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Abstract— Retractions maps are used to define a discretiza-
tion of the tangent bundle of the configuration manifold as two
copies of the configuration manifold where the dynamics take
place. Such discretization maps can be conveniently lifted to a
higher-order tangent bundle to construct geometric integrators
for the higher-order Euler-Lagrange equations. Given a cost
function, an optimal control problem for fully actuated mechan-
ical systems can be understood as a higher-order variational
problem. In this paper we introduce the notion of a higher-order
discretization map associated with a retraction map to construct
geometric integrators for the optimal control of mechanical
systems. In particular, we study applications to path planning
for obstacle avoidance of a planar rigid body.

I. INTRODUCTION

In this paper, we consider fully-actuated optimal control
problems as higher-order variational problems (see [6] and
[9]). Such problems are defined on the kth-order tangent
bundle T (k)Q of a differentiable manifold Q (see [17]). For
a higher-order Lagrangian function L : T (k)Q → R and
local coordinates (q, q̇, . . . , q(k)) on T (k)Q the higher-order
variational problems are given by

min
q(·)

∫ T

0

L(q(t), q̇(t), . . . , q(k)(t))dt,

subject to the boundary conditions q(j)(0) = qj0, q(j)(T ) =
qjT for 0 ≤ j ≤ k − 1, where q(j)(t) = dj

dtj q(t).
The relationship between higher-order variational prob-

lems and optimal control problems of fully-actuated me-
chanical systems comes from the fact that Euler-Lagrange
equations are represented by a second-order Newtonian sys-
tem and fully-actuated mechanical control systems have the
form F (q, q̇, q̈) = u, where u are the control inputs, as many
as the dimension of the configuration manifold Q. If C is a
cost function of an optimal control problem given by

min
(q(·),u(·))

∫ T

0

C(q, q̇, u)dt,
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it can be rewritten as a second-order variational problem
replacing u by the above expression.

The notion of retraction map is an essential tool in
different research areas like optimization theory, numerical
analysis and interpolation (see [1] and references therein).
A retraction map plays the role of generalizing the linear-
search methods in Euclidean spaces to general manifolds. On
a manifold with nonzero curvature to move along the tangent
line does not guarantee that the motion stays on the manifold.
The retraction map provides the tool to define the notion of
moving in a direction of a tangent vector while staying on the
manifold. That is why retraction maps have been widely used
to construct numerical integrators of ordinary differential
equations, since it allows us to move from a point and a
velocity to one nearby point so that the differential equation
can be discretized.

In [4] the classical notion of retraction map used to
approximate geodesics is extended to the new notion of
discretization maps, that is rigorously defined to become a
powerful tool to construct geometric integrators. Using the
geometry of the tangent and cotangent bundles, the authors
were able to tangently and cotangent lift the map so that
these lifts inherit the same properties as the original one and
they continue to be discretization maps. In particular, the
cotangent lift of a discretization map is a natural symplecto-
morphism, which plays a key role for constructing symplectic
integrators. It was further applied in [5] to the construction
of numerical methods for optimal control problems from a
Hamiltonian perspective.

Geometric integrators for optimal control problems seen
as second-order variational problems were studied in [13]
(see also [14], [15]). The goal of this paper is to extend
the notion of discretization map given in [4] to higher-
order tangent bundles and, at the same time, to construct
symplectic integrators for optimal control problems of fully-
actuated mechanical systems. The results in this paper are
a demonstration of the use of higher-order retraction maps
in optimal control problems. In future research, we will
show how retraction maps may be leveraged to deal with
optimal control problems on Lie groups and homogeneous
spaces, two of the most common situations in applications
to robotics. Thus, the present paper lays the foundations of a
more general program to construct geometric integrators for
optimal control problems in non-linear manifolds.

The paper is structured as follows. Section II introduces
the necessary tools on differential geometry and the geomet-
ric formalism for the dynamics of mechanical systems. Sec-
tion III describes optimal control problems as higher-order
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variational problems and the Lagrangian and Hamiltonian
characterization of necessary conditions for optimality. In
Section IV we introduce retraction maps and discretization
maps as well as the cotangent lift of discretization maps
which allows the construction of symplectic integrators. In
Section V we define higher-order discretization maps and
describe the construction of symplectic integrators for higher-
order mechanical systems. We employ this construction in
Section VI to construct geometric integrators for optimal
control of mechanical systems. In particular, we study ap-
plications to path planning for obstacle avoidance of planar
rigid bodies.

