ≜ S − Ŝ. (11)
Definition 3.4 (G Approximation and Error):

Gk ≜
∫
D
f(i)vk(i)di, Ĝk ≜

N∑
j=1

Vjf(ij)vk(ij) (12)

G̃k ≜ G− Ĝk. (13)
Observe that with these definitions provided, we may

reformulate the N -point state estimate as

x̂Nk =Ax̂Nk−1 + Pk

N∑
j=1

Vjf (ij)

[
zk(ij)− γ(ij)Ax̂

N
k−1

]
=Ax̂Nk−1 + PkŜ(xk −Ax̂Nk−1) + Ĝk

=Ax̂Nk−1 + PkŜ(xk −Ax̂∞k−1 +Aek−1) + Ĝk. (14)

Substituting this formulation, along with (5), into (8), we
find that with Mk ≜ (I − PkŜ)A,

ek =x̂∞k − x̂Nk

=Ax̂∞k−1 + PkS(xk −Ax̂∞k−1) +Gk

−Ax̂Nk−1 − PkŜ(xk −Ax̂∞k−1 +Aek−1)− Ĝk

=Mkek−1 + PkS̃(xk −Ax̂∞k−1) + G̃k. (15)

Having formulated an update rule for the error, we may
now derive an update rule for the error covariance E[e2k].
Substituting ek from (15) we have

E
[
e2k
]
=M2

kE
[
e2k−1

]
+ P 2

k S̃
2E
[
(xk −Ax̂∞k−1)

2
]

+ E
[
G̃2

k

]
+ cross terms. (16)

The two cross terms involving G̃k are zero due to the mea-
surement noise being uncorrelated with the approximation
error and filter error terms. The remaining cross term is also
zero as

E
[
(xk −Ax̂∞k−1)ek−1

]
=AE

[
(xk−1 − x̂∞k−1)ek−1

]
+ E [wk−1ek−1]

=AE
[
(xk−1 − x̂∞k−1)ek−1

]
, (17)

as it can be shown that E
[
(xk−1 − x̂∞k−1)ek−1

]
= 0.

As in Procedure 1, we define the covariance P−
k =

E
[
(xk −Ax̂∞k−1

)2
]. Making this final substitution to (16)

and removing cross terms ultimately yields an error covari-
ance update rule of

E[e2k] =M
2
kE
[
e2k−1

]
+ P 2

k S̃
2P−

k + E[G̃2
k]. (18)

C. Integral Approximations and Error Terms
We will now discuss how we may approximate the S̃ and

G̃k terms for sufficiently large N , which will in turn lead us
to an approximation of (18). Let f : R → R be Lebesgue
integrable over R. Then given an interval partition C of R
and sufficiently large N ,∫

R
f(i) di ≈

N∑
j=1

Vjf(ij), ij ∈ Cj , (19)

where ij is an arbitrary point in Cj . The error terms of this
approximation are made explicit in the Lemma 3.1. To derive
approximations, we require the following concept of an N -
point density function.

Definition 3.5 (N-Point Density Function): Define the N -
point density function λN : R → [0,∞),

∫
R λN (i) di = 1,

by

λN (i) ≜
1

NVj
, if i ∈ Cj , for j = 1, 2, ..., N, (20)

where N is the total points sampled for the non-uniform
Riemann sum approximation, Vj is the length of interval
Cj .
This notion of a density function is a useful tool often used in
vector quantization schemes [8], [13], [19]. When N grows
very large, λN (i) will approximate a density function λ :
R → [0,∞) with

∫
R λ(i) di = 1 over the region of interest.

For the analysis undertaken in this work, the sample points
i∗j will be the mid-point of each interval. We will not discuss
the optimality of this selection here, but arguments for the
mid-point minimizing the mean squared error distortion of a
scalar quantizer have been presented [13, Section 6.2].

Lemma 3.1: For sufficiently large N , the error between
the integral, if it exists, of a sufficiently smooth integrable
function f : R → R and its mid-point non-uniformly
partitioned Riemann sum is∫
R
f(i)di−

N∑
j=1

Vjf(i
∗
j ) =

1

4!

1

N2

∫
R

d2f

di2
(i)λ(i)−2 di+O(N−4)

(21)

where Vj is the length of the interval Cj , and unbounded
intervals are considered negligible. The function λ(i) denotes
the density in the sense of Definition 3.5.
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Proof: Observe that for an integrable, sufficiently
smooth function f : R → R with an N -partition C and
mid-points i∗j ∈ Cj ,∫

R
f(i)di−

N∑
j=1

V (Cj)f(i
∗
j ) =

N∑
j=1

∫
Cj

f(i)− f(i∗j )di.

