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Abstract— This paper studies a distributed online convex
optimization problem, where agents in an unbalanced network
cooperatively minimize the sum of their time-varying local
cost functions subject to a coupled inequality constraint. To
solve this problem, we propose a distributed dual subgradient
tracking algorithm, called DUST, which attempts to optimize
a dual objective by means of tracking the primal constraint
violations and integrating dual subgradient and push-sum
techniques. Different from most existing works, we allow the
underlying network to be unbalanced with a column stochastic
mixing matrix. We show that DUST achieves sublinear dynamic
regret and constraint violation bounds, provided that the accu-
mulated variation of the optimal sequence grows sublinearly.
If the standard Slater’s condition is additionally imposed,
DUST acquires a smaller constraint violation bound than the
alternative existing methods applicable to unbalanced networks.
Simulations on a plug-in electric vehicle charging problem
demonstrate the superior convergence of DUST.

I. INTRODUCTION

Distributed online convex optimization (DOCO) has re-
ceived considerable interest in recent years, motivated by
its broad applications in dynamic networks with uncertainty,
such as resource allocation for wireless network [1], target
tracking [2], multi-robot surveillance [3], and medical diag-
nosis [4]. In these scenarios, each agent in a network holds
a time-varying local cost function and only has access to its
real-time local cost function after making a decision based
on historical information. Compared with centralized online
optimization, DOCO enjoys prominent advantages in privacy
protection, alleviation of computation and communication
burden, and robustness to channel failures [5].

There have been a great number of distributed algorithms
for solving DOCO problems [2]–[4], [6]–[15]. Nevertheless,
most of them are limited to unconstrained problems or simple
set constraints, and do not allow for coupled inequality con-
straints that arise in many engineering applications. Coupled
inequality constraints involve information from all agents,
which poses a significant challenge to handle them in a
distributed manner. To date, only a few distributed algo-
rithms have been developed to address DOCO problems with
coupled inequality constraints, including various variants of
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the saddle-point algorithm [10]–[13], a primal-dual dynamic
mirror descent algorithm [14] that has been extended to
bandit settings in [15], and a bandit distributed mirror descent
push-sum algorithm [9]. However, among these works, [12]–
[15] can only be applied to balanced networks with dou-
bly stochastic mixing matrices. Although [9]–[11] consider
unbalanced networks, their regret and constraint violation
bounds are much greater than O(

√
T ) regret bound and

O(T
3
4 ) constraint violation bound in [13], not to mention

O(
√
T ) constraint violation bound in [12], [14], [15].

To overcome the drawbacks of the aforementioned existing
works, this paper focuses on the DOCO problem with a
coupled inequality constraint over an unbalanced network
with a column stochastic mixing matrix, and proposes a
distributed dual subgradient tracking (DUST) algorithm to
solve it. DUST attempts to address the dual problem of the
constrained DOCO by emulating the subgradient method.
In particular, it enables distributed implementation by in-
troducing auxiliary variables to track the primal constraint
violations, which can be viewed as estimated dual subgradi-
ents. It also harnesses the push-sum technique to tackle the
network imbalance. The main contributions of this paper are
elaborated as follows:

1) DUST is able to address DOCO with coupled inequal-
ity constraints over unbalanced networks with column
stochastic mixing matrices, while the alternative meth-
ods in [12]–[15] require balanced interaction graphs.

2) We adopt dynamic regret as the performance measure of
DUST, which is a more stringent metric than the static
regret used in [9], [11]–[13].

3) We show that DUST achieves O(
√
T + VT ) dynamic

regret and O(T
3
4 ) constraint violation bounds, where

T is a finite time horizon and VT is the accumulated
variation of the optimal sequence. Provided that VT
grows sublinearly, DUST is able to achieve sublinear
dynamic regret and constraint violations. Moreover, the
constraint violation bound is improved to O(

√
T ) if

we additionally assume the Slater’s condition. To the
best of our knowledge, there are no existing distributed
algorithms achieving comparable dynamic regret and
constraint violation bounds for DOCO problems with
coupled constraints over unbalanced networks.

The remainder of the paper is organized as follows.
Section II formulates a DOCO with a coupled inequality
constraint over unbalanced graphs with column stochastic
mixing matrices. Section III develops the proposed DUST
algorithm, and Section IV provides bounds of dynamic regret

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 1162



and constraint violations. Section V presents the numerical
experiments, and Section VI concludes the paper.

Notations: let Rn, Rn+ be the set of n-dimensional vectors,
nonnegative vectors, respectively. For any set X ⊆ Rn,
relint(X) is its relative interior. A⊗ B represents the Kro-
necker product of any two matrices A and B with arbitrary
size. Let [a]+ represents the component-wise projection of
a vector a ∈ Rn onto Rn+. Denote Id and 1p (0p) as the d-
dimensional identity matrix and the all-one (all-zero) column
vectors with p dimensions. Let ‖ · ‖ be the Euclidean norm.
〈x, y〉 represents the standard inner product of two vectors
x and y. The notation wij,t denotes the i, j-th component of
matrix Wt at time t. Let d·e and b·c be the ceiling and floor
functions, respectively. For a convex function f : Rn → R,
we denote ∂f(x) as a subgradient of f at x, i.e., f(y) ≥
f(x) + 〈∂f(x), y − x〉, ∀y ∈ Rn.

