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Abstract— In this paper, we present an optimization-based
control strategy for coordinating multiple electric automated ve-
hicles (AVs) in confined sites. The approach focuses on obtaining
and keeping energy-efficient driving profiles for the AVs while
avoiding collisions in cross-intersections, narrow roads, and
merge crossings. Specifically, the approach is composed of two
optimization-based components. The first component obtains
the energy-efficient profiles for each individual AV by solving
a Nonlinear Program (NLP) for the vehicle’s complete mission
route. The conflict resolution, which is performed by the second
component, is accomplished by solving a time-scheduling Mixed
Integer Linear Programming (MILP) problem that exploits the
application characteristics. We demonstrate the performance
of the algorithm through a non-trivial comparative simulation
example with an alternative optimization-based heuristic.

I. INTRODUCTION

Confined areas, such as ports, logistic centers, mines, etc.,
are deemed as use cases for the near-future deployment of
automated vehicles (AVs) as they void some of the barriers
that exist in deploying automated vehicles on public roads
[1]. In particular, in confined areas, there are no external non-
controlled actors, which drastically reduces safety concerns.
One of the public road challenges that persist in confined
areas is the safe and efficient coordination of AVs in MU-
Tually EXclusive (MUTEX) zones. Adequate coordination
can lead to improved energy efficiency and considerable
increases in productivity. Enhancing energy efficiency is an
important goal particularly due to the industry’s demand for
incorporating electric vehicles on sites.

For public roads, the coordination of automated vehicles
for intersection MUTEX zones has received substantial at-
tention, see [2] for a comprehensive survey. In general, the
coordination problem is difficult to solve and is formally
shown to be NP-hard in [3]. Each MUTEX zone implies that
there should be an order in which the vehicles cross the zone.
This combinatorial decision is the predominant component
in the complexity of the coordination problem. Commonly
proposed approaches leverage optimal control methods, often
relying on simplifying assumptions and heuristics, to de-
termine the crossing order and to compute the coordinated
vehicle trajectories, see [4], [5], [6], [7].
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Vehicles in confined areas, on the other hand, have addi-
tional MUTEX zones besides intersections, such as narrow
roads, merge-splits, work-stations (e.g., loading/unloading
zones, crushers, etc.), and charging stations. In confined
sites, the vehicles are assigned transport missions such as
transporting goods from point A to B within specified time
limits. Fortunately, compared to the public road scenario
the full site layout of the confined area is known, i.e., for
each vehicle, the entire route is known. Consequently, it is
possible to plan the motion of the vehicles from the start
of a transport mission to its end. Planning the motion over
long horizons is particularly beneficial in terms of energy
efficiency, see e.g. [8]. Another distinguishing factor of the
confined areas application case is that a single vehicle can ex-
perience multiple combinations of the MUTEX zones along
its route, i.e., the vehicle can have multiple intersections,
narrow roads, charging stations, etc. The authors [9] and [10]
propose approaches on multiple intersection coordination,
however, they consider a “cut-out” around the intersections
with vehicles arriving at speed in comparison to the desired
full route motion planning. For applications at confined site
areas, a central computation unit and good communication
coverage can be assumed. For this reason, and the above-
stated application requirements, we believe that a centralized
approach that computes a high-level motion plan for all
vehicles is a favorable coordination strategy. The computed
plan would then be tracked by a low-level controller on the
individual vehicle.

The coordination problem for valet parking applications
has a lot of similarities with the confined site coordination
problem, as both applications consider closed-off areas where
the vehicles can experience multiple MUTEX zones of dif-
ferent types, [11], [12]. The approach in this paper presents
an alternative optimization-based heuristic. Furthermore, the
valet parking applications have laxer energy efficiency and
productivity goals, as well as the restriction that the vehicles
move at lower speeds.

In our previous work, [13] and [14], we have proposed
different heuristics that decompose the coordination problem
in a Mixed Integer Quadratic Program (MIQP) that is tasked
with obtaining an optimal crossing order for the MUTEX
zones and a central continuous Nonlinear Program (NLP)
that is solved for the optimal vehicle trajectories. The ap-
proach in this paper tackles the problem in a similar way,
but with a particular focus on energy efficiency. In essence,
we aim to “split” the problem with one part of the solution
aiming at obtaining the energy-efficient trajectories and the
other part dealing with the combinatorial problem connected
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to the MUTEX occupancy or crossing order. The energy-
efficient trajectories are computed by solving an NLP for
all vehicles individually, where the motion profile is not
constrained by the occupancy constraints. The goal of this
approach is to minimize deviations in the energy-efficient
profiles while avoiding all possible conflicts in the MUTEX
zones.