II. BACKGROUND ON GEOMETRIC MECHANICS

Let Q be a n-dimensional differentiable configuration
manifold of a mechanical system with local coordinates
(qA), 1 ≤ A ≤ n. Denote by TQ the tangent bundle (see,
for instance, [27] for an introduction to the tangent bundle
and mechanics on it). If TqQ denotes the tangent space
of Q at the point q, then TQ := ∪q∈QTqQ, with induced
local coordinates (qA, q̇A). There is a canonical projection
τQ : TQ → Q, sending each vector vq to the corresponding
base point q. Note that in coordinates τQ(q

A, q̇A) = qA.
The vector space structure of TqQ makes possible to con-

sider its dual space, T ∗
q Q, to define the cotangent bundle as

T ∗Q := ∪q∈QT
∗
q Q, with local coordinates (qA, pA). There

is a canonical projection πQ : T ∗Q → Q, sending each
momenta pq to the corresponding base point q. Note that in
coordinates πQ(q

A, pA) = qA.
Given a Lagrangian function L : TQ → R, the corre-

sponding Euler-Lagrange equations are

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= 0, 1 ≤ A ≤ n. (1)

Equations (1) determine a system of n second-order differ-
ential equations. If we assume that the Lagrangian is regular,
i.e., the (n× n)-matrix

(
∂2L

∂q̇A∂q̇B

)
, 1 ≤ A,B ≤ n, is non-

singular, the local existence and uniqueness of solutions are
guaranteed for any given initial condition by employing the
Implicit Function Theorem.

A Hamiltonian function H : T ∗Q → R is described by the
total energy of a mechanical system and leads to Hamilton’s
equations on T ∗Q, whose solutions are integral curves of
the Hamiltonian vector field XH taking values in T (T ∗Q)

associated with H . Locally, XH(q, p) =
(

∂H
∂p ,−

∂H
∂q

)
, that

is,

q̇A =
∂H

∂pA
, ṗA = − ∂H

∂qA
, 1 ≤ A ≤ n. (2)

Equations (2) determine a set of 2n first order ordinary
differential equations (see [6], for instance, for more details).

A one-form α on Q is a map assigning to each point q
a cotangent vector on q, that is, α(q) ∈ T ∗

q Q. Cotangent
vectors acts linearly on vector fields according to α(X) =
αiX

i ∈ R if α = αidq
i and X = Xi ∂

∂qi . Analogously, a
two-form or a (0, 2)-tensor field is a bilinear map that acts
on a pair of vector fields to produce a number.

A symplectic form ω on a manifold Q is a (0, 2)-type
tensor field that is skew-symmetric and non-degenerate, i.e.,
ω(X,Y ) = −ω(Y,X) for all vector fields X and Y and if
ω(X,Y ) = 0 for all vector fields X , then Y ≡ 0.

The set of vector fields and the set of 1-forms on Q are
denoted by X(Q) and Ω1(Q), respectively. The symplectic
form induces a linear isomorphism ♭ω : X(Q) → Ω1(Q),
given by ⟨♭ω(X), Y ⟩ = ω(X,Y ) for any vector fields X,Y .
The inverse of ♭ω will be denoted by ♯ω .

As described in [24], the cotangent bundle T ∗Q of a
differentiable manifold Q is equipped with a canonical exact
symplectic structure ωQ = −dθQ, where θQ is the canonical
1-form on T ∗Q. In canonical bundle coordinates (qA, pA)
on T ∗Q, θQ = pA dqA and ωQ = dqA ∧ dpA . Hamilton’s
equations can be intrinsically rewritten as ıXH

ωQ : =
♭ω(XH) = dH . Hamiltonian dynamics are characterized
by the following two essential properties [20]:

• Preservation of energy by the Hamiltonian function:

0 = ωQ(XH , XH) = dH(XH) = XH(H) .

• Preservation of the symplectic form: If {ϕt
XH

} is the
flow of XH , then the pull-back of the differential form
by the flow is preserved, (ϕt

XH
)∗ωQ = ωQ.

Recall that a pair (Q,ωQ) is called a symplectic manifold
if Q is a differentiable manifold and ωQ is a symplectic 2-
form. As a consequence, the restrictions of ωQ to each q ∈ Q
makes the tangent space TqQ into a symplectic vector space.

Definition 1: Let (Q1, ω1) and (Q2, ω2) be two symplec-
tic manifolds, let ϕ : Q1 → Q2 be a smooth map. The map
ϕ is called symplectic if the symplectic forms are preserved:
ϕ∗ω2 = ω1. Moreover, it is a symplectomorphism if ϕ is a
diffeomorphism and ϕ−1 is also symplectic.

Let Q1 and Q2 be n-dimensional manifolds and F : Q1 →
Q2 be a smooth map. The tangent lift TF : TQ1 → TQ2 of
F is defined by TF (vq) = TqF (vq) ∈ TF (q)Q2 where vq ∈
TqQ1, and TqF is the tangent map of F whose matrix is the
Jacobian matrix of F at q ∈ Q1.