(22)

The Taylor polynomial of f(i) around i∗j is given by

f(i) =

∞∑
n=0

1

n!

dnf

din

∣∣∣∣
i∗j

(i− i∗j )
n. (23)

It follows then that∫
Cj

f(i)− f(i∗j )di =

∫
Cj

∞∑
n=1

1

n!

dnf

din

∣∣∣∣
i∗j

(i− i∗j )
n di

=

∞∑
n=1

1

n!

dnf

din

∣∣∣∣
i∗j

∫
Cj

(i− i∗j )
n di. (24)

As i∗j is the mid-point of Cj , Fn(i) =
∫
(i − i∗j )

n di is an
even function around i∗j when n is odd and an odd function
around i∗j when n is even, leading to cancellation of every
odd term and doubling of every even term. This yields∫

Cj

f(i)− f(i∗j )di =

∞∑
n=1

1

(2n)!

d2nf

di2n

∣∣∣∣
i∗j

∫
Cj

(i− i∗j )
2n di.

(25)

Let us now evaluate the integral
∫
Cj
(i− i∗j )

2n di,∫
Cj

(i− i∗j )
2n di =(i− i∗j )

2n+1
∣∣
Cj
(2n+ 1)−1

=2(2n+ 1)−1

(
Vj
2

)2n+1

=2−2n(2n+ 1)−1V 2n+1
j . (26)

Combining this with (25) and (22), and substituting Vj
according to Definition 3.5, for sufficiently large N ,∫
R
f(i)di−

N∑
j=1

V (Cj)f(i
∗
j ) =

N∑
j=1

∞∑
n=1

2−2n

(2n+ 1)!

d2nf

di2n

∣∣∣∣
i∗j

V 2n+1
j

≈
∞∑

n=1

2−2n

(2n+ 1)!

∫
R

d2nf

di2n
1

(λ(i)N)2n
di

=
1

4!

1

N2

∫
R

d2f

di2
λ(i)−2 di+O(N−4). (27)

A result of Lemma 3.1 is that if s, as given by (11), is
sufficiently smooth and N is sufficiently large,

S̃ =
1

24

1

N2

∫
R

d2s

di2
1

λ2(i)
di+O(N−4). (28)

Having found an approximation for S̃, we analyze G̃k.
Lemma 3.2: For sufficiently large N and sufficiently

smooth function g(i,m) = f(i)R(i−m)f(m),

E[G̃2
k] ≈

1

576N4

∫
R

∫
R

∂4g

∂i2∂m2

1

λ2(i)λ2(m)
di dm. (29)

Proof: Let g(i,m) = f(i)R(i−m)f(m) with covari-
ance R(i,m) = E[v(i)v(m)], and observe that

E[G̃2
k] = E

[( N∑
j=1

∫
Cj

(f(i)vk(i)− f(i∗j )vk(i
∗
j ))di

)2]

=

N∑
j=1

N∑
n=1

∫
Cj

∫
Cn

(
f(i)E[vk(i)vk(m)]f(m)

−f(i∗j )E[vk(i
∗
j )vk(m)]f(m)− f(i)E[vk(i)vk(m

∗
n)]f(m

∗
n)

+f(i∗j )E[vk(i
∗
j )vk(m

∗
n)]f(m

∗
n)

)
dmdi

=

N∑
j=1

N∑
n=1

∫
Cj

∫
Cn

[g(i,m)− g(i∗j ,m)

− g(i,m∗) + g(i∗j ,m
∗
n)] dmdi. (30)

Expressing g(i,m) and the g(i∗j ,m), g(i,m∗
n) terms as their

Taylor series around (i∗j ,m
∗
m) we have

g(i,m)− g(i∗j ,m)− g(i,m∗
n) + g(i∗j ,m

∗
n)

=

∞∑
β=0

∞∑
α=0

∂α+βg

∂iα∂mβ

∣∣∣∣
(i∗j ,m

∗
n)

(i− i∗j )
α(m−m∗

n)
β 1

α!β!

−
∞∑

α=0

∂αg

∂iα

∣∣∣∣
(i∗j ,m

∗
n)

(i− i∗j )
α 1

α!
−

∞∑
β=0

∂βg

∂mβ

∣∣∣∣
(i∗j ,m

∗
n)

(m−m∗
n)

β 1

β!