A transport mission for vehicles in confined site areas is
characterized by mission start and end time bounds, meaning
that the vehicles could leave their start point in some time
interval as long as they arrive at their end destination in
the desired time-bound. Making use of the mission start
time flexibility, it is favorable to form the MUTEX conflict
resolution problem as a time-scheduling problem. Scheduling
problems can be solved by converting them to a Mixed
Integer Linear Programming (MILP) as for example done
in [15] and [16]. The MILP in this paper is formed as
finding a mission start time such that all occupancy conflicts
are avoided while the energy-efficient profile is kept. The
proposed heuristic differs from approaches in literature due
to the confined area specifics, which in essence are the cen-
tralized long-horizon energy-efficient planning with conflict
resolution for all existing MUTEX zones. In comparison to
[13] and [14] the approach in this paper differs by solving a
time-scheduling MILP instead of a MIQP and the approach
in this paper will maintain the energy-efficient profiles of
the vehicles by utilizing the mission start time flexibility.
To mitigate infeasibilities when conflicts cannot be avoided
by only delaying the mission start time, the approach is
capable of modifying the energy-efficient trajectories by
obtaining new MUTEX entry and exit times. The results of
the approach are compared with the heuristic proposed in
[14], in a non-trivial simulation example.

II. VEHICLE DYNAMICS

In this section, the longitudinal dynamics that describe
the motion of the electric automated vehicles are derived.
For the rest of this paper, we consider a road network of
Na fully automated vehicles traversing in a fully confined
area, meaning that non-controlled traffic participants such
as pedestrians, manually operated vehicles, bicycles, etc.,
are absent. Furthermore, we assume that the routes of the
vehicles through the road network are known, that no vehicle
reverses, and that overtakes are prohibited.

A. Longitudinal Dynamics

For an electric vehicle i ∈ 1, ..., Na, the longitudinal
dynamics can be described, using Newton’s laws of motion,
as

ṗi(t) = vi(t), (1a)

v̇i(t) =
1

mi
(FM,i(t) + Fb,i(t)− Fd,i(vi, t)− Frg,i(pi, t)) ,

(1b)

where pi, vi and mi are vehicle i’s position, velocity and
mass, respectively. The forces are the motor force FM,i, the
force generated by the friction brakes Fb,i, the aerodynamic

drag Fd,i and the rolling resistance and gravitational force
Frg,i. The aerodynamic drag and the rolling resistance and
gravitational force can be described as

Fd,i(vi, t) =
1

2
ρAica,ivi(t)

2 (2a)

Frg,i(pi, t) = mig(sin(θ(pi(t))) + cr,icos(θ(pi(t)))),
(2b)

where ρ is the air density, Ai is the frontal area of the vehicle,
ca,i is the aerodynamic drag coefficient, cr,i is the rolling
resistance coefficient and θ is the road gradient.

As stated in [14], it is beneficial to state the dynamics
in the spatial domain as it is favorable to optimize the
trajectories of the vehicles over their full path. Using that
dpi

dt = vi(t) and dt = dpi/vi(t), leads to the travel time ti as
a state whereas the position is now the independent variable.
The vehicle dynamics (1) in the spatial domain thus are

dti
dpi

=
1

vi(pi)
(3a)

dvi
dpi

=
1

vi(pi)

1

mi
(FM,i(pi) + Fb,i(pi)−

1

2
ρAica,ivi(pi)

2

−mig(sin(θ(pi)) + cr,icos(θ(pi)))). (3b)

Note that (3a) imposes that the velocity must be strictly
positive.

B. Velocity and Acceleration Constraints

In addition to the minimum velocity constraint coming
from the model, we upper bound the velocity in order to
obey speed limits:

vi ≤ vi(pi) ≤ vi. (4)

Furthermore, we bound the longitudinal acceleration of the
vehicle, ai(pi) = dvi

dpi
, that is obtained from (3b)

ai,lon ≤ ai(pi) ≤ ai,lon, (5)

and impose constraints resulting from the curvature of the
road. When the vehicles operate on curved roads they expe-
rience lateral forces. As the one-dimensional model that is
used in this paper does not account for lateral motion, the
following constraint is enforced(

ai(pi)

ai,lon

)2

+

(
κi(pi)vi(pi)

2

ai,lat

)2

≤ 1, (6)

where ai,lat is the lateral acceleration limit and κi(pi,k) is
the road curvature, that is assumed to be available at every
point along the path.