As the tangent map TqF is linear, the dual map
T ∗
q F : T ∗

F (q)Q2 → T ∗
q Q1 is defined as follows:

⟨(T ∗
q F )(α2), vq⟩ = ⟨α2, TqF (vq)⟩ for every vq ∈ TqQ1.

Note that (T ∗
q F )(α2) ∈ T ∗

q Q1.
Definition 2: Let F : Q1 → Q2 be a diffeomorphism.

The vector bundle morphism F̂ : T ∗Q1 → T ∗Q2 defined by
F̂ = T ∗F−1 is called the cotangent lift of F−1.
In other words, F̂ (αq) = T ∗

F (q)F
−1(αq) where αq ∈ T ∗

q Q1.
Obviously, (T ∗F−1) ◦ (T ∗F ) = IdT∗Q2 .

A. Higher-order tangent bundles

The higher-order tangent bundle is essentially a general-
ization of the tangent space of the manifold Q to higher-
order derivatives, when one interprets tangent vectors as
the velocity vector of some curve in Q. Analogously, an
element of the k-th order tangent bundle can be defined as
an equivalence relation identifying all curves that match up
to k-th order derivative.
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Let c1, c2 : R → Q be two curves on Q. Consider
the equivalence relation ∼k at 0 ∈ R determined by the
following two conditions:

1) c1(0) = c2(0);
2) c

(i)
1 (0) = c

(i)
2 (0) for all 1 ⩽ i ⩽ k, where the notation

c(i) represents the i-th derivative of c.
In this case, we say that c1 and c2 are ∼k-related at 0.
Moreover, the equivalence class of c determined by ∼k is
called the k-jet of c and is represented by j

(k)
0 c. The set

of all k-jets at 0 is denoted by J
(k)
0 (R, Q) in some general

contexts. But, from now on, it will be denoted by T (k)Q,
the k-th order bundle of Q. The k-th order bundle of Q is
a smooth manifold (see [17]) and admits several fibrations:
πk
r : T (k)Q → T (r)Q mapping j

(k)
0 c 7→ j

(r)
0 c for 0 ⩽ r < k.

Observe that for r = 1, T (1)Q = TQ and for r = 0,
T (0)Q = Q.

If (qA) are local coordinates on the manifold Q, then
the k-jet j

(k)
0 c is uniquely determined by the coordinates

(qA, q(0)
A

, . . . , q(k)
A

), where

qA = cA(0), q(r)
A

=
1

r!
c(r)

A

(0), 1 ⩽ A ⩽ dimQ.

In a sense, the local coordinates for k-jets are provided by
the Taylor polynomial of c at 0.

Given a smooth map F : Q1 → Q2, we define T (k)F :

T (k)Q1 → T (k)Q2 by T (k)F (j
(k)
0 c) = j

(k)
0 (F ◦ c), for some

curve c : R → Q1.

III. VARIATIONAL FORMULATION OF OPTIMAL
CONTROL PROBLEMS FOR MECHANICAL SYSTEMS

There are some problems in which the functional to be
minimized depends on higher-order derivatives of a curve.
This is the case in interpolating problems [21], [31]; in
generation of trajectories for quadrotors [28], [26], or in
a generalization of least square problem on Riemannian
manifolds [25].

The goal of this paper is to use discretization maps
obtained from the retraction maps to produce numerical
algorithms for the solutions of optimal control problems for
fully actuated mechanical systems. The prototype problem
in this paper is the optimization of the cost functional

J =

∫ T

0

||u||2 dt

subjected to controlled Euler-Lagrange equations describing
the dynamics of standard mechanical systems, i.e.,

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= u.

The cost functional may then be recast as the second-order
functional

J =

∫ T

0

∣∣∣∣∣∣∣∣ ddt
(
∂L

∂q̇

)
− ∂L

∂q

∣∣∣∣∣∣∣∣2 dt =

∫ T

0

L(q, q̇, q̈) dt.

Using the variational principle, necessary equations for a
trajectory to be optimal are the second order Euler-Lagrange

equations:

d2

dt2

(
∂L
∂q̈

)
− d

dt

(
∂L
∂q̇

)
+

∂L
∂q

= 0 .

We want to use the results in [4] (see also [5]) to
produce geometric numerical methods for the optimal control
problem under study. But first, we need to get these results
generalized for the higher-order tangent bundles. as well as
to study the Hamiltonian version of optimality conditions.

A second-order Lagrangian L can be associated with a
Lagrangian energy EL : T (3)Q → R defined by

EL(q, q̇, q̈, q
(3)) = q̇p̂(0) + q̈p̂(1) − L(q, q̇, q̈),

where p̂(0) and p̂(1) are the generalized momenta given by

p̂(0) =
∂L

∂q̇
− d

dt

∂L

∂q̈
, p̂(1) =

∂L

∂q̈
.

