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Abstract—Connected vehicles have great advantages
in driving safety and energy efficiency under the support
of vehicle-to-everything (V2X) networks, while they are
also vulnerable to malicious cyber-attacks. To enhance
the cyber security of connected vehicles, a cyber-attack
detection framework is proposed based on multi-source
information fusion specifically for the vehicle localization
system. In this framework, an iterative unbiased finite
impulse response (UFIR) filter is utilized to estimate the
vehicle position with low computational load, based on
the vehicle dynamics model and information from the
inertial measurement system (IMU), GPS, and V2X net-
works. In addition, a discriminator module is developed
to analyze the residuals between estimations and position
information from different sources for cyber-attack detec-
tion. Finally, multiple simulation cases are implemented to
validate the effectiveness of the proposed framework.

Index Terms—Cyber-attack detection, Unbiased finite
impulse response filter, V2X networks, Connected vehi-
cles

I. INTRODUCTION

Thanks to the advancement of communication technology,
connected vehicles have greatly improved in terms of traf-
fic efficiency, driving safety, and fuel economy. However,
with the increasing connectivity of vehicles, they become
more vulnerable to cyber-attacks that could compromise their
safety, functionality, and even the privacy of their passengers
[1]. In 2020, a research team demonstrated how they could
use GPS spoofing to take control of a Tesla Model X’s
navigation system, causing the vehicle to deviate from its
intended trajectory [2]. Besides, another example is the
cyber-attack on GPS manufacturer Garmin, which resulted
in a widespread outage of the company’s services. The
attack reportedly caused significant disruption to Garmin’s
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localization systems. These incidents illustrate the growing
threat of cyber-attacks on vehicles and transportation sys-
tems, highlighting the need for increased security measures
and vigilance in protecting against such attacks.

To detect malicious cyber-attacks on localization systems
and guarantee the driving security of connected vehicles, re-
searchers have conducted a lot of relevant work. Information-
oriented cyber-attack detection is a typical method of de-
tecting cyber-attacks by leveraging communication security
techniques [3], such as encryption, plausibility checking, and
user authentication. Some popular works, such as signature-
based attack detection methods for vehicular ad hoc networks
(VANETs) [4], trust authentication approaches for mitigating
malicious attack behaviors [5], probabilistic model checking
methods for different deception attack detection [6], etc.
had been developed for connected vehicles, respectively.
Information-oriented cyber-attack detection method achieves
good results in many scenarios, however, this approach
focuses primarily on detecting attacks that exploit communi-
cation channels or involve the transmission of data. It cannot
detect attacks that exploit other system vulnerabilities, such
as hardware or software weaknesses.

Control-oriented cyber-attack detection is the other impor-
tant method for cyber security in connected vehicles. One
typical approach to control-oriented cyber-attack detection
is to use data-driven methods, such as machine learning.
Different classical supervisor machine learning methods were
employed to detect and isolate the cyber-attacks in local-
ization systems for autonomous robots [7]. The deep neural
network was another topical approach for cyber-attack de-
tection for localization systems in connected vehicles. In [8],
convolutional neural network (CNN), general neural network
(GNN), etc. were developed to extract the attack features
and further used for attack detection. Besides, reinforcement
learning (RL) was adopted for cyber-attack detection in
connected vehicle navigation as well [9]. While data-driven
approaches have effective performance in many applications,
they are only effective against attacks related to the training
data, making it difficult for them to detect new attacks.
Additionally, the generation of training data for arbitrary
cyber-attacks can be challenging, which further impacts the
generalization performance of these approaches.
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The commonly used approach to control-oriented cyber-
attack detection is the model-based method. The basic idea
behind this approach is to create a model of the system,
and then compare the predicted or estimated states to the
expected behaviors based on the model. The authors in [10]
utilized the Kalman filter and dynamics model to estimate the
deception attacks in vehicle platoon position systems. More-
over, adaptive sliding mode method was used for cyber-attack
detection in the connected vehicle as well [11]. These works
greatly improved the detection accuracy and robustness by
direct attack estimation, but they are only applicable to a
certain kind of attack. In [12], the authors designed integrated
frameworks to detect multiple cyber-attacks by sensor fusion
and achieved satisfactory detection performance. However,
the works were only developed for individual autonomous
vehicles and failed to extend to connected vehicle platoons.