Additionally, the braking force Fb,i(pi) is constrained by
its mechanical limits, i.e.,

F b,i(pi) ≤ Fb,i(pi) ≤ 0 (7)
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C. Electric Machine and Battery

The powertrain of an electric vehicle typically consists of a
battery connected to an electric machine (EM) that drives the
wheels. In general, the EM can operate both in traction mode,
by drawing energy from the battery for propulsion, and as a
generator, by restoring part of the kinetic energy back into the
battery when the vehicle decelerates. The longitudinal force
of vehicle i ∈ 1, ..., Na and its velocity can be related to the
motor torque TM,i and the rotational speed wM,i through:

TM,i(pi) =
rw,iη(FM,i)

Mf,i
FM,i, ωM,i(pi) =

Mf,i

rw,i
vi(pi),

(8)
where rw,i is the wheel radius, Mf,i is the transmission’s
gear ratio, and η(FM,i) is the final gear efficiency function.
It has a value of 1/ηf when the EM operates as a motor
and ηf when the EM operates as a generator, where ηf
is the efficiency coefficient of the final gear. Due to the
power limitations of the motor, the torque has to satisfy the
constraint:

|TM,i(pi)| ≤ min(Tmax,i, Pmax,i/ωM,i(pi)), (9)

where Tmax,i is the maximum motor torque and Pmax,i is the
maximum power that the motor can supply.

An issue with this formulation is that the torque is
not differentiable when switching between its traction and
generator modes. A practical workaround is by splitting
the EM force by adding separate force variables for each
operating mode, i.e., FM,i(pi) = Ftrac,i(pi)−Fgen,i(pi), with
Ftrac,i(pi) indicating the traction mode force and Fgen,i(pi)
the generator force. These forces are then bounded by

0 ≤ Ftrac,i(pi) ≤
Tmax,iMf,iηf

rw,i
(10a)

0 ≤ Fgen,i(pi) ≤
TmaxMf,i

ηfrw,i
. (10b)

The battery is modeled as an open circuit voltage con-
nected in series to an internal resistance. The internal bat-
tery power can then be defined as a nonlinear function
Pb,i (ωm,i, TM,i), as in e.g. [17]. With that, we can assemble
our complete definition of the longitudinal vehicle dynamics
as
dti
dpi

=
1

vi(pi)
(11a)

dvi
dpi

=
1

vi(pi)

1

mi
(Ftrac,i(pi)− Fgen,i(pi) + Fb,i(pi)

− 1

2
ρAica,ivi(pi)

2 −mig(sin(θ(pi)) + cr,icos(θ(pi)))),

(11b)

resulting in the state vector xi(pi) = [ti(pi), vi(pi)] and the
input vector ui(pi) = [Ftrac,i(pi), Fgen,i(pi), Fb,i(pi)].

III. OPTIMAL CONTROL PROBLEM
In this section, we define the safety constraints for the

MUTEX zones and form the energy-efficient vehicle coor-
dination problem using the model developed in the previ-
ous section. The road network is consistent with MUTEX

zones such as cross-intersections, narrow roads, and merge
crossings. Motivated by the properties of the confined area,
such as a centralized computing unit and communication, the
problem is stated as an optimal control problem (OCP) that
computes the collision-free vehicle trajectories.

A. Safety Constraints

The safety constraints ensure a collision-free crossing of
the MUTEX zones, that the vehicles encounter. In this paper,
we consider three types of conflict zones, the “intersection-
like”, narrow road and merge-split depicted in Figure 1.
A MUTEX zone is defined by the entry and exit position
[pini , pouti ] on the path of each vehicle. From the known
positions, the time of entry and exit of vehicle i is tini =
ti(p

in
i ) and touti = ti(p

out
i ), respectively.