These momenta are conserved along solutions of the second-
order Euler-Lagrange equations (see [17] for instance).

As usual the link between Lagrangian and Hamiltonian
formalism is the corresponding Legendre transformation
LegL : T (3)Q → T ∗(TQ) given by

LegL(q, q̇, q̈, q
(3)) = (q, q̇, p̂(0), p̂(1)) .

The associated Hamiltonian function H : T ∗(TQ) → R
is given by

H(q, q̇, p̂(0), p̂(1)) = EL ◦ Leg−1
L (q, q̇, p̂(0), p̂(1)),

and the second-order Hamitlon equations are given by

q̇ =
∂H

∂p̂(0)
, q̈ =

∂H

∂p̂(1)
, ˙̂p(0) = −∂H

∂q
, ˙̂p(1) = −∂H

∂q̇
.

IV. DISCRETIZATION MAPS

The first notion of retraction appearing in the literature can
be found in [10] from a topological viewpoint. Later on, the
notion of retraction map as defined below is used to obtain
Newton’s method on Riemannian manifolds [30], [3].

Definition 3: A retraction map on a manifold Q is a
smooth mapping R from the tangent bundle TQ onto Q.
Let Rq denote the restriction of R to TqQ, the following
properties are satisfied:

1) Rq(0q) = q, where 0q denotes the zero element of the
vector space TqQ.

2) With the canonical identification T0qTqQ ≃ TqQ, Rq

satisfies
DRq(0q) = T0qRq = IdTqQ, (3)

where IdTqQ denotes the identity mapping on TqQ.
The condition (3) is known as local rigidity con-

dition since, given ξ ∈ TqQ, the curve γξ(t) =
Rq(tξ) has ξ as tangent vector at q, i.e. γ̇ξ(t) =
⟨DRq(tξ), ξ⟩ and, in consequence, γ̇ξ(0) = IdTqQ(ξ) = ξ.

A typical example of a retraction map is the exponential
map, exp, on Riemannian manifolds given in [18, Chapter
3.2]. Therefore, the image of ξ through the exponential map
is a point on the Riemannian manifold (Q, g) obtained by
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moving along a geodesic a length equal to the norm of ξ
starting with the velocity ξ/∥ξ∥, that is,

expq(ξ) = σ(∥ξ∥) ,

where σ is the unit speed geodesic such that σ(0) = q and
σ̇(0) = ξ/∥ξ∥.

Next, we define a generalization of the retraction map in
Definition 3 that allows a discretization of the tangent bundle
of the configuration manifold leading to the construction of
numerical integrators as described in [4]. Given a point and a
velocity, we obtain two nearby points that are not necessarily
equal to the initial base point.

Definition 4: A map Rd : U ⊂ TQ → Q×Q given by

Rd(q, v) = (R1(q, v), R2(q, v)),

where U is an open neighborhood of the zero section 0q of
TQ, defines a discretization map on Q if it satisfies

1) Rd(q, 0) = (q, q),
2) T0qR

2
q−T0qR

1
q : T0qTqQ ≃ TqQ → TqQ is equal to the

identity map on TqQ for any q in Q, where Ra
q denotes

the restrictions of Ra, a = 1, 2, to TqQ.
Thus, the discretization map Rd is a local diffeomorphism
from some neighborhood of the zero section of TQ.

If R1(q, v) = q, the two properties in Definition 4
guarantee that the both properties in Definition 3 are satisfied
by R2. Thus, Definition 4 generalizes Definition 3.

Example 1: The mid-point rule on an Euclidean vector
space can be recovered from the following discretization
map: Rd(q, v) =

(
q − v

2
, q +

v

2

)
.

A. Cotangent lift of discretization maps

As the Hamiltonian vector field takes value on TT ∗Q, the
discretization map must be on T ∗Q, that is, RT∗

d : TT ∗Q →
T ∗Q× T ∗Q. Such a map is obtained by cotangently lifting
a discretization map Rd : TQ → Q × Q, so that the
construction RT∗

d is a symplectomorphism. In order to do
that, we need the following three symplectomorphisms (see
[4] and [5] for more details):

• The cotangent lift of the diffeomorphism Rd : TQ →
Q×Q as described in Definition 2.

• The canonical symplectomorphism:

αQ : T ∗TQ −→ TT ∗Q

such that αQ(q, v, pq, pv) = (q, pv, v, pq).
• The symplectomorphism between (T ∗(Q×Q), ωQ×Q)

and (T ∗Q× T ∗Q,Ω12 := pr∗2ωQ − pr∗1ωQ):

Φ : T ∗Q× T ∗Q −→ T ∗(Q×Q) ,

given by Φ(q0, p0; q1, p1) = (q0, q1,−p0, p1).