II. PROBLEM FORMULATION

Consider a network over a finite time interval {1, . . . , T}.
The network at each time t is modeled as a directed graph
Gt = (V, Et), where V = {1, ..., N} is the set of nodes
and Et ⊆ {{i, j} : i, j ∈ V, i 6= j} is the set of edges.
A directed edge (j, i) ∈ Et means that node i can receive
a message from node j. Let N in

i,t = {j|(j, i) ∈ Et} ∪ {i}
and N out

i,t = {j|(i, j) ∈ Et} ∪ {i} be the sets of in-neighbors
and out-neighbors of node i, respectively. The mixing matrix
Wt associated with Gt is defined as wij,t > 0 if (j, i) ∈ Et
or i = j, and wij,t = 0, otherwise. We assume each node
j ∈ V only knows the weights related to its out-neighbors,
i.e., wij,t, ∀i ∈ N out

j,t . We impose the following assumption
on the interaction graph.

Assumption 1: {Gt}Tt=1 and {Wt}Tt=1 satisfy the follow-
ing:

1) There exists a constant a ∈ (0, 1) such that for each
t ≥ 1, wij,t > a if wij,t > 0.

2) For each t ≥ 1, the mixing matrix Wt is column
stochastic, i.e.,

∑N
i=1 wij,t = 1 for all j ∈ V .

3) There exists an integer B > 0 such that for any k ≥ 0,
the graph (V,⋃(k+1)B

t=kB+1 Et) is strongly connected.
An example of the mixing matrix that satisfies Assump-

tion 1 is wij,t = 1/dj,t, if i ∈ N out
j,t ; otherwise, wij,t = 0,

where dj,t = |N out
j,t | is the out-degree of node j at each time

t. In this case, each node only needs to know its out-degree
at each time t. Assumption 1 ensures that there exists a path
from one node to every other nodes within the interval of
length B. Assumption 1 is less restrictive than those in [12]–
[15], which require Wt to be doubly stochastic.

We consider the distributed online problem with a globally
coupled inequality constraint over the directed graph Gt,
where each node i ∈ V privately holds a time-varying
local cost function fi,t : Rdi → R, a constraint function
gi : Rdi → Rp, and a constraint set Xi ⊆ Rdi . Let x =
[(x1)T , . . . , (xN )T ]T ∈ R

∑N
i=1 di and X = X1×· · ·×XN be

the Cartesian product of all the Xi’s. At each time t, all nodes
cooperate to minimize the sum of local cost functions while
satisfying a coupled inequality constraint and set constraints,

which can be written as

minimize
xi,∀i∈V

ft(x) :=
∑N
i=1 fi,t(xi)

subject to
∑N
i=1 gi(xi) ≤ 0p,

xi ∈ Xi, ∀i ∈ V,
(1)

where the feasible set X := {x ∈ X|∑N
i=1 gi(xi) ≤ 0p} is

assumed to be nonempty. Note that the local cost function fi,t
is unrevealed to node i until it makes its decision xi,t ∈ Xi

at time t. Since node i cannot access fi,t in advance, it is
unlikely to obtain the exact optimal solution of problem (1).
Thus, it is desirable to develop a distributed online algorithm
that generates local decisions xi,t, i ∈ V to track the optimal
solution. We make the following assumption on problem (1).

Assumption 2: Problem (1) satisfies the following:

1) For each i ∈ V , Xi is a compact convex set with
diameter R := supxi,x̃i∈Xi ‖xi − x̃i‖.

2) For each i ∈ V , fi,t, ∀t ≥ 1 and gi are convex on Xi.
It is directly obtained from the compactness of Xi’s and

the convexity of fi, gi in Assumption 2 that there exist
constants F > 0, G > 0 such that

‖gi(xi)‖ ≤ F, ∀xi ∈ Xi,∀i ∈ V, (2)
‖∂fi,t(xi)‖ ≤ G, ‖∂gi(xi)‖ ≤ G, ∀xi ∈ Xi,∀i ∈ V. (3)

We adopt dynamic regret to measure the algorithm perfor-
mance over the finite time horizon T [2], which is defined
as the difference of the accumulated cost at the real-time
decisions and at the optimal solution sequence, i.e.,

Reg(T ) :=

T∑
t=1

N∑
i=1

fi,t (xi,t)−
T∑
t=1

N∑
i=1

fi,t
(
x∗i,t
)
, (4)

where x∗i,t is the i-th component of the optimal solution
x∗t = [(x∗1,t)

T , . . . , (x∗N,t)
T ]T := arg minx∈X

∑N
i=1 fi,t (xi)

to problem (1). In contrast to the conventional metric static
regret that is defined as the difference between the accu-
mulated cost over time and the cost incurred by the best
fixed decision when all functions are known in hindsight (i.e.,∑T
t=1

∑N
i=1 fi,t (x∗i ), where x∗ = [(x∗1)T , . . . , (x∗N )T ]T :=

arg minx∈X
∑T
t=1

∑N
i=1 fi,t (xi)), the dynamic regret (4)

allows the best decisions to vary with time and is a more
stringent and suitable benchmark to capture the algorithm
performance on a time-varying optimization problem [2], [3].

In addition, we define the cumulative constraint violation
to measure whether the coupled inequality is satisfied in a
longterm run as follows:

Regc(T ) :=

∥∥∥∥∥
[
T∑
t=1

N∑
i=1

gi (xi,t)

]
+

∥∥∥∥∥ . (5)

Our goal is to design a distributed algorithm for solving
the online problem (1) over Gt with superior dynamic regret
and cumulative constraint violation bounds.
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III. ALGORITHM DEVELOPMENT

In this section, we propose a distributed dual subgradient
tracking method to solve the distributed online problem with
a coupled inequality constraint described in Section II.