To further ensure the cyber security for connected vehi-
cles or platoons, we propose a comprehensive cyber-attack
detection framework capable of handling different types of
attacks in this work. The framework mainly consists of three
detectors, and each detector is developed through multi-
source information fusion. In each detector, an iterative UFIR
filter is employed to achieve the information fusion and
get the position estimation, then a designed discriminator
is used to evaluate the residuals between UFIR estimation
and position measurements from different channels (GPS
and V2X networks) and determine if there is a cyber-attack.
Finally, the developed framework is validated on a vehicle
simulation platform, and the simulation results demonstrate
the framework is efficient to detect different cyber-attacks
such as denial of service (DoS) attack, replay attack, etc.

The rest of this paper is organized as follows. Section II
shows the detailed problem formulation. Section III presents
the cyber-attack detection framework for connected vehicles.
Section IV mainly depicts the simulation results and discus-
sions. At last, the conclusion is shown in Section V.

II. PROBLEM FORMULATION

In this section, the brief system composition and main
research problem will be introduced.

A. Vehicle dynamics
To effectively make use of the onboard IMU information,

a brief vehicle dynamics model is adopted in this work. The
vehicle longitudinal, lateral, and yaw motions are considered
in the dynamics model. The diagram and detailed equations
of vehicle dynamics are shown as follows.

mv̇y = −mvxγ + 2[Ccf (
vy + lfγ

vx
− δf ) + Ccr

lrγ − vy
vx

],

mv̇x = mvyγ + 2[Clfsf + Clrsr + Ccf (δf − vy + lfγ

vx
)δf ],

Ωz γ̇ = 2[Ccf lf (
vy + lfγ

vx
− δf )− Ccrlr

lrγ − vy
vx

],

(1)

Fig. 1. Diagram of vehicle dynamics
.

where vy and vx are the vehicle longitudinal and lateral
velocity, Clf and Clr are the longitudinal stiffness of the
front and rear tire, Ccf and Ccr are the lateral stiffness of
the front and rear tire, sf and sr refer to the tire slip rate of
the front and rear wheel, lf and lr are the distances between
the vehicle center of gravity and front wheel and real wheel,
Ω denotes the vehicle yaw inertia, γ means the yaw rate, δf
represents the steering angle, and m is the vehicle mass.

Additionally, to predict the location of connected vehicles,
the brief vehicle motion dynamics geodetic coordinate system
is also considered. The motion dynamics are shown below:

Ẏ = vxsinφ+ vycosφ,

Ẋ = vxcosφ− vysinφ,

φ̇ = γ,

(2)

where X and Y are the coordinates of vehicle, and φ means
the yaw angle.

Then combining the vehicle dynamics and motion dy-
namics together, we could obtain the final vehicle model.
Moreover, as the vehicle measurements are not continual
signals, the system model and output model are formulated
in discrete form:{

xk+1 = f(xk, uk) + ωk,

yk = g(xk) + υk,
(3)

where x = [vy, vx, γ, Y,X, φ]T denotes the system state, y
expresses the system output which may change with different
sensing devices, ω and υ are system and measurement
noises which are assumed to be independent Gaussian white
noise with zero mean, f and g are system equation and
measurement equation, and u = δf refers to the input.

B. Problem statement
In connected and automated vehicles, location information

is very important for further decision-making and underlying
control. Generally, the location information of connected
vehicles can be achieved from GPS and V2X networks easily.
Moreover, the onboard IMU can also measure the vehicle
acceleration and indirectly provide the location information.
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The brief system description is shown in Fig. 2. These pieces
of information from different channels together build the
efficient navigation system of the connected vehicles, while
they are also vulnerable to external cyber-attacks because of
vehicle connectivity. Malicious cyber-attacks could disrupt
the normal operation of the system and further result in
serious traffic accidents. Therefore, to enhance the cyber
security and driving safety of connected vehicles, a cyber-
attack detection framework is proposed in this work.

Fig. 2. System description of connected vehicles
.

The proposed framework consists of three detectors, which
are used to estimate the vehicle pose states. The first detector
is developed based on the GPS and IMU information fusion.
The information fusion is realized through an iterative UFIR
filter, where the IMU measurements are used in the prediction
process and GPS measurements are used in the update pro-
cess. Finally, by evaluating the estimation residuals, cyber-
attacks against GPS can be detected effectively. Similarly, the
second detector is built based on the information from V2X
networks and IMU, and utilized for cyber-attack detection in
V2X networks. Nevertheless, the third detector is designed
to provide short-term location estimation according to the
system model and IMU measurements, when the GPS and
V2X networks are all under cyber-attacks. The flowchart of
the detection framework is presented in Fig. 3.