Diagram in Fig. 1 summarizes the construction procress from
Rd to RT∗

d :
Proposition 1: [4] Let Rd : TQ → Q×Q be a discretiza-

tion map on Q. Then

RT∗

d = Φ−1 ◦ R̂d ◦ αQ : TT ∗Q → T ∗Q× T ∗Q

is a discretization map on T ∗Q.

TT ∗Q
RT∗

d //

αQ

��

T ∗Q× T ∗Q

T ∗TQ

πTQ

��

R̂d // T ∗(Q×Q)

Φ−1

OO

πQ×Q

��

TQ
Rd // Q×Q

Fig. 1: Definition of the cotangent lift of a discretization.

Corollary 1: [4] The discretization map RT∗

d = Φ−1 ◦
(TR−1

d )∗ ◦αQ : T (T ∗Q) → T ∗Q×T ∗Q is a symplectomor-
phism between (T (T ∗Q),dTωQ) and (T ∗Q× T ∗Q,Ω12).

Example 2: On Q = Rn the discretization map
Rd(q, v) =

(
q − 1

2v, q +
1
2v
)

is cotangently lifted to

RT∗

d (q, p, q̇, ṗ) =

(
q − 1

2
q̇, p− ṗ

2
; q +

1

2
q̇, p+

ṗ

2

)
.

V. HIGHER-ORDER DISCRETIZATION MAPS

In [4], the authors show how to lift a discretization map to
the tangent and cotangent bundles. Next, we are going to see
how to lift a discretization map to a one on a higher-order
tangent bundle.

Let Rd : TQ → Q×Q be a discretization map on Q, then
we can lift it to the map

T (k)Rd : T (k)(TQ) → T (k)Q× T (k)Q,

defined by T (k)Rd(j
(k)
0 γ) = j

(k)
0 (Rd ◦ γ) for γ : I → TQ.

Consider the natural equivalence Φ(k) : T (T (k)Q) →
T (k)(TQ) defined using the following construction (see [23]
or [12, Sec. V]): for each X ∈ T (T (k)Q) there exists a curve
c : R → Q such that X = j

(1)
0 (j

(k)
0 c). Then, we have that

Φ(k)(X) = j
(k)
0 (j

(1)
0 c).

The identification between the higher-order tangent bundles
T (k)(TQ) ∼= T (T (k)Q) allows to define the map R

(k)
d :

T (T (k)Q) → T (k)Q×T (k)Q given by R
(k)
d = T (k)Rd◦Φ(k).

The following lemma will be useful in the proof of the
Theorem below.

Lemma 1: Let F : M → N be a smooth map and γt :
R → M a smooth family of maps, i.e., γ : R2 → M defined
by γ(t, s) = γt(s) is a smooth map. Then,

d

dt

∣∣∣∣
t=0

j
(k)
0 (F ◦ γt) = (Φ

(k)
N )−1j

(k)
0

(
d

dt

∣∣∣∣
t=0

(F ◦ γt)
)

where Φ
(k)
N : T (T (k)N) → T (k)(TN) is the canonical

identification.
Proof: As

d

dt

∣∣∣∣
t=0

j
(k)
0 (F ◦ γt) = j

(1)
0 (j

(k)
0 (F ◦ γt)) ,
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using the natural equivalence Φ
(k)
N

d

dt

∣∣∣∣
t=0

j
(k)
0 (F ◦ γt) = (Φ

(k)
N )−1

(
j
(k)
0 (j

(1)
0 (F ◦ γt))

)
,

the result follows.
Now, we can prove that the map R

(k)
d is a discretization

map on the higher-order bundle T (k)Q.
Theorem 1: Let Rd be a discretization map on Q, the

lift to the higher-order tangent bundle R
(k)
d : T (T (k)Q) →

T (k)Q× T (k)Q is a discretization map on T (k)Q.
Proof: Let Φ(k) : T (T (k)Q) → T (k)TQ be the

diffeomorphism identifying both manifolds.
First, we shall prove that given z ∈ T (k)Q, we have that

R
(k)
d (0z) = (z, z), where 0z is the zero section of the bundle

T (T (k)Q) → T (k)Q.
The image of the zero section under Φ(k) is the k-th jet

lift of the zero section on Q, that is, Φ(k)(0z) = T (k)0̂(z),
where 0̂ : Q → TQ, as it is easily checked choosing
natural coordinates on the higher-order tangent bundle. Thus,
R

(k)
d (0z) = T (k)Rd(j

(k)0̂(z)).
Using the definition of the k-th jet lift

T (k)Rd(j
(k)0̂(z)) = j

(k)
0 (Rd ◦ 0̂)(z).

In addition, since Rd is a discretization map, we have that
Rd ◦ 0̂ = IdQ × IdQ. Hence,

R
(k)
d (0z) = T (k)(IdQ × IdQ)(z)

= (IdT (k)Q × IdT (k)Q)(z) = (z, z).