First of all, let Lt : R
∑N
i=1 di×Rp+ → R be the Lagrangian

function associated with problem (1) at time t, given by

Lt(x, µ) = ft(x) + µT
N∑
i=1

gi(xi), (6)

where µ ≥ 0p is the Lagrange multiplier. We denote the dual
function at time t as Dt(µ) := minx∈X{Lt(x, µ)}. The dual
problem of problem (1) at time t is maxµ≥0p Dt(µ). If we
directly apply the dual subgradient method [25] to the online
problem (1), we obtain the following updates: For arbitrarily
given µ1 ≥ 0p and each t ≥ 1

xt+1 = arg minx∈X{Lt+1(x, µt)}, (7)

µt+1 = [µt +
N∑
i=1

gi(xi,t+1)]+, (8)

where xt+1 = [(x1,t+1)T , . . . , (xN,t+1)T ]T ∈ R
∑N
i=1 di can

be viewed as an estimate of x∗t+1, i.e., the optimal solution
of problem (1) at time t+ 1 and µt+1 is an estimate of the
optimal dual solution at time t+1. The updates (7)–(8) intend
to use the subgradient method for solving the dual problem
of problem (1) at time t + 1, i.e, maxµ≥0p Dt+1(µ). The
update of µt+1 in (8) involves the subgradient of the dual
function Dt+1(µ) at µt, which is equal to

∑N
i=1 gi(xi,t+1)

according to the Danskin’s theorem [25].
However, (7) and (8) suffer from two issues. First, we

have no prior knowledge of ft+1 when making decision
xt+1. Second, the above updates require the global quantities
µt and

∑N
i=1 gi(xi,t+1) at each time t so that they are not

implementable in the distributed scenario.
To overcome the two issues, we let g(x) =

[(g1(x1))T , . . . , (gN (xN ))T ]T ∈ RNp, and construct the
following algorithm: Given x1 ∈ X , y1 = g(x1), µ1 = 0Np,
for any t ≥ 1,

xt+1 = arg minx∈X
{
αt∂ft(xt)

T(x−xt)
+〈(Wt ⊗ Ip)µt, g(x)〉+ ηt‖x−xt‖2

}
, (9)

yt+1 = (Wt ⊗ Ip)yt + g(xt+1)− g(xt), (10)
µt+1 = [(Wt ⊗ Ip)µt + yt+1]+, (11)

where yt = [(y1,t)
T , . . . , (yN,t)

T ]T ∈ RNp, µt =
[(µ1,t)

T , . . . , (µN,t)
T ]T ∈ RNp, and Wt is the mixing matrix

at time t described in Section II. Here, the parameters αt is
used to balance the objective optimization and the constraint
violations at each time t and ηt is the stepsize.

The above updates (9)–(11) are capable of addressing
the issues caused by (7)–(8). Specifically, we estimate the
unknown ft+1 with the first-order approximation of ft at
xt, i.e., ft(xt) + ∂ft(xt)

T(x− xt), which is accessible.
The proximal term ηt‖x− xt‖2 guarantees that (9) is well-
posed and contributes to convergence. To enable distributed
implementation of (9)–(11), let each node i ∈ V maintain

local variables xi,t, yi,t, and µi,t at each time t, which are
the i-th blocks of xt, yt, and µt. Here, xi,t is node i’s
estimate of x∗i,t and µi,t is node i’s estimate of the dual
optimal solution at time t, playing a similar role to µt in (8).
Different from (7)–(8), we employ the terms (Wt ⊗ Ip)µt
and (Wt ⊗ Ip)yt such that the updates of xi,t+1, yi,t+1,
and µi,t+1 in (9)–(11) only depend on local information
and the neighbors’ information, thus enabling distributed
computation. If Wt satisfies row stochasticity and each µi,t
reaches the same value µt, 〈(Wt ⊗ Ip)µt, g(x)〉 in (9) is
equivalent to µTt

∑N
i=1 gi(xi) in (7) and (Wt⊗Ip)µt = µt in

(11). The local variable yi,t is capable of tracking the primal
constraint violation

∑N
i=1 gi(xi,t) at time t since the column

stochasticity of Wt and the initial condition y1 = g(x1)
prompt (10) to give

∑N
i=1 yi,t =

∑N
i=1 gi(xi,t), ∀t ≥ 1,

which is shown by Lemma 1 in Section IV. Thus, at time
t+1, each yi,t+1 tracks

∑N
i=1 gi(xi,t+1) that can be regarded

as the estimated subgradient of the dual function Dt+1(µ) at
µt in (8) as we state before. Clearly, in (11), each node i ∈ V
computes its estimate µi,t+1 of the dual optimal solution at
time t+ 1 by means of the weighted µj,t received from all
its in-neighbors and the local variable yi,t+1 that tracks the
estimated dual subgradient of the dual function Dt+1(µ) at
µt, i.e.,

∑N
i=1 gi(xi,t+1). Consequently, (9)–(11) lead to a

distributed dual subgradient tracking (DUST) algorithm.
Nevertheless, (9)–(11) are not applicable to unbalanced

networks because the column stochastic matrix Wt causes
that µi,t, ∀i ∈ V cannot reach an identical value as they
should. To cope with unbalanced graphs, we integrate the
push-sum technique into (9)–(11) to eliminate the imbalance
of interaction networks by constructing row-stochastic prop-
erty of Wt. For convenience, we still refer to the resulting
algorithm as DUST. Let each node i ∈ V maintain variables
ci,t ∈ R besides xi,t, yi,t, and µi,t. The DUST algorithm
is described as follows: Given xi,1 ∈ Xi, yi,1 = gi(xi,1),
ci,1 = 1, µi,1 = 0p, ∀i ∈ V , for any t ≥ 1, each node i ∈ V
updates as follows:

ci,t+1 =
∑
j∈N in

i,t

wij,tcj,t, (12)

λi,t+1 =

∑
j∈N in

i,t
wij,tµj,t

ci,t+1
, (13)

xi,t+1 = arg minxi∈Xi
{
αt∂fi,t(xi,t)