Fig. 3. Cyber-attack detection framework for connected vehicles
.

Remark: In this work, as the IMU device is installed
inside the connected vehicles and it doesn’t have any infor-
mation exchange with the external environment, it is difficult

to be attacked by the potential hacker. Therefore, we assume
the IMU measurements are reliable and used as the baseline
in the three detectors.

III. METHODOLOGY OF THE CYBER-ATTACK DETECTION
FRAMEWORK

In this section, the UFIR estimation algorithm and detailed
cyber-attack detection method will be introduced.

The UFIR filter is a kind of novel estimation method that
utilizes previous measurement batches to estimate current
system states. Unlike the Kalman filter, UFIR filter only relies
on the number of historical measurements, thus, it is more
robust to inaccurate initial values, biased noise statistics, and
model mismatch. These features of the UFIR filter make it
more suitable for practical estimation scenarios.

As is shown in Eq. (3), the vehicle system is formulated as
a nonlinear model. To better implement the estimation, model
linearization is necessary. Then the Eq. (3) can be described
as below: {

xk+1 = Axk +Buk + ωk,

yk = Hxk + υk,
(4)

where A, B, and H are the model paraments.
The method to derive the UFIR filter is to extend Eq. (4)

from the time instant m = k − N + 1 to K, and apply the
discrete convolution. The extended equations are presented
as follows:

Xk,m = ANxm +BNUk,m + ENWk,m, (5)

Yk,m = HNxm + B̄NUk,m + ĒNWk,m + Vk,m, (6)

where the initial value xm can be read from the measure-
ments, and the extended states are defined as:

Xk,m = [xk, xk−1 · · ·xm]T, Yk,m = [yk, yk−1 · · · ym]T,

Uk,m = [uk, uk−1 · · ·um]T,Wk,m = [wk, wk−1 · · ·wm]T,

Vk,m = [vk, vk−1 · · · vm]T.
(7)

The extended parameter matrixs are denoted as below:

AN = [AN , AN−1 · · ·A]T,

BN =


B AB · · · AN−2B AN−1B
0 B · · · AN−3B AN−2B
...

...
. . .

...
...

0 0 · · · B AB
0 0 · · · 0 B

 ,

EN =


I A · · · AN−2 AN−1

0 I · · · AN−3 AN−2

...
...

. . .
...

...
0 0 · · · I A
0 0 · · · 0 I

 ,

HN = H̄NAN ,

H̄N = diag(H · · ·H)N ,

B̄N = H̄NBN ,

ĒN = H̄NBN .

(8)
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According to Eq. (6) and ordinary least square, the esti-
mation x̂k can be calculated as:

x̂k = Φk,mYk,m + Φ̄k,mUk,m, (9)

where Φk,m and Φ̄k,m are the UFIR filter gains to be de-
termined by the recent measurements and objective function.
Meanwhile, the real value of xk can be achieved based on
the system model Eq. (5).

xk = ANxm + B́NUk,m + ÉNWk,m, (10)

where B́N and ÉN denote the first row vectors of BN and
EN respectively.

Finally, by fulfilling the unbiasedness condition E[xk] =
E[x̂k] of UFIR filter theory, the UFIR filter gains and
estimation at k step are achieved [13]. The detailed derivation
process is shown as below:

Φk,m = AN (HT
NHN )−1HT

N , (11)

Φ̄k,m = B́N − Φk,mB̄N . (12)

x̂k =AN (HT
NHN )−1HT

NYk,m

+ (B́N −AN (HT
NHN )−1HT

N B̄N )Uk,m,
(13)

Remark: The measurement interval N is a parameter that
can be adjusted in this algorithm, and it has a significant
impact on the estimation errors and computational complex-
ity. In this paper, we adopt a simple method of trial and
error to obtain the sub-optimal measurement interval Nop.
The analytical method to calculate Nop based on mean square
error minimization can be found in [14].

The batch UFIR algorithm consists of some high-
dimension matrix operations which are related to the number
of recent measurements N . Therefore, it is necessary to
integrate an iterative algorithm in the batch UFIR to reduce
the computational load. It is assumed that the xk is calculated
based on the equations above and historical measurements,
the iterative procedure can be denoted as follows:

x̂k+1 = Ax̂k +BUk+1 +Kk+1[zk+1 −H(Ax̂k +BUk+1)],
(14)

where
Kk+1 = Ψk+1H

T, (15)

Ψk+1 = [HTH + (AΨkA
T)−1]−1. (16)

Here, Ψ is defined as the generalized noise power gain
(GNPG) that is calculated through the recent measurements
as well [15]. The initial expression is presented as below:

Ψk = AM (HT
MHM )(AM )T. (17)

In order to estimate the location information in our ap-
plication, the IMU measurements are used in the prediction
process, and the information from GPS and V2X networks
are used in the update process. Then, by combining the
introduced UFIR filter and system model, the fused location
information can be achieved.