Next, let R
(k)
d,z be the restriction of R

(k)
d to the space

Tz(T
(k)Q), where z ∈ T (k)Q. We can write R

(k)
d,z =

T (k)Rd ◦ Φ
(k)
z , where Φ

(k)
z is the restriction of Φ(k) to

Tz(T
(k)Q).

Moreover, if R(k),a
d,z denotes the composition of R(k)

d,z with
the projection onto the ath-factor, a = 1, 2, then we will
prove that T0zR

(k),2
d,z (Xz) − T0zR

(k),1
d,z (Xz) = Xz for all

Xz ∈ Tz(T
(k)Q) and z ∈ T (k)Q under the identification

T0zTz(T
(k)Q) ≡ Tz(T

(k)Q). We have that(
R

(k),2
d,z −R

(k),1
d,z

)
(Xz) =

(
T (k)R2

d − T (k)R1
d

)
◦Φ(k)

z (Xz) .

Therefore,

d

dt

∣∣∣∣
t=0

(
R

(k),2
d,z −R

(k),1
d,z

)
(tXz)

=
d

dt

∣∣∣∣
t=0

(
T (k)R2

d − T (k)R1
d

)
◦ Φ(k)

z (tXz)

=
d

dt

∣∣∣∣
t=0

T (k)
(
R2

d −R1
d

)
◦ Φ(k)

z (tXz)

=
d

dt

∣∣∣∣
t=0

j
(k)
0

(
(R2

d −R1
d)(tY (q))

)
,

where q = πk
0 (z), Y (q) ∈ TQ is a curve such that

j
(k)
0 Y = Φ

(k)
z (Xz). Moreover, if π̃k

0 : T
(k)TQ → TQ and

using τQ ◦ Tπk
0 = πk

0 ◦ τT (k)Q, then Y (q) ∈ TqQ and
Y = π̃k

0 (Φ
(k)(Xz)) = Tπk

0 (Xz) because the diagram in
Fig. 2 is commutative.

T (T (k)Q) T (k)TQ

T (k)Q TQ

Q

Φk

τ
T (k)Q

Tπk
0 π̃k

0

πk
0

τQ

Fig. 2: Commutative diagram.

Using Lemma 1 we have that

d

dt

∣∣∣∣
t=0

(
R

(k),2
d,z −R

(k),1
d,z

)
(tXz)

= (Φk
z)

−1jk0

(
d

dt

∣∣∣∣
t=0

(R2
d,q −R1

d,q)(tY (q))

)
.

Using the second property from discretization maps, we
obtain

d

dt

∣∣∣∣
t=0

(
R

(k),2
d,z −R

(k),1
d,z

)
(tXz)

= (Φk
z)

−1jk0 (Y ) = Xz,

where the last step follows from the definition of Y .
Example 3: Consider the midpoint discretization map

Rd(q, v) =

(
q − 1

2
v, q +

1

2
v

)
.

The lift of the midpoint to T (TQ) is

TRd(q, v, q̇, v̇) =

(
q − 1

2
v, q +

1

2
v, q̇ − 1

2
v̇, q̇ +

1

2
v̇

)
and the second lift to T (2)(TQ) is

T (2)Rd(q, v; q̇, v̇; q̈, v̈) =(
q − 1

2
v, q +

1

2
v, q̇ − 1

2
v̇, q̇ +

1

2
v̇, q̈ − 1

2
v̈, q̈ +

1

2
v̈

)
Under the natural equivalence between higher-order tan-

gent bundles, the map R
(2)
d : T (T (2)Q) → T (2)Q × T (2)Q

is given by
R

(2)
d (q, q̇, q̈; v, v̇, v̈) =(

q − 1

2
v, q̇ − 1

2
v̇, q̈ − 1

2
v̈; q +

1

2
v, q̇ +

1

2
v̇, q̈ +

1

2
v̈

)
.

Then R
(2)
d (q, q̇, q̈; 0, 0, 0) = (q, q̇, q̈; q, q̇, q̈),

T0(q,q̇,q̈)R
(2),2
d,(q,q̇,q̈) =

1/2 0 0
0 1/2 0
0 0 1/2

 ,

T0(q,q̇,q̈)R
(2),1
d,(q,q̇,q̈) =

−1/2 0 0
0 −1/2 0
0 0 −1/2

 .

Therefore, T0(q,q̇,q̈)R
(2),2
d,(q,q̇,q̈) − T0(q,q̇,q̈)R

(2),1
d,(q,q̇,q̈) = Id, and

R
(2)
d is a discretization map under the suitable identifications.

3292



Example 4: Consider the initial point discretization map
on the sphere Rd : TS2 → S2 × S2

Rd(q, ξ) =

(
q,

q + ξ

∥q + ξ∥

)
.