T(xi−xi,t)
+〈λi,t+1, gi(xi)〉+ ηt‖xi−xi,t‖2

}
, (14)

yi,t+1 =
∑
j∈N in

i,t

wij,tyj,t + gi(xi,t+1)− gi(xi,t), (15)

µi,t+1 =
[ ∑
j∈N in

i,t

wij,tµj,t + yi,t+1

]
+
, (16)

where the values of xi,1, yi,1, and µi,1 follow from the
initialization of the algorithm (9)–(11). The updates (14)–
(16) are obtained by simply rewriting (9)–(11). The updates
(12), (13), (15), and (16) require each node i to collect
wij,tcj,t, wij,tµj,t, and wij,tyj,t from its every in-neighbor
j ∈ N in

i,t, which suggests that DUST only needs communi-
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Algorithm 1 DUST
1: Initialization:
2: Each node i ∈ V sets xi,1 ∈ Xi, ci,1 = 1, µi,1 = 0p,

and yi,1 = gi(xi,1).
3: for t = 1, 2, . . . , T do
4: Each node j ∈ V sends its local information wij,tcj,t,

wij,tµj,t, and wij,tyj,t to every out-neighbor i ∈ N out
j,t .

After receiving the information from its in-neighbor
j ∈ N in

i,t, each node i ∈ V updates ci,t+1 according
to (12) and then computes λi,t+1 according to (13).

5: Each node i ∈ V updates xi,t+1 according to (14).
6: Each node i ∈ V updates yi,t+1 according to (15).
7: Each node i ∈ V updates µi,t+1 according to (16).
8: end for

cation between neighboring nodes. Algorithm 1 details all
these actions taken by the nodes.

Remark 1: DUST allows the algorithm parameters αt and
ηt to be time-varying and they can be set as αt =

√
t and

ηt = t according to the theoretical results in Section IV.
Different from [13], [14] whose parameters are related to
the time horizon T , we allow αt and ηt to be time-varying
without knowing T in advance, which provides flexibility in
terminating the algorithm.

IV. DYNAMIC REGRET AND CONSTRAINT VIOLATION
BOUNDS

In this section, we provide the dynamic regret and con-
straint violation bounds of DUST.

A. Auxiliary Lemmas

In this subsection, we present the following key lemmas to
elucidate the role of variable yi,t and establish connections
between the constraint violation and the global objective
value with dual variables.

Lemma 1: Suppose Assumptions 1 and 2 hold. Then, for
any t ≥ 1,

N∑
i=1

yi,t =

N∑
i=1

gi(xi,t), (17)

‖yi,t‖ ≤ By, (18)

where By =
8N2F

√
p

r (1 + 2
1−σ ) + (N + 2)F , r :=

inft=1,2,...(mini∈[N ]{Wt · · ·W11N}i), and σ ∈ (0, 1) satisfy

r ≥ 1
NNB

, σ ≤
(
1− 1

NNB

) 1
NB .

Lemma 1 shows that the local estimator yi,t is capable of
tracking the the sum of local constraint function values at
each time t. The proof of Lemma 1 is similar to Lemma 1
in [12] and Lemma 4 in [10], and we omit it here.

Lemma 2: Suppose Assumptions 1 and 2 hold. Let
µ̄T+1 = 1

N

∑N
i=1 µi,T+1. Then, for any T ≥ 1,

T∑
t=1

N∑
i=1

gi(xi,t) ≤ Nµ̄T+1 +NGR1p. (19)

Proof: See Appendix A.

Lemma 2 states that the cumulative constraint violation
is bounded by the dual variable µ̄T+1. Thus, by finding
the upper bound of µ̄T+1, we can obtain the upper bound
of cumulative constraint violation. The following lemma
provides a bound on the change of dual variable µ̄t.

Lemma 3: Suppose Assumptions 1 and 2 hold. Then, for
any t ≥ 1 and arbitrary x̃i,t ∈ Xi, i ∈ V ,

N

2
‖µ̄t+1‖2−

N

2
‖µ̄t‖2

≤(
N

2
+
N

r
)B2

y+
NG2α2

t

4ηt
+(2By+2F )

N∑
i=1

‖µ̄t−λi,t+1‖

+

N∑
i=1

αt∂fi,t(xi,t)
T(x̃i,t−xi,t) +

N∑
i=1

〈µ̄t, gi(x̃i,t)〉

+

N∑
i=1

ηt(‖xi,t− x̃i,t‖2−‖xi,t+1−x̃i,t‖2). (20)

Proof: See Appendix B.
Lemma 3 establishes the relationship between the change

of dual variables and the first-order information of the global
objective functions, where the former involves constraint
violations according to Lemma 2 and the latter is related to
the dynamic regret bound. By choosing x̃i,t appropriately
and utilizing the convexity of local functions as well as
Lemmas 1–2, we obtain the dynamic regret and constraint
violation bounds based on Lemma 3.

B. Main Results

Theorem 1: Suppose Assumptions 1 and 2 hold. If we set

αt =
√
t, ηt = t, (21)

then for any t ≥ 1,

Reg(T ) = O(
√
T ) +O(VT ), (22)

where VT :=
∑T
t=1

√
t
∑N
i=1

∥∥x∗i,t+1 − x∗i,t
∥∥ and x∗i,t

is the i-th component of the optimal solution x∗t :=
arg minx∈X

∑N
i=1 fi,t (xi) to problem (1).

Proof: See Appendix C.
Theorem 1 shows that the dynamic regret grows sublin-

early with T if VT , the accumulated variation of the optimal
sequence, is sublinear, which requires the online problem (1)
does not change too drastically. Intuitively, the sublinearity
guarantees that Reg(T )/T converges to 0 as T goes to
infinity. It should be noted that if VT = 0, the result reduces
to an O(

√
T ) bound with respect to the static regret.