1) Narrow road and intersection-like zones: In the narrow
road MUTEX zones, Figure 1-b), two or more vehicles are
arriving at the zone from opposite directions of travel. From a
safety perspective, this translates to “reserving” the zone for
one or more vehicles coming from the same direction. The
vehicles coming from the opposite direction are not allowed
to occupy the zone until it is vacated. The intersection-like
MUTEX zone, Figure 1-a), is similar to the narrow road in
terms of its safety requirement, i.e., vehicle j is not allowed
to enter the MUTEX zone before vehicle i ̸= j exits the
MUTEX zone, or vice-versa.

We let I = {I1, I2, ..., Ir0} denote the set of all inter-
sections and narrow roads in the confined area, with r0
being the total number of intersection and narrow road CZs,
and Qr = {qr,1, qr,2, ..., qr,l} denote the set of vehicles
that cross an intersection or narrow road Ir. The order in
which the vehicles cross the intersection Ir is denoted OI

r =(
sr,1, sr,2, ..., sr,|Qr|

)
, where sr,1, sr,2, ... are vehicle indices

and we let OI =
{
OI

1 , . . . ,OI
r

}
. A sufficient condition for

collision avoidance for the r-th intersection or narrow road
CZ can be formulated as

tsr,i(p
out
sr,i) ≤ tsr,i+1(p

in
sr,i+1

), i ∈ I[1,|Qr|−1], (12)

where t is determined from (11a).
2) Merge-split zones: In the merge-split case, Figure 1-

c), two vehicles coming from different roads, but in the
same direction of travel, join together on a common patch
of road. After some distance, the roads separate. For these
MUTEX zones, let M = {M1,M2, ...,Mw0} denote a set
of all merge-split zones, with w0 being the total number of
merge-split CZs in the site and Zw = {zw,1, zw,2, ..., zw,h}
denote the set of vehicles that cross the merge-split CZ Mw.
For efficiency, it is desirable to have several vehicles in the
zone at the same time, instead of blocking the whole zone.
This requires imposing rear-end collision constraints once
the vehicles have entered the merge-split CZ. In this case,
the order in which the vehicles enter the zone is denoted
as OM

w =
(
sw,1, sw,2, ..., sw,|Zw|

)
, and we let OM ={

OM
1 , . . . ,OM

w

}
. The collision avoidance requirement for

the w-th merge-split CZ is described with the following
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Fig. 1. Types of conflict zones.

constraints:

tsw,i
(pin

sw,i
) + ∆t ≤ tsw,i+1

(pin
sw,i+1

− c) (13a)

tsw,i,ki
+∆t ≤ tsw,i+1

(psw,i,ki
− pin

sw,i
+ pin

sw,i+1
− c),

kin
sw,i

≤ ki ≤ kout
sw,i

(13b)

tsw,i(p
out
sw,i

) + ∆t ≤ tsw,i+1(p
out
sw,i+1

− c), (13c)

i ∈ I[1,|Zw|−1],

where ki is an index of the position vector psw,i
. The

interpretation of eq. (13) is that while in the CZ, the vehicles
must be separated by at least a time-period ∆t and a distance
c, depending on if vehicle j is in front of vehicle i or
vice versa. This is equivalent to the standard offset and
time-headway formulation often used in automotive adaptive
cruise controllers.

B. Optimal Coordination Problem

With the defined vehicle model and safety constraints,
we can now assemble the energy-efficient coordination of
electric vehicles as an optimization problem. In essence, the
problem of finding energy-efficient vehicle trajectories that
avoid collisions can be stated as:

Problem 1: (Energy-efficient coordination problem) Ob-
tain the optimal state and control trajectories X ∗ ={
x∗
1, ..., x

∗
Na

}
, U∗ =

{
u∗
1, ..., u

∗
Na

}
, given the initial state

X0 = {x1,0, ..., xNa,0}, by solving the optimization problem

min
xi,ui,OI ,OM

Na∑
i=1

∫ pi,Mi

pi,0

(
Hiai(pi)

2 +QiPb,i

) 1

vi(pi)
dpi

+Riti(pi,Mi) (14)
s.t initial states xi,0 = x̂i,0,∀i

system dynamics (11), ∀i
state and input constraints (4) − (7), (10), ∀i
safety constraints (12), (13), ∀i

where pi,Mi indicates the end position for vehicle i, Hi, Qi

and Ri are the cost function weight parameters. For each
vehicle, the cost function consists of minimizing the squares
of the acceleration, the power of the battery, and the end time.
The first two terms are related to energy-efficient driving
while the last term motivates the vehicles to arrive at their
end destination as fast as possible, i.e. productivity.