The lift to T (TS2) is the map TRd : T (TS2) → TS2×TS2:

TRd(q, ξ, q̇, ξ̇) =

(
q, q̇,

q + ξ

∥q + ξ∥
,

q̇ + ξ̇

∥q + ξ∥
− ξ · ξ̇(q + ξ)

∥q + ξ∥3

)
and the second lift T (2)(TS2) is

T (2)Rd(q, ξ, q̇, ξ̇, q̈, ξ̈) =

(
TRd(q, ξ, q̇, ξ̇), q̈,

q̈ + ξ̈

∥q + ξ∥

− 2ξ · ξ̇(q̇ + ξ̇) + (ξ̇ · ξ̇ + ξ · ξ̈)(q + ξ)

∥q + ξ∥3

+
3ξ · ξ̇(q + ξ)

∥q + ξ∥5

)
.

Composing with the natural identifications, we obtain a
discretization map on T (2)S2.

Corollary 2: Let R(k)
d : T (T (k)Q) → T (k)Q× T (k)Q be

a higher-order discretization map on T (k)Q. The cotangent

lift
(
R

(k)
d

)T∗

: T (T ∗(T (k)Q)) → T ∗(T (k)Q)× T ∗(T (k)Q)

is discretization map on T ∗(T (k)Q).
Proof: In Fig. 1 the discretization map at the bottom

line can be replaced by the higher-order discretization R
(k)
d ,

whose existence has been proved in Theorem 1. Such a map
can be cotangently lifted as in Proposition 1 to obtain the

following discretization map
(
R

(k)
d

)T∗

: T
(
T ∗(T (k)Q)

)
→

T ∗(T (k)Q)× T ∗(T (k)Q).

A. Geometric integrators on the higher-tangent bundle

The framework for the construction of geometric integra-
tors is established by Proposition 5.1 in [4] wich reads:

Proposition 2: If Rd is a discretization map on Q and
H : T ∗Q → R is a Hamiltonian function, then the equation

(RT∗

d )−1(q0, p0, q1, p1) =

♯ω

(
hdH

[
τT∗Q ◦ (RT∗

d )−1(q0, p0, q1, p1)
])

written for the cotangent lift of Rd is a symplectic integrator.
The previous proposition adapts perfectly to our case since

a higher-order Lagrangian on T (T (k)Q) has the correspond-
ing Hamiltonian function on T ∗(T (k)Q). The cotangent
lift in Proposisition 1 can be replaced by the higher-order
cotangent lift in Corollary 2. As a result, we have constructed
a symplectic integrator for the Hamiltonian version of the
higher-order dynamics.

VI. APPLICATION TO OPTIMAL CONTROL PROBLEMS

Suppose that on Q = Rn we have the optimal control
problem with cost functional

J =

∫ T

0

1

2
||u||2 dt

subjected to the Euler-Lagrange controlled dynamics q̈ = u.
This problem can be recasted as the second-order vari-

ational problem J =
∫ T

0
1
2 ||q̈||

2 dt with the second-order
Lagrangian L = 1

2 ||q̈||
2 on T (2)Q. Necessary conditions

for a trajectory to be optimal is to fulfill the second-order
Euler-Lagrange equations, which in this case give the spline
equations q(4) = 0. However, as described in Section III,
the Hamiltonian for this second-order Lagrangian system is
defined on T ∗TQ:

H(q, q̇, p̂(0), p̂(1)) =
1

2
p̂2(1) + p̂(0)q̇. (4)

A discretization map on T ∗TQ = T ∗(T (1)Q) is obtained by
cotangently lifting a first-order discretization map on TQ,
that corresponds with the tangent lift of a discretization map
on Q as defined in [4].

As in Example 3, the midpoint discretization
map Rd(q, q̇) =

(
q − 1

2 q̇, q +
1
2 q̇
)

is used to define
R

(1)
d : T (TQ) → TQ× TQ.
The first-order cotangent lift of the midpoint on T ∗(TQ)

is a discretization map as proved in Corollary 2:

(
R

(1)
d

)T∗

(q, q̇, p0, p1; q̇, q̈, ṗ(0), ṗ(1)) =(
q − 1

2
q̇, q̇ − 1

2
q̈, p(0) −

ṗ(0)

2
, p(1) −

ṗ(1)

2
;

q +
1

2
q̇, q̇ +

1

2
q̈, p(0) +

ṗ(0)

2
, p(1) +

ṗ(1)

2

)
.

(5)

As the Hamiltonian vector field associated with the Hamil-
tonian function (4) takes values in T (T ∗TQ), by Proposi-

tion 2,
(
R

(1)
d

)T∗

generates the following symplectic numer-
ical scheme on T ∗TQ:

q1 − q0
h

=
q̇1 + q̇0

2
,

q̇1 − q̇0
h

=
p̂(1)1 + p̂(1)0

2
,

p̂(0)1 − p̂(0)0

h
= 0,

p̂(1)1 − p̂(1)0

h
= −

p̂(0)1 + p̂(0)0

2
.