In addition, Theorem 1 indicates that DUST has stronger
results than other existing algorithms applicable to coupled
inequality constraints. As is shown in Table I, the static
regret bounds in [9], [11] is strictly greater than O(

√
T )

and the dynamic regret bound in [10] is also worse than
ours. Although [12] achieves the same static regret bound
as DUST, it requires the boundedness of µi,t, which is a
rather restrictive assumption, while DUST does not. The
works [13]–[15] are only applied to balanced networks with
doubly stochastic mixing matrices, where [13] only focuses
on the static regret. The dynamic regret bounds in [14],
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TABLE I
A COMPARISON OF DUST AND RELATED WORKS. LEGEND:

√
MEANS THE CONDITION IS SATISFIED, SC STANDS FOR THE REQUIREMENT OF THE

SLATER’S CONDITION, κ ∈ (0, 1
4
), θ ∈ (0, 1), DT =

∑T
t=1

∑N
i=1

∥∥∥x∗i,t+1 − x∗i,t
∥∥∥, AND VT =

∑T
t=1

√
t
∑N
i=1

∥∥∥x∗i,t+1 − x∗i,t
∥∥∥.

[9] [10] [11] [12] [13] [14] DUST
unbalanced network

√ √ √ √

dynamic regret
√ √ √

regret bound O(T
1
2
+κ) O(T

1
2
+2κ) +O(VT ) O(T

1
2
+2κ) O(

√
T ) O(Tmax{θ,1−θ}) O(max{TκDT , Tmax{θ,1−θ}}) O(

√
T ) +O(VT )

constraint violation
bound

O(T 1−κ) (No SC) O(T 1−κ
2 ) (SC) O(T 1−κ

2 ) (SC) O(
√
T ) (SC) O(Tmax{ 1

2
+ θ

2
,1− θ

2
})

(No SC)
O(T 1− θ

2 ) (No SC)
O(max{θ, 1− θ}) (SC)

O(T
3
4 ) (No SC)

O(
√
T ) (SC)
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Fig. 1. Effects of network connectivity factor B on (a) Reg(T )/T and
(b) Regc(T )/T when N = 10.
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Fig. 2. Effects of node number N on (a) Reg(T )/T and (b) Regc(T )/T
when B = 2.

[15] depend on the accumulated error of optimal sequence√
T
∑T
t=1

∑N
i=1

∥∥x∗i,t+1 − x∗i,t
∥∥, which is larger than VT in

(22), leading to a larger bound than DUST.
Next, we present a bound on constraint violation.
Theorem 2: Suppose all the conditions in Theorem 1 hold.

Then for any t ≥ 1,

Regc(T ) = O(T
3
4 ). (23)

Proof: See Appendix D.
Theorem 2 shows that DUST achieves O(T

3
4 ) constraint

violation bound. Table I manifests that the result in (23) is
superior than [9]–[11] whose constraint violation bound is
strictly greater than O(T

3
4 ), and is competitive compared

with [13]–[15]. Theorem 2 holds without assuming the
Slater’s condition that allows us to handle equality con-
straints by converting an equality into two inequalities.

The following theorem shows that Regc(T ) is improved
to O(

√
T ) if all local constraint functions gi,∀i ∈ V satisfy

the Slater’s condition, which is commonly assumed in [10],
[11], [14].
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Fig. 3. Comparison of DUST with DOPP [10] and the centralized dual
subgradient (7)–(8) on (a) Reg(T )/T and (b) Regc(T )/T .

Assumption 3 (Slater’s condition): There exists a con-
stant ε > 0 and a point x̂i ∈ relint(Xi), ∀i ∈ V such
that

∑N
i=1 gi(x̂i) ≤ −ε1p.

Theorem 3: Suppose Assumptions 1−3 hold. If we set ηt
and Vt as these in Theorem 1. Then, for any t ≥ 1,

Regc(T ) = O(
√
T ). (24)

Proof: See Appendix E.
To the best of our knowledge, DUST is the first distributed

algorithm achieving O(
√
T ) dynamic regret bound and

O(T
3
4 ) constraint violation bound for DOCO problems with

coupled inequality constraints over unbalanced networks, let
alone achieving O(

√
T ) constraint violation bound, which

is also confirmed by Table I. Unlike [20]–[22] whose con-
straint violation bounds are affected by the dynamic optimal
decisions x∗t , ∀t ≥ 1, our results are independent of them.

Remark 2: As the number of nodes N and the network
connectivity factor B grow, the bounds of Reg(T ) and
Regc(T ) in (22)−(24) increase accordingly, which can be
observed from Appendixes C–E. This statement is verified
via a numerical example in the following section.

V. NUMERICAL EXAMPLE

We apply DUST to solve the plug-in electric vehicles
(PEVs) charging problem, where the charging cost of each
PEV varied with time due to fluctuations in charging losses
and energy prices at different time instances. The goal is
to find an optimal charging schedule over a time period
such that the sum of the local charging cost of all PEVs
is minimized at each time instance and the network power
resource constraints are satisfied [10], [13]. We formulate the
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PEVs charging problem at each time t as:

minimize
xi∈Xi,∀i∈V

∑N
i=1 ci,t(xi)

subject to
∑N
i=1Aixi −D/N ≤ 0p,

(25)

where xi represents the charging rate of PEV i, ci,t(xi) :=
ai,t/2‖xi‖2 + bTi,txi is the charging cost function of PEV i
at time t [23], and Xi is the local constraint set involving
maximum charging power and desired final state of charge
of PEV i. The coupled constraint

∑N
i=1Aixi −D/N ≤ 0p

guarantees that the aggregate charging power of all PEVs is
less than the maximum power D that the network can deliver.
In our simulation, each ai,t and bi,t are randomly generated
from uniform distributions [0.5, 1] and (0, 1]

di , respectively,
where di = 24 is the dimension of xi. According to the set-
up in [24], there are 48 coupled inequalities, i.e., the rate
aggregation matrix Ai ∈ R48×24 and each local set Xi is
determined by 197 inequalities. The values of Ai, D, and
Xi are obtained by referring to [24].