+g(i∗j ,m
∗
n)

=

∞∑
β=1

∞∑
α=1

∂α+βg

∂iα∂mβ

∣∣∣∣
(i∗j ,m

∗
n)

(i− i∗j )
α(m−m∗

n)
β 1

α!β!
. (31)

If i∗j ,m
∗
n are both the mid-point of Cj , Cn respectively, then

the integral
∫
Cj
(i − i∗j )

αdi operates on an even function
around i∗j when α is even and an odd function when α is odd.
The same argument may be made for

∫
Cj
(m−m∗

n)
β , leading

to cancellation when either α or β is odd, and doubling when
α and β are , so the double integral of (31) is

∞∑
β=1

∞∑
α=1

1

(2α)!(2β)!

∂2α+2βg

∂i2α∂m2β

∣∣∣∣
(i∗j ,m

∗
n)

·
∫
Cj

(i− i∗j )
2αdi

∫
Cn

(m−m∗
n)

2βdm. (32)

Taking the fourth order Taylor series and truncating yields∫
Cj

∫
Cn

g(i,m)− g(i∗j ,m)− g(i,m∗
n) + g(i∗j ,m

∗
n)didm

≈1

4

∂4g

∂i2∂m2

∣∣∣∣
(i∗j ,m

∗
n)

∫
Cj

(i− i∗j )
2di

∫
Cn

(m−m∗
n)

2dm

=
1

4

1

9

∂4g

∂i2∂m2

∣∣∣∣
(i∗j ,m

∗
n)

(i− i∗j )
3

∣∣∣∣
Cj

(m−m∗
n)

3

∣∣∣∣
Cn

=
1

36

∂4g

∂i2∂m2

∣∣∣∣
(i∗j ,m

∗
n)

2

(
Vj

2

)3

2

(
Vn

2

)3

=
1

576

∂4g

∂i2∂m2

∣∣∣∣
(i∗j ,m

∗
n)

V 3
j V

3
n . (33)

5890



Substituting the density function from Definition 3.5 into
(33) leads to the following approximation for large N

E[G̃2
k] ≈

1

576

N∑
j=1

N∑
m=1

∂4g

∂i2∂m2

∣∣∣∣
(i∗j ,m

∗
n)

V 2
j VjV

2
n Vn

≈ 1

576

1

N4

∫
R

∫
R

∂4g

∂i2∂m2

1

λ2(i)λ2(m)
di dm. (34)

D. Solution via Density Function

Having derived appropriate approximations for S̃, E[G̃2
k]

as N grows large, we approximate the asymptotic error E[e2k]
as N grows large. This is achieved via the following lemma.

Lemma 3.3: Let ψk = N4E[e2k]. As N → ∞,

ψ∞ → 1

1−M2
∞

1

576

(∫
R

∫
R

η(i,m)

λ(i)2λ(m)2
di dm

)
,

(35)

where η(i,m) = P 2
∞P

−
∞
d2s(i)

di2
d2s(m)

dm2
+
∂4g(i,m)

∂i2∂m2
.

(36)
Proof: Set ψk = N4E[e2k], substitute into (18), and

apply approximations (28), (33), to find that as N → ∞,

ψk =M2
kψk−1 +N4P 2

kP
−
k S̃

2 +N4E[G̃2
k]

→M2
kψ

2
k−1 + P 2

kP
−
k

1

576

(∫
R

d2s

di2
λ(i)−2di

)2

+
1

576

∫
R

∫
R

∂4g

∂i2∂m2
λ(i)−2λ(m)−2 di dm, (37)

where Mk → (1 − PkS)A as N → ∞, from (10) and the
definition below (14). By rewriting the squared integral on
the RHS as a double integral, we derive the asymptotic value

ψ∞ =M2
∞ψ∞

+
P 2
∞P

−
∞

576

∫
R

∫
R

d2s(i)

di2
1

λ(i)2
d2s(m)

dm2

1

λ(m)2
di dm

+
1

576

∫
R

∫
R

∂4g

∂i2∂m2
λ(i)−2λ(m)−2 di dm

ψ∞ =
1

576

1

1−M2
∞

∫
R

∫
R

η(i,m)

λ(i)2λ(m)2
di dm, (38)

where the kernel function η(i,m) is given by

η(i,m) =

(
P 2
∞P

−
∞
d2s(i)

di2
· d

2s(m)

dm2
+
∂4g(i,m)

∂i2∂m2

)
(39)

and M∞ = (1 − P∞S)A, which has magnitude < 1 under
mean-squared stability of the infinite-dimensional filter (5).