Working out the expressions we obtain:

q1 = q0 + hq̇0 +
h2

2
p̂(1)0 +

h3

4
p̂(0)0,

q̇1 = q̇0 + hp̂(1)0 +
h2

2
p̂(0)0,

p̂(0)1 = p̂(0)0, p̂(1)1 = p̂(1)0 − hp̂(0)0.

A. Obstacle avoidance problem

The following application is an optimal control problem
with obstacle avoidance, which is usually cast as a second-
order variational problem of the form∫ T

0

(
1

2
||q̈||2 + V (q)

)
dt (6)

(see [7], [8], [19]). The second order Lagrangian is in this
case L = 1

2 ||q̈||
2 + V (q) and the necessary equations for

a trajectory to be optimal is the fulfilment of the Euler-
Lagrange equations which in this case are the fouth-order
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system: q(4)+∇V (q) = 0. The Hamiltonian for this second-
order Lagrangian system is

H(q, q̇, p̂(0), p̂(1)) =
1

2
p̂2(1) + p̂(0)q̇ − V (q).

The symplectic method given by Proposition 2 associated
with the Hamiltonian function above and with the discretiza-
tion in (5) is

q1 − q0
h

=
q̇1 + q̇0

2
,

q̇1 − q̇0
h

=
p̂(1)1 + p̂(1)0

2
,

p̂(0)1 − p̂(0)0

h
= ∇V

(
q1 + q0

2

)
,

p̂(1)1 − p̂(1)0

h
= −

p̂(0)1 + p̂(0)0

2
.

(7)

B. Obstacle avoidance for a planar rigid body

Let us examine a particular example of the situation in
the previous subsection. Suppose Q = SE(2), that all maps
are considered in a local coordinate chart with coordinates
q = (x, y, θ) and that the artificial potential appearing in (6)
has the form

V (x, y, θ) =
τ

x2 + y2 − r2
.

We simulate the optimal trajectory of the previous problem
using the integrator in (7) with τ = 1 × 10−20, r = 1
and takingN = 400 steps with a step-size h = 0.01. The
initial position and velocity of the particle are (−5, 0, 0),
(1, 0, 0), respectively, and the final position and velocities are
(6, 0, 0) and (8, 0, 0), respectively. To measure the norm we
use the euclidean metric. To enforce the boundary conditions
a shooting method was ran together with the integrator.

Fig. 3: In blue, the trajectory of the optimal solution in the
xy plane. In red, a circular obstacle.

VII. CONCLUSIONS & FURTHER APPLICATIONS

In this paper we have shown how to obtain discretization
maps in higher-order tangent bundles by lifting discretization
maps on the base manifold. Furthermore, we have shown
some simple examples of higher-order discretization maps
and simple applications to the construction of numerical
integrators for optimal control problems. However, as we
will describe below, the range of applications has still much
to explore.

A. Numerical methods for splines on the sphere

Given a Riemannian manifold (Q, g) and the associated
exponential map expq : TqQ → Q, the following map

Rd(q, ξ) =
(
expq(−ξ/2), expq(ξ/2)

)
is a discretization map because it satisfies the properties in
Definition 4. An example of discretization maps that can
be associated with the exponential map is, for instance, on
the sphere S2 with the Riemannian metric induced by the
restriction of the standard metric on R3. The exponential
map is given by

expq(ξ) = cos(∥ξ∥) q + sin(∥ξ∥) ξ

∥ξ∥
, ξ ∈ TqS

2 . (8)

Higher-order discretization maps can be used in the prob-
lem of finding higher-order Riemannian polynomials, defined
in [29], [16], [25], [31] as the critical curves of the higher-
order functional ∫ T

0

1

2
⟨D

kγ

dtk
,
Dkγ

dtk
⟩ dt,

where Dkγ
dtk

denotes k-th covariant derivative.
In future work, we will apply the previous construction

to obtain higher-order geometric integrators to numerically
obtain Riemannian polynomials.

B. Discretization maps for systems on Lie groups

Optimal control problems in Lie groups are extremely
important because of the applications in robotics. Using
the left-trivialized tangent bundle to have the identification
TG ≈ G×g, the exponential map can be, for instance, used
for defining a discretization map on the Lie group:

Rd(g, ξ) = (g · exp(−ξ/2), g · exp(ξ/2)) .

In this scenario, higher-order lifts of Rd,g are associated with
higher-order derivatives of the map Rd,g : g → G×G. Then,
we might generate geometric integrators for the problem
(VII-A) on Lie Groups.
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