To investigate the convergence performance of DUST and
the effects of network connectivity factor B and node number
N on the convergence performance of DUST, we run DUST
with different B and different N , where the step (5) in
Algorithm 1 is solved by CYXPY. Fig. 1 and Fig. 2 plot the
evolution of Reg(T )/T and Regc(T )/T with B = 1, 8, 15
when N is fixed as 10 and N = 10, 20, 30 when B is fixed as
2, respectively. From the two figures, we observe that DUST
is able to achieve sublinear convergence in terms of regret
and constraint violations. In addition, it can be seen that the
convergence speed becomes slower when B or N increases,
which is consistent with our analysis in Remark 2.

We compare DUST with the distributed online primal-
dual push-sum (DOPP) in [10] that is also developed based
on column stochastic mixing matrices and the centralized
dual subgradient method (7)–(8). For a fair comparison, we
set κ = 0.2 for DOPP so that it achieves possibly best
convergence performance. Fig. 3 presents the evolution of
Reg(T )/T and Regc(T )/T of DUST, DOPP, and the dual
subgradient when N = 10, B = 4. It is evident that
DUST outperforms DOPP in terms of both the regret and
constraint violations and achieves competitive performance
compared with the centralized dual subgradient method,
which demonstrates the distinguished performance of DUST.

VI. CONCLUSION

We have constructed a distributed dual subgradient track-
ing (DUST) algorithm to solve the DOCO problem with
a globally coupled inequality constraint over unbalanced
networks. To develop it, we integrate the push-sum technique
into the dual subgradient method. The subgradients with re-
spect to dual variables can be estimated by primal constraint
violations, which are tracked by local auxiliary variables,
enabling distributed implementation. We show that DUST
achieves sublinear dynamic regret and constraint violations
if the accumulated variation of the optimal sequence is also
sublinear. Our theoretical results are stronger than those
of existing distributed algorithms applicable to unbalanced
networks, which is verified via numerical experiments.
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APPENDIX

A. Proof of Lemma 2

Proof: Let µ̂i,t =
∑
j∈N in

i,t
wij,tµj,t and µ̄t =

1
N

∑N
i=1 µi,t. In light of (16), µi,t+1 ≥ µ̂i,t + yi,t+1.

Summing this inequality from i = 1 to N gives µ̄t+1 ≥ µ̄t+
1
N

∑N
i=1 gi(xi,t+1), which leads to

∑T
t=1

∑N
i=1 gi(xi,t+1) ≤

N
∑T
t=1(µ̄t+1 − µ̄t) ≤ Nµ̄T+1 ≤ N‖µ̄T+1‖. Invok-

ing to the convexity of gi gives
∑T
t=1

∑N
i=1 gi(xi,t) ≤∑T

t=1

∑N
i=1 gi(xi,t+1) +NGR1p ≤ Nµ̄T+1 +NGR1p.

B. Proof of Lemma 3

Let and εi,t+1 = [µ̂i,t + yi,t+1]+ − µ̂i,t. Similar to [10,
eq.(104)] and [10, Lemma 3], we have

‖εi,t+1‖ ≤ By, r ≤ ci,t ≤ N, ∀t ≥ 1, (26)

where By and r are given in Lemma 1. Based on the
definition of εi,t+1, we rewrite (16) as µi,t+1 = µ̂i,t+εi,t+1.
Summing it from i = 1 to N yields

µ̄t+1 = µ̄t +
1

N

N∑
i=1

εi,t+1, (27)

which gives for all λ ∈ Rp+,

‖µ̄t+1−λ‖2 ≤ ‖µ̄t−λ‖2+
2

N

N∑
i=1

εTi,t+1(µ̄t−λ)+B2
y . (28)

The last inequality in (28) follows from (26). By following
the line of proof in [10, eq.(113)] and using (18) and (26),

εTi,t+1(µ̄t−λ)≤ B
2
y

r
+

N∑
i=1

yTi,t+1(λi,t+1−λ)+By‖µ̄t−λi,t+1‖,

The term yTi,t+1(λi,t+1 − λ) can be obtained

N∑
i=1

yTi,t+1(λi,t+1−λ) =

N∑
i=1

yTi,t+1(λi,t+1−µ̄t+µ̄t−λ)

≤(By+F )

N∑
i=1

‖µ̄t−λi,t+1‖+
N∑
i=1

gi(xi,t+1)T(λi,t+1−λ), (29)

where the last inequality utilizes Lemma 1 and (2). Let
Si,t(xi, λi) = αt∂fi,t(xi,t)

T(xi − xi,t) + 〈λi, gi(xi)〉 +

ηt‖xi−xi,t‖2. Obviously, we have
∑N
i=1 gi(xi,t+1)T (λi,t+1−

λ) =
∑N
i=1 Si,t(xi,t+1, λi,t+1) − Si,t(xi,t+1, λ) ≤∑N

i=1Si,t(x̃i,t, λi,t+1)−Si,t(xi,t+1, λ)− ηt‖xi,t+1− x̃i,t‖2,
∀x̃i,t ∈ Xi, which follows from the 2ηt-strong convexity
of Si,t(xi, λi,t+1). Combing it with

∑N
i=1Si,t(x̃i,t, λi,t+1)−

Si,t(x̃i,t, µ̄t) ≤ F
∑N
i=1‖µ̄t−λi,t+1‖ yields

N∑
i=1

gi(xi,t+1)T (λi,t+1−λ) ≤ F
N∑
i=1

‖µ̄t−λi,t+1‖

+

N∑
i=1

Si,t(x̃i,t, µ̄t)−Si,t(xi,t+1, λ)−ηt‖xi,t+1−x̃i,t‖2. (30)

Let λ = 0p. Imitating the Lemma 4 in [17] leads to
−Si,t(xi,t+1, λ) ≤ NG2α2

t

4ηt
. By combing this inequality with

(28)–(30), dividing both sides by 2
N , and substituting the

expressions of Si,t(x̃i,t, µ̄t) give (20). Thus, Lemma 3 holds.