Remark: The UFIR filter has shown superior performance
compared to the Kalman filter when handling situations
where there is unknown knowledge of disturbances and
noises. As a result of this advantage, the UFIR estimator
is employed for cyber-attack detection, particularly in cases
where it is difficult to determine the distribution of distur-
bances or model uncertainty in real-world connected vehicles.

To enhance the resilience of the localization system against
cyber-attacks and avoid the potential loss of state informa-
tion in connected vehicles, we establish a distributed state
observer based on multi-source information fusion.

In this work, we assume that GPS can provide the longi-
tudinal XGPS and lateral displacement YGPS of a vehicle.
The V2X networks can offer location information XV 2X

and YV 2X . IMU can provide the longitudinal acceleration
ax,IMU , lateral acceleration ay,IMU and yaw rate γIMU .

1) Information Fusion of the GPS and IMU
Based on Eq. (13), the initial estimation x̂k is achieved

through batch UFIR filter. Then to accelerate the estimation,
the iterative algorithm is adopted in the update process. In
the update process, the IMU measurement will be used to
update the acceleration ay and ax, and vehicle yaw rate γ.
The detailed formula derivation is shown below.

x̂1,k+1|k =



v̂y,k+1|k
v̂x,k+1|k
γ̂k+1|k
Ŷk+1|k
X̂k+1|k
φ̂k+1|k

 =


v̂y,k + T · ay,IMU

v̂x,k + T · ax,IMU

A3x̂k +B3uk

A4x̂k +B4uk

A5x̂k +B5uk

φ̂k + T · γIMU

 , (18)

where T is the sample time, Ai and Bi is the ith row of the
parameter matrix A and B in Eq. (4).

In this part, the system outputs are the GPS measurements,
so the measurement equation is:

y1,k+1 = H1x̂1,k+1|k =

[
Ŷ

X̂

]
, (19)

where H1 =

[
0 0 0 1 0 0
0 0 0 0 1 0

]
.

Following the Eq.(15) and Eq.(16), the noise power gain
Ψ and bias correction gain K can be calculated. Then the
GPS measurements are presented as:

z1,k+1 =

[
YGPS

XGPS

]
. (20)

The final estimation can be obtained through:

x̂1,k+1 = x̂1,k+1|k +Kk+1(y1,k+1 − z1,k+1), (21)

besides, the estimate residual r is defined as:

r1,k+1 = y1,k+1 − z1,k+1. (22)

At last, by repeating the estimation cycle, we can imple-
ment the information fusion of GPS and IMU efficiently.

2) Information Fusion of the V2X networks and IMU
The information provided by V2X networks is the vehicle

position (XV 2X and YV 2X ) as well, so the fusion of V2X
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networks and IMU is quite similar to the GPS and IMU
fusion. The only difference between the first fusion and this
section is the output measurements. Therefore, the prediction
process would not be introduced in this section.

The measurements of V2X networks are depicted as:

z2,k+1 =

[
YV 2X

XV 2X

]
. (23)

Then the final estimation and residual are shown as:

x̂2,k+1 = x̂2,k+1|k +Kk+1(y2,k+1 − z2,k+1), (24)

r2,k+1 = y2,k+1 − z2,k+1. (25)

3) Information Fusion of the IMU and vehicle states
In the extreme operation situation, we assume both GPS

and V2X networks may be attacked simultaneously, there-
fore, we have to utilize the IMU measurement and vehicle
model to provide short-term location estimation. The detailed
estimation equations are shown as follows:

x̂3,k+1|k = Ax̂k +Buk (26)

y3,k+1 = H3x̂3,k+1|k =

âyâx
γ̂

 , (27)

where H3 =

(A1 − P )/T 0 0 0 0 0
0 (A2 −Q)/T 0 0 0 0
0 0 0 0 0 1

 ,

P =
[
1 0 0 0 0 0

]
, Q =

[
0 1 0 0 0 0

]
.

z3,k+1 =

ây,IMU

âx,IMU

γ̂IMU

 . (28)

x̂3,k+1 = x̂3,k+1|k +Kk+1(y3,k+1 − z3,k+1), (29)

In this section, the IMU measurement is used in the
update process but not the prediction process. Since the IMU
measured vehicle acceleration is not the system state, we have
to use the system states to represent the vehicle acceleration
and thereby derive the output matrix H3.