C. Discretization

The independent variable pi is discretized as pi =
(pi,0, . . . , pi,Mi), where the input is approximated using
zero-order hold such that u(p) = ui,k, p ∈ [pi,k, pi,k+1[.
The equations are (numerically) integrated on the grid using
an Explicit Runge-Kutta-4 (ERK4) integrator.

IV. TIME-SCHEDULING HEURISTIC

Problem 1 can be stated as a Mixed Integer Nonlinear
Problem (MINLP), for which finding a solution is known
to be difficult, especially for non-convex objectives or con-
straints [18]. A common procedure, as done in [7], is to split
the problem by first solving for the combinatorial part, i.e.,
finding a crossing order for the MUTEX zones, and then
after, solving a continuous NLP for the optimal trajectories
with the found crossing order. For obtaining the crossing
order, the heuristics in our previous work [13], [14] propose
different approximations of the MINLP problem.

In this paper, we propose a solution heuristic with a
focus on energy efficiency that exploits the application
requirements. Specifically, we first solve (14) without the
safety constraints for each vehicle individually instead of
one centralized problem. By dropping the MUTEX zone
constraints that couple the vehicles, the solution to each indi-
vidual problem is not influenced by the behavior of the other
vehicles. Thus, the obtained trajectories are the individual
energy optimal trajectories for each vehicle. The goal of this
heuristic is to keep the energy optimal trajectories while also
satisfying the safety constraints. The next subsections give
further information on how this is achieved.

A. Safety Constraints Reformulation

In confined areas the vehicles are given missions, for
example, transfer X amount of load between points A and B,
upon which their routes are decided. Furthermore, each mis-
sion is also specified by a mission start and end time-bound.
In essence, ti(pi,0) ≤ ti(pi,0) ≤ ti(pi,0) and ti(pi,Mi

) ≤
ti(pi,Mi

) ≤ ti(pi,Mi
). For simplicity, we are dropping the

(pi,0) notation meaning that ti(pi,0) is substituted by ti,0.
The safety constraints (12) can be reformulated w.r.t. ti,0 as

tsr,i,0 + cout
sr,i ≤ tsr,i+1,0 + cin

sr,i+1
, i ∈ I[1,|Qr|−1]. (15)
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where cout
sr,i and cin

sr,i+1
are the time constants that indicate the

exit time for vehicle sr,i and entry for vehicle sr,i+1, respec-
tively. The time constants are obtained from the individual
vehicle optimization problems.

Using the flexibility around the start time, for each vehicle,
we can pose the collision avoidance problem by finding the
start time ti,0 such that the safety constraints are satisfied. If
the start time is not upper-bounded, then there always exists
a start time such that all collisions are avoided. For example,
if two vehicles have a MUTEX zone, the collision can simply
be avoided if one of the vehicles delays its departure until the
other vehicle has exited the MUTEX zone. This indirectly
will decouple the vehicles. However, in practice, the vehicles
have an upper bound on their departure time. This means that
in theory, it is possible even with the maximum delay of
departure that a collision could happen between the vehicles
when they keep their energy-efficient trajectories unchanged.
One practical work-around can be to add additional variables
to the safety constraints that provide extra time. In essence,

tsr,i(psr,i,0) + cout
sr,i ≤ tsr,i+1

(psr,i+1,0) + cin
sr,i+1

+ textra
sr,i+1

,

i ∈ I[1,|Qr|−1].
(16)

The constraints (13) can be reformulated in a similar way:

tsw,i,0 + cin
sw,i

+∆t ≤ tsw,i+1,0 + cin
sw,i+1

+ tin,extra
sw,i+1

tsw,i,0 + cki
sw,i

+∆t ≤ tsw,i+1,0 + cki
sw,i+1

+ tki,extra
sw,i+1

,

kin
sw,i

≤ ki ≤ kout
sw,i

tsw,i,0 + cout
sw,i

+∆t ≤ tsw,i+1,0 + cout
sw,i+1

+ tout,extra
sw,i+1

, (17)

i ∈ I[1,|Zw|−1].