C. Proof of Theorem 1

For any t ≥ 1, let x̃i,t = x∗i,t, ∀i ∈ V . With µ̄t ≥ 0p,
〈µ̄t,

∑N
i=1 gi(x

∗
i,t)〉 ≤ 0. By virtual of the convexity of fi,t,

we have
∑N
i=1αt∂fi,t(xi,t)

T(x∗i,t−xi,t)≤αt
∑N
i=1fi,t(x

∗
i,t)−

fi,t(xi,t). Equipped with these, we divide (20) both sides by
αt and then sum it from t = 1 to T ,
T∑
t=1

N∑
i=1

fi,t(xi,t)−
T∑
t=1

N∑
i=1

fi,t(x
?
i,t) ≤ (

N

2
+
N

r
)

T∑
t=1

B2
y

αt︸ ︷︷ ︸
S1

+

T∑
t=1

NG2αt
4ηt︸ ︷︷ ︸

S2

+
N

2

T∑
t=1

1

αt
(‖µ̄t‖2 − ‖µ̄t+1‖2)︸ ︷︷ ︸

S3

+ (2By+2F )

T∑
t=1

1

αt

N∑
i=1

‖µ̄t−λi,t+1‖︸ ︷︷ ︸
S4

+

T∑
t=1

ηt
αt

N∑
i=1

(
‖x?i,t − xi,t‖2 − ‖xi,t+1−x?i,t‖2

)
︸ ︷︷ ︸

S5

. (31)

Below, we analyze the upper bounds of each Si, i = 1, . . . , 5.
With αt =

√
t and ηt = t, it is easy to obtain

S1 ≤ (NB2
y +

2NB2
y

r
)
√
T , S2 ≤

NG2
√
T

2
, (32)

S3 =‖µ̄1‖2+
T∑
t=2

(
1

αt
− 1

αt−1
)‖µ̄t‖2−

1

αt
‖µ̄T+1‖2 ≤ 0, (33)

where (32) follows from
∑T
t=1

1√
t
≤ 1 +

∫ T
t=1

t−1/2dt ≤
2
√
T . By referring to [16, Lemma 1], we obtain

N∑
i=1

‖µ̄t − λi,t+1‖ ≤
8N2By

√
p

r

t∑
k=1

σt−k, (34)

which leads to

S4 ≤
8N2By

√
p

r

T∑
t=1

1

αt

t∑
k=1

σt−k ≤ 16N2By
√
p
√
T

r(1− σ)
, (35)

which comes from
∑T
t=1

1
αt

∑t
k=1 σ

t−k ≤∑T−1
t=0 σt

∑T
k=1

1
αk

. Similar to [19, Theorem 2], the
term S5 is bounded by

S5 ≤ 2NR2
√
T + 2NRVT , (36)

where VT :=
∑T
t=1

√
t
∑N
i=1

∥∥x∗i,t+1 − x∗i,t
∥∥. Combing (31)

with (32)–(36) gives Theorem 1.
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D. Proof of Theorem 2

By x̃i,t = x̃i, ∀i ∈ V that satisfies
∑N
i=1 gi(x̃i) ≤ 0p, we

have 〈µ̄t,
∑N
i=1 gi(x̃i)〉 ≤ 0. Based on this and αt =

√
t,

ηt = t, summing (20) from t = 1 to T yields

N

2

T∑
t=1

(‖µ̄t+1‖2 − ‖µ̄t‖2) =
N

2
‖µ̄T+1‖2 ≤(

N

2
+
N

r
)TB2

y

+

T∑
t=1

NG2α2
t

4ηt
+(2By+2F )

T∑
t=1

N∑
i=1

‖µ̄t−λi,t+1‖

+

T∑
t=1

N∑
i=1

αt∂fi,t(xi,t)
T(x̃i,t−xi,t)

+

T∑
t=1

N∑
i=1

ηt(‖xi,t− x̃i,t‖2−‖xi,t+1−x̃i,t‖2)

≤ (
N

2
+
N

r
)TB2

y+
NG2T

4
+(2By+2F )

8N2By
√
pT

r(1− σ)

+NGRT
3
2 + 2TNR2, (37)

where (34), Cauchy–Schwarz inequality, Assumption 2, (3),
(36), and

∑T
t=1 αt ≤ 1 +

∫ T
t=1

t1/2dt ≤ T 3
2 are used to infer

the last inequality. The inequality (37) implies ‖µ̄T+1‖ =
O(T

3
4 ). By substituting it into the following inequality that

is derived from Lemma 2

Regc(T ) ≤ N‖µ̄T+1‖+NGR
√
p, (38)

Theorem 2 holds.