Having derived the value ψ∞ in terms of a density
function, we now find the minimizing point density function.

Theorem 3.4 (Optimal Density Function Conditions):
The point density function λ that minimizes the asymptotic
MSE of the N -point filter must satisfy the following
necessary condition

λ(i)3 =
4

ω

∫
R
η(i,m)λ(m)−2 dm, (40)

where ω is a normalization constant ensuring
∫
R λ(i) di = 1,

and the kernel η(i,m) is given by Lemma 3.3.
Proof:

argmin
λ

E[e2∞] = argmin
λ

ψ∞ (41)

=argmin
λ

∫
R

∫
R

η(i,m)

λ(i)2λ(m)2
di dm. (42)

Note that λ is a density function and so we impose
non-negativity and normalization constraints λ(i) ≥ 0 ∀i
and
∫
R λ(i) di = 1. This constrained minimization problem

yields the Lagrangian [20, Section 9.4]

L(λ, ω) =

∫
R

∫
R

η(i,m)

λ(i)2λ(m)2
di dm

+ ω

(∫
R
λ(i) di− 1

)
−
∫
R
µ(i)λ(i) di. (43)

A necessary condition for minimization is then given by the
condition ∂

∂λL = 0, this can be shown to be equivalent to
the condition

λ(i)3 =
4

ω

∫
R
η(i,m)λ(m)−2 dm. (44)

Equation (44) is an Urysohn equation of the second kind.
Sufficient conditions for existence and uniqueness of solu-
tions to such equations have been studied in [9, Section 14.1-
2], and will be explored further in our future work. For our
current purposes, a solution can be found numerically and
we illustrate the application of successive approximation[9,
Section 14.3-4] to solve (44) in Section IV. A normalized
solution to (44) yields our desired point density function.
Once an asymptotically optimal point density function λ is
found, an N -point approximation filter may be designed in
two steps. First, the cumulative sum Λ of this point density
function is calculated. This sum represents the expected
proportion of points observed as we sweep through the image
domain, analogous to a cumulative distribution function.
Then, for an N -point filter, we simply acquire the values
{Λ−1( 1

N ),Λ−1( 2
N ), ..,Λ−1(1)}, corresponding to our parti-

tion’s boundaries. This is the companding model of quanti-
zation [13, Section 5.5]. Having determined the appropriate
partition scheme for our system, appropriate substitutions are
made to (7) and the filter may be implemented.

IV. SIMULATION RESULTS

In this section, Procedure 1 is applied in simulations, with
line 8 (cf. (5)) modified to the N -point form given in (7).

We consider a system governed by the equations,

xk+1 =axk + wk, (45)

zk(i) =− e−(νL−1
f x̄i)2

(
2(νL−1

f i)2x̄ cos(ξx̄L−1
f i)

+ ξL−1
f i sin(ξx̄L−1

f i)
)
xk + vk(i). (46)

The observation equation is motivated by a linearization
of the pinhole camera model, a diagram of this model is
presented in [3, Fig. 3]. The linearization is of the pattern

C(p) = e−ν2p2

cos(ξp) + 1. (47)
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This pattern is observed via the pinhole camera model of
vision, resulting in a non-linear observation function

z̄k(i, xk) =C(ixkL
−1
f )

=e−ν2(ixkL
−1
f )2 cos

(
ξ(ixkL

−1
f )
)
+ 1. (48)

We linearise this function with respect to xk around a
linearization point x̄ and apply additive Gaussian measure-
ment noise vk(i) to arrive at (46). The asymptotic optimal
density function for this system is calculated numerically via
successive approximation with the following update equation

ht+1(i) =

(∫ b

a

η(i,m)ht(m)
−1
3 dm

)2

, (49)

which has a fixed point solution equivalent to condition (44)
with h(i) =

(
− 4

ω

) 6
5 λ(i)6. This form is used to remove

explicit dependence on the unknown normalization parameter
ω and also to ensure a non-negative solution.