B. Mixed Integer Linear Program

The MUTEX occupancy problem can be stated as a
time-scheduling Mixed Integer Linear Program (MILP) in
T0, T

extra, where T0 = (t1,0, . . . , tNa,0) and Textra =
(textra

1 , . . . , textra
(2(r0+w0))

):

min
T0,Textra

α

Na∑
i=1

ti,0 + β

2(r0+w0)∑
j=1

textraj (18a)

s.t (16), (17) (18b)
ti,0 ≤ ti,0 ≤ ti,0 (18c)

0 ≤ textra
j ≤ t

extra
j , (18d)

where α and β are the cost function weights, with β ≫
α. The integer constraints connected to (16) and (17) can
be practically included, for example, by using the big-M
technique [18]. The solution to this problem is the start times
for all vehicles and, if necessary, extra time added to the
MUTEX entry and exit times. The extra times are upper
bounded by the maximum possible entry or exit time of
the vehicle for that zone. The upper bound time is found
if the vehicles move with vi until the MUTEX zone. Non-
zero extra time indicates that a collision for a vehicle cannot
be avoided by only delaying the start time if that vehicle
maintains its energy-efficient trajectory.

C. Recomputing Vehicle Trajectories

In the case of a non-zero extra time, we need to recompute
the trajectory for the vehicle whose MUTEX times are
influenced by the extra time. In essence, the vehicle needs to
adjust its energy-efficient trajectory such that its new entry
and exit times to the MUTEX zone are

tn(p
in
n,g) = tn,0 + cin

g + textra
g (19a)

tn(p
out
n,g) = tn,0 + cout

g + textra
g , (19b)

where the index n denotes the vehicle for which the re-
computation is necessary, g is the MUTEX zone that has
a non-zero extra time, and cin

g , c
out
g are the entry and exit

time constants of the energy-efficient trajectories. Every
vehicle with a non-zero extra time thus needs to solve an
NLP problem including these constraints. In essence, the
recomputation problem for vehicle n is

min
xn,un

∫ pn,Mn

pn,0

(
Hnan(pn)

2 +QnPb,n

) 1

vn(pn)
dpn

+Rntn(pn,Mn
) (20)

s.t initial states xn,0 = x̂n,0

system dynamics (11),
state and input constraints (4) − (7), (10),
MUTEX entry and exit constraints (19),

where the initial time is obtained from the solution of (18).
The energy-efficient time-scheduling heuristic is summarized
in Algorithm 1.

Algorithm 1 Energy-efficient time-scheduling heuristic
Input: Na, I,Qr,M,Zw, vehicle paths
Output: X ∗, U∗

1: ∀i: Obtain the energy optimal trajectories by solving
NLP (14) w/o safety constraints (12),(13).

2: For all MUTEX zones extract the in and out time
constants cin, cout from the solution found in step 1.

3: Find ti,0, i ∈ 1, . . . Na and textra
j , j ∈ 1, . . . 2(r0 + w0)

by solving the MILP (18).
4: Recompute the vehicle trajectories

if textra
j ̸= 0
1. Find the vehicle(s) and MUTEX zone(s) that need

to be adjusted.
2. For the found vehicle(s) recompute the energy-

efficient trajectories by solving NLP (20).
end if

V. NUMERICAL RESULTS

In this section, we present a simulation example using
the heuristic described in Algorithm 1 and compare its
performance to an alternative heuristic. In our previous work,
[14] we proposed an approach that is based on a quadratic
approximation of Problem 1 for obtaining the crossing order.
The approximation is performed similarly to how Quadratic
Programming (QP) sub-problems are formed in Sequential
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TABLE I
INITIAL START TIMES FOR THE VEHICLES IN SECONDS.

t1,0 t2,0 t3,0 t4,0 t5,0 t6,0 t7,0 t8,0 t9,0 t10,0
1.5 0 1.1 0 54.3 49.1 0 117.5 0 5

Quadratic Programming (SQP), [19]. The result of the ap-
proximation is a Mixed Integer Quadratic Program (MIQP).
The state and input trajectories are then calculated using the
approximately optimal crossing order. The approach in [14]
is summarized through Algorithm 2.

Algorithm 2 Two-stage approximation algorithm
Input: Na, I,Qr,M,Zw, vehicle paths
Output: X ∗, U∗

1: ∀i: Obtain a solution guess w∗∗
i by, solving NLP (14)

w/o safety constraints (12),(13).
2: Using w∗∗

i , calculate and form the approximation terms
that are necessary for the MIQP problem.

3: Solve the MIQP to get approximately optimal crossing
orders ÔI , ÔM.