E. Proof of Theorem 3

Lemma 4: Let τ = d
√
te, δ = By + ε. For any t ≥ 1,

‖µ̄t‖ ≤ 4δ
√
t+θt(τ)+

16
√
tδ2

ε
log

32δ2

ε2
+6By. (39)

where θt(τ) = (1+ 2
r )
B2
y

ε +G2

2ε+
(2By+2F )16NBy

√
p

rε(1−σ) + 4GRαt
ε +

4R2ηt
ετ + (2B2

y + ε)τ .
Proof: We first bound the difference between ‖µ̄t+1‖

and ‖µ̄t‖, ∀t ≥ 1, i.e.,

−By ≤ ‖µ̄t+1‖ − ‖µ̄t‖ ≤ By, (40)

where (26) and (27) give rise to the right-hand inequality. The
left-hand inequality can be obtained from ‖µ̄t‖ − ‖µ̄t+1‖ ≤
‖µ̄t+1 − µ̄t‖ = ‖ 1

N

∑N
i=1 εi,t+1‖ ≤ By .

Let x̃i,t = x̂i and 4s = 1
2‖µ̄s+1‖2 − 1

2‖µ̄s‖2. Summing
(20) from s = t, t+ 1, . . . , t+ τ − 1, we have

t+τ−1∑
s=t

4s ≤(
1

2
+

1

r
)B2

yτ+
G2τ

4
+ηt+τ−1R

2 −ε
t+τ−1∑
s=t

‖µ̄s‖

+
2By+2F

N

t+τ−1∑
s=t

N∑
i=1

‖µ̄s−λi,s+1‖+GR

t+τ−1∑
s=t

αs, (41)

where ηt+τ−1R
2 is obtained by referring to (36) and the

term −ε∑t+τ−1
s=t ‖µ̄s‖ is derived based on Assumption 3.

Since 1 ≤ τ ≤ t+ 1 and Vs =
√
s,
∑t+τ−1
s=t αs ≤ 2ταt and

ηt+τ−1 ≤ 2ηt. By resorting to (34) and (40),
t+τ−1∑
s=t

N∑
i=1

‖µ̄s−λi,s+1‖ ≤
8N2By

√
p

r(1− σ)
τ, (42)

t+τ−1∑
s=t

‖µ̄s‖≥
t+τ−1∑
s=t

(‖µ̄t‖−(s−t)By)≥τ‖µ̄t‖−τ2By, (43)

which together with (41) results in
t+τ−1∑
s=t

4s ≤ (
1

2
+

1

r
)B2

yτ+
G2τ

4
+2R2ηt+2GRταt

+
(2By+2F )8NBy

√
p

r(1− σ)
τ+ετ2By−ετ‖µ̄t‖.

This inequality implies ‖µ̄t+τ‖2 = ‖µ̄t‖2 +2
∑t+τ−1
s=t 4s ≤

‖µ̄t‖2−2ετ‖µ̄t‖+ετθt(τ) according to the definition of θt(τ).
Thus, if ‖µ̄t‖ ≥ θt(τ), we have

‖µ̄t+τ‖ − ‖µ̄t‖ ≤ −
ετ

2
,∀t ≥ 1. (44)

Next we utilize (44) to bound ‖µ̄t‖. Consider the case
t ≥ 6. Let δ = By + ε, ξ = ε

2 , r̃ = ξ

4d
√
teδ2 , and ρ =

1 − r̃ξτ
2 , which implies 0 < ρ < 1. Denote wt = ‖µ̄t‖ −

‖µ̄t−τ‖. According to (40), wt =
∑t−1
s=t−τ ‖µ̄s+1‖−‖µ̄s‖ ≤

τBy ≤ τδ. Like Lemma 6 in [18], er̃‖µ̄t‖ = er̃(wt+‖µ̄t−τ‖) ≤
er̃‖µ̄t−τ‖(1 + r̃wt + 1

2 r̃τξ). Note that t − τ ≥ 1, ∀t ≥ 6. If
‖µ̄t−τ‖ ≥ θt−τ (τ), we have wt = ‖µ̄t‖−‖µ̄t−τ‖ ≤ − ετ2 =
−ξτ by (44), which implies

er̃‖µ̄t‖ ≤ ρer̃‖µ̄t−τ‖ + er̃τδer̃θt−τ (τ). (45)

It is easy to verify that (45) holds if ‖µ̄t−τ‖ < θt−τ (τ).
Moreover, ∀t ≥ 6, b tτ c = k for some k ≥ 2. Consequently,
t − (k − 2)τ ≥ 1. Thus, we can apply (45) for s = t, t −
τ, . . . , t− (k − 2)τ to obtain

er̃‖µ̄t‖ ≤ ρer̃‖µ̄t−τ‖ + er̃τδer̃θt−τ (τ)

≤ ρk−1er̃‖µ̄t−(k−1)τ‖ + er̃δτ
k−1∑
i=1

ρi−1er̃θt−iτ

≤ ρk−1e2r̃τδ + er̃δτer̃θt
k−1∑
i=1

ρi−1 ≤ e2r̃τδer̃θt

1− ρ , (46)

where the third inequality was resulted from: (1)
‖µ̄t−(k−1)τ‖ ≤ (t− (k − 1)τ)By ≤ 2r̃τδ according to (40)
and t − (k − 1)τ ≤ 2τ ; (2) 0 < θt−iτ ≤ θt because θt
increases with t. From (46) and τ = d

√
te ≤ 2

√
t, we have

‖µ̄t‖ ≤ 2τδ + θt(d
√
te) +

1

r̃
log

1

1− ρ

≤ 4δ
√
t+ θt(d

√
te)+

16
√
tδ2

ε
log

32δ2

ε2
+6By. (47)

Consider the case t < 6. It is straightforward to obtain
‖µ̄t‖ ≤ tBy ≤ 6By . Thus, Lemma 4 holds.

Since θt(d
√
te) = O(

√
t) according to the definition of

θt in Lemma 4, from (47), ‖µ̄t‖ = O(
√
t). Combing it with

(38) gives Regc(T ) = O(
√
T ). Thus, Theorem 3 holds.
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