A candidate h0(i) is chosen and defined over an ap-
propriate domain. The bounds are chosen such that any
values outside of [a, b] are negligible. The η(i,m) function is
derived from the system via (39). For the system considered
in this paper this procedure converges on a fixed point.
Conditions to ensure convergence, existence and uniqueness
of this solution will be an important area of future work.
The fixed point solution h(i) can be used to calculate
ω

1
7λ(i) = h(i)

1
8 , with ω selected to ensure

∫
R λ(i) di = 1.

As discussed in Section IV, the companding model is used
to select an appropriate partition of the observation domain.
System parameters are given in Table I.

Three filters are implemented and compared. The high-
resolution filter samples the observations uniformly with a
spacing of ∆s corresponding to 200 samples. The uniform-
sampling filter samples the observations uniformly with 10
samples. The lambda-sampling filter samples the observa-
tions according to our companding model with 10 samples.
The results are shown in Fig. 1a, alongside the analytically
calculated optimal MSE. We also analyze the performance

TABLE I: Simulation Parameters

System Variable Notation Value
State Transition A 0.9

Process Noise Covariance Q 0.12

Observation Kernel γ(i) See (46)
Initial State x0 100

Integral Domain D [-1,1]
Wall Pattern C(p) e−ν2p2 cos(ξp) + 1

Measurement Covariance Kernel R(i, i′) ρ√
2πℓ

e
−( i−i′√

2ℓ
)2

Initial Error Covariance P0 Q
Initial State Estimate x̂0 x0

Linearization Point x̄ 1
Focal Length Lf 0.01

Decay Parameter ν 0.05
Frequency Parameter ξ 0.8

Length Scale ℓ 0.04
Observation Noise Intensity ρ 1

Sample Spacing ∆s 0.01

(a)

(b)

(c)

Fig. 1: Simulation Results: (a) MSE (dB scale) of various filters av-
eraged over 50,000 trials. The uniform-sampling filter and lambda-
sampling filter sample 10 points in the measurement domain. (b)
Average terminal value of MSE (dB scale) for uniform and lambda
sampling schemes as the interval number N increases. (c) Average
terminal value of MS of approximation errors (dB) for uniform and
lambda sampling schemes. Upper and lower lines of best fit have
gradients -44.6 and -42.5 dB/decade respectively.

of these filters as the number of intervals increase. Fig.
1b presents the MSE’s of both the lambda-sampling filter
and the uniform-sampling filter as the number of intervals
increase. As expected, both approach the theoretically op-
timal MSE as the number of intervals grow large. The
MSE of the approximation errors (differences between the
high resolution and the uniform/lambda-sampling filters) are
plotted in Fig. 1c. We see a noisy but noticeable trend of
a −40dB/decade roll-off, which aligns with the theoretical
decay rate of N−4 predicted by Lemma 3.3.
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V. CONCLUSION

We derive a finite-dimensional approximation for an op-
timal linear filter with finite-dimensional states and infinite-
dimensional measurements. The approximation is converted
to an optimization problem in terms of minimizing the
mean-squared estimation error. The derived filter samples
N discrete measurements across the measurement domain
and has a mean-squared approximation error that decays
like N−4 as opposed to the N−2 decay rate commonly
seen in high-resolution quantization schemes. The filter is
implemented in simulation and these properties are verified
and compared with a uniform-sampling filter. This work is
constrained to scalar-valued states, measurements and mea-
surement domains, and future work will extend the analysis
to the vector case. Future work will also examine conditions
for the uniqueness and existence of an asymptotically opti-
mal density function, as well as optimal time-varying and
measurement-dependent sampling strategies.

APPENDIX

A. Optimal Linear Filter Procedure

Procedure 1 Optimal Linear Filter [3]

1: Inputs: A,Q,R(i, i′), P0, x̂
∞
0 , γ(i)

2: for k ≥ 1 do
3: f(i) = F−1{F{γ(i)}⊤F{R(i)}−1}
4: S =

∫
Rd f(i)γ(i)di

5: P−
k = APk−1A

⊤ +Q
6: Pk = P−

k (I + SP−
k )−1

7: Obtain measurement - zk(i)
8: x̂∞k = Ax̂∞k−1 + Pk

∫
Rd f(i)(zk(i)− γ(i)Ax̂k−1)di

9: end for
10: Outputs: {P1, P2, ..., PT }, {x̂∞1 , x̂∞2 , ..., x̂∞T }

Note that Pk, P
−
k ∈ Rn×n represent the covariances of

xk − x̂∞k and xk − Ax̂∞k−1 respectively. The F(·) operator
denotes the d-dimensional Fourier transform.
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