4: Solve a fixed-order NLP using ÔI , ÔM to obtain
X ∗, U∗.

A. Simulation Setup

We consider the same confined site scenario as in [14]
with the layout shown in Figure 2. In total there are ten
vehicles on the site with two merge-split, two narrow roads,
and sixteen intersection MUTEX zones. For both approaches
the vehicle model, constraints, and optimization objectives
are equivalent. Every vehicle starts from an initial velocity
of 10 m/s and some vehicles start from a nonzero initial time
to ensure that a collision occurs if no coordinating action is
taken. The initial start times for all vehicles are summarized
in Table I and these are the start time lower bounds (ti,0). The
start time upper bound for all vehicles is ti,0 = 1800 seconds,
i.e., all the vehicles must start their mission in the next half
an hour. The numerical values for the rest of the simulation
parameters are summarized in Table II and are equivalent for
all vehicles. The intersection CZ is created with a 5-meter
margin ahead of and behind the collision point, whereas in
the merge-split and narrow road CZ the margin is 15 meters
for both the entry and exit points. For the merge-split CZ, it is
desirable to keep at least a 0.5s margin between the vehicles,
i.e. ∆t = 0.5 in (13). We utilize the CasADi toolkit, [20], and
IPOPT, [21], to formulate and solve the NLP optimization
problems and use Gurobi for the MILP (18) and the MIQP
problem in the comparative heuristic.

B. Discussion of Results

In the following, we compare the results of the two
heuristics for this scenario. In particular, we compare the
overall speed trajectories and reflect this comparison in terms
of satisfying the safety constraints for one merge-split zone
and one narrow road, as well as their influence on the overall
objective cost. The presented MUTEX zones are encircled
over in Figure 2.

TABLE II
SIMULATION PARAMETERS IN SI UNITS.

Parameter Na m ρ A ca cr
Value 10 40000 1.18 8.36 1 0.0047
Parameter v v alon alon alat Tmax
Value 0.1 25 -2 2 2 5614
Parameter Mf ηf rw F b Eb,max H
Value 2.8 0.98 0.49 -60000 395 1
Parameter Q R α β
Value 20 5 1 100

Fig. 2. Mock-up confined site area. The MUTEX zones that are investigated
in the simulation scenario are encircled over in this figure.

Figure 3 depicts the speed profiles of the vehicles. The
solid lines depict the results of the time-scheduling heuristic
that aims to maintain the energy-efficient trajectories, while
the dashed lines indicate the solution resulting from the
MIQP-based approach as described in Algorithm 2. The
MIQP-based approach is aware of all MUTEX zones the ve-
hicles encounter and it is able to satisfy the safety constraints
with minor speed changes well before the vehicle arrives
at the MUTEX zone. In terms of performance, this behav-
ior is beneficial, however, falls behind the time-scheduling
heuristic that is able to satisfy the safety constraints and fully
keep the energy-efficient speed profiles due to the start time
flexibility.

Figure 4 shows the position vs. time trajectories of the two
vehicles at the merge-split CZ. The trajectories are shifted
such that a position of zero is the entry position in the
MUTEX zone for both vehicles. The time is also shifted by
the entry time of the first vehicle in the MUTEX zone (as
it is the first vehicle to enter the zone). From the figure, we
can observe that both approaches satisfy the safety constraint
(13) as the vehicles are allowed to both occupy the zone at
the same time and keep the desired gap between them. An
interesting observation is that the time-scheduling approach
delays the mission start time of the second vehicle such that
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Fig. 3. Speed profiles resulting from the time-scheduling approach (solid
lines) and resulting from the MIQP-based approach (dashed lines). In order
to satisfy the safety constraints the MIQP-based approach has to deviate
from the energy-efficient speed trajectories that are maintained by the time
scheduling approach.

TABLE III
START TIMES FOR THE VEHICLES THAT SATISFY ALL SAFETY

CONSTRAINTS FOUND WITH THE TIME-SCHEDULING APPROACH IN

SECONDS.

t1,0 t2,0 t3,0 t4,0 t5,0 t6,0 t7,0 t8,0 t9,0 t10,0
1.5 5.71 1.1 0.14 60.9 49.1 0 118 2.8 5

the minimum gap is only kept at the exit point. This behavior
enables the later entering vehicle to keep its energy-efficient
speed profile.