4) Cyber-attack detection method
During each estimation step, we can get the residuals

between UFIR estimations and measurements and use them
to detect cyber-attacks. To improve the detection accuracy
and robustness, an evaluation function is proposed here:

Rt =

√
1

∆T

∫ t−∆T

t

(rTt rt) dτ, (30)

where R denotes the evaluation function, and ∆T refers to
the evaluation interval which set as 1s in this work.

At each time instant, the evaluation function represents
the acceleration of the residuals in the last ∆T interval. The
acceleration could deal with random outliers in the residuals
efficiently and further reduce the misdetection. At last, by
comparing the evaluated residuals of fusion1 and fusion2
with the preset threshold in each estimation loop, the cyber-
attack and corresponding attacked channel can be identified.

IV. SIMULATION RESULTS

In this section, multiple simulation tests are carried out
on the MATLAB/Simulink platform to validate the effective-
ness of our proposed cyber-attack detection framework. The
detailed vehicle parameters are shown in the following table.

TABLE I
VEHICLE PARAMETERS USED IN THE SIMULATION PLATFORM.

Parameters Values and Units
Vehicle mass 1500 kg

Distance of front wheel axle from CG 1.3 m
Distance of rear wheel axle from CG 1.4 m

Vehicle moment of inertial on yaw axis 2000 kg ·m2

Concerning stiffness 40000 N/rad
Longitudinal velocity of vehicle 10 m/s

In order to demonstrate the capability of detecting different
cyber-attacks, three simulation cases are implemented. In the
first case, the DoS attack is injected into the GPS system.
Secondly, the replay attack is added to the V2V network. At
last, the framework performance is validated when the GPS
and V2X networks are all under cyber-attacks.

A. DoS cyber-attack against GPS
In this case, the DoS cyber-attack is injected into the GPS

to test the performance of the proposed detection framework.
The vehicle position estimation based on UFIR filter is shown
in Fig. 4a. As is seen in this figure, the estimation could
track the real trajectory well and has small differences with
GPS measurement when there are no cyber-attack. Once the
DoS cyber-attack is injected, the residuals between UFIR
estimation and GPS measurement become larger which could
help with the cyber-attack detection.

Fig. 4b describes the processed residuals in the whole test
cycle. In this figure, we can find that the processed residual
is extremely over the pre-set threshold when the cyber-attack
is injected, which means our proposed framework can detect
the GPS DoS cyber-attack effectively.
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Fig. 4. Cyber-attack detection under GPS DoS cyber-attack.

B. Replay cyber-attack against V2V network
The detection performance of the proposed framework

with regard to replay cyber-attack is investigated in this case.
The replay cyber-attack is injected into the V2V network
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and the detection results are presented in Fig. 5. The pre-
set threshold is the same as the first case, and it is smaller
than the processed residual obviously when the replay attack
occurs. Finally, based on the residual evaluation, we could
detect the cyber-attack in the V2V network and send an alert
to the main controller.
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Fig. 5. Cyber-attack detection under V2V replay cyber-attack.

C. DoS cyber-attack against GPS and replay cyber-
attack against V2V network simultaneously

In this case, the replay cyber-attack and DoS cyber-attack
are injected into the GPS and V2V network at the same
time. As mentioned in Section II, if both the GPS and V2X
networks are attacked, the framework may provide short-term
location estimation based on the vehicle dynamics and IMU
measurement. Fig. 6 describes the estimation performance in
the whole test cycle. Specifically, as is seen in the zoom-in
part, our proposed UFIR filter can still follow the real trajec-
tory even when the GPS and V2V network are under different
attacks. The simulation results illustrate the effectiveness of
our framework in extreme working conditions.
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Fig. 6. Cyber-attack detection framework for connected vehicles
.

V. CONCLUSION

This study investigates the issue of cyber-attack detec-
tion in connected and automated vehicles. We propose a

comprehensive attack detection framework based on multi-
source information fusion to detect different malicious cyber-
attacks against connected vehicles. In this framework, we
employ the UFIR filter to improve detection accuracy and
robustness during the information fusion process. Finally,
we implement three simulation cases to validate the attack
detection framework, and the simulation results demonstrate
the excellent performance of our proposed approach. In the
future, we plan to study efficient resilient control strategies
based on this detection framework to ensure the driving
security of connected vehicles.
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