It is worth highlighting that several collisions occur if
the vehicles are not coordinated by either approach. When
the vehicles are coordinated, either by the time-scheduling
approach or the MIQP-based approach, all collisions are
avoided. For sake of brevity, we refrain from depicting these
results and refer the reader to [14] where the critical behavior
is discussed in detail. For the time-scheduling approach, the
initial mission start times for each vehicle that satisfy all
safety constraints are summarized in Table III.

In terms of performance metric, the value of the objective
function for the MIQP-based approach is 6764.84, while
for the time-scheduling approach is 6532.01. Furthermore,
in terms of energy efficiency, the time-scheduling approach
leads to a 4 percent improvement in comparison to the
MIQP-based approach. This might not seem like a drastic

Fig. 4. Comparison of the crossings for the merge-split zone for the 1st

and 2nd vehicle. The dashed lines are the MIQP-based trajectories and the
full lines are the trajectories resulting from the time-scheduling algorithm.

difference, however, the vehicles typically have missions
over long periods of time where even a slight one-mission
improvement means, in general, significant long-term per-
formance gain. Furthermore, the approaches have different
computational complexities. The simulation scenario is im-
plemented in MATLAB on a 2.90GHz Intel Xeon computer
with 32GB of RAM. The first step for both approaches is
the same, i.e., for all vehicles solving (14) without the safety
constraints. This operation for the described scenario requires
1.02 seconds. For the MIQP-based approach, the MIQP
problem requires 0.22 seconds and the fixed-order NLP 1.51
seconds. Meaning in total, the solve computational time for
the approach described in Algorithm 2 is 2.75 seconds. For
the time-scheduling approach, the MILP (18) is solved in
0.07 seconds and for this scenario setup, there is no need
for recomputing any of the vehicles’ trajectories as all extra
times are equal to zero. The total computation time for this
heuristic is thus 1.09 seconds and is a notable improvement.
For confined area applications, due to the mission flexibility,
we believe that in general there will be seldom a need to
recompute the trajectories.

Remark 1: Recomputing vehicle trajectories. It is possible
that the mission and scenario require extra time to be added
to the MUTEX zone entry and exit times in order to not
violate the safety constraints. In that case, the speed profiles
for some (or all) vehicles need to be recomputed as explained
in subsection IV-C. In the worst case, it is necessary to
recompute Na NLPs. The computational demand depends
on the vehicle’s path length as it is correlated to the horizon
length. Figure 5 depicts the energy-efficient speed profile,
the recomputed speed profiles as well as the MIQP-based
speed profile for the narrow road between vehicles 9 and
10. This is an example when recomputation is necessary
as the flexibility on the start time upper bound for vehicle
9 is tightened, thus resulting in the approach having to
add extra time for vehicle 9 for the narrow road MUTEX
zone. The recomputation time, i.e, the computation time for
solving (20), is 0.149 seconds in the case when t9,0 = 2
and 0.166 seconds when t9,0 = 0. Figure 6 illustrates the
safety constraint satisfaction for all speed profiles for this
zone. The figure depicts the position-vs-position trajectory
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Fig. 5. Speed profile comparison for vehicle 9. The figure depicts the
energy-efficient speed along with the recomputed speed profiles for tighter
start time upper bounds and their deviation from the energy-efficient profile.

Fig. 6. The crossing of the narrow road MUTEX zone for different start
time upper bounds. It is noticeable that all trajectories avoid violating the
safety constraints for this zone, i.e., the depicted trajectories do not intersect
the zone.

of the involved vehicles. The narrow road zone allows only
one vehicle to occupy the zone at a time. For the trajectory
dependency shown in the figure, this constraint entails that
the trajectories must not intersect the zone. As can be seen,
the approaches successfully manage to achieve the desired
behavior. It can be noticed that when there is no flexibility
in the start time the speed profile for the recomputed vehicle
(vehicle 9) is equivalent to the speed profile resulting from
the MIQP-based approach.

VI. CONCLUSIONS
In this paper, we have proposed an optimization-based

approach that aims at computing energy-efficient solutions
for the confined area coordination problem of electric auto-
mated vehicles. The approach optimizes the trajectories of
the vehicles over their entire path while taking all collision
zones into account. The comparative example demonstrates
the performance benefits of the proposed approach, both
in terms of improved energy efficiency and reduced com-
putational effort. Future work will include charging and
loading/unloading stations as part of the MUTEX zones as
well as investigating the closed-loop behavior.
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