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Abstract— This paper studies the problem of multiple pur-
suers and single evader with asymmetric information, where
only the leader of pursuit group can measure the relative
distance to the evader, while the latter has a global view. Due to
the lack of information, the pursuers introduce an imaginary
circle to estimate the position of the evader. A continuous
stochastic pursuit game is established and the existence of a
stationary Nash equilibrium is shown. With the information
advantage, a full states Markov decision process (MDP) for the
evader is then constructed and the existence of a pure stationary
optimal strategy is demonstrated. Moreover, an algorithm based
on fictitious self-play and reinforcement learning is presented
to obtain stationary strategies. An experiment with quadruped
robots is also included to show the effectiveness of the results.

I. INTRODUCTION

The pursuit-evasion game involves pursuers and evaders
with opposite objectives [1], and has received increasing
attention in intelligent transportation systems [2], [3] and
sport/game strategies [4], [5]. Pursuit-evasion game can be
typically regarded as a scenario involving both cooperation
and competition among multiple decision-makers, thereby
making it suitable for exploration through game theory [6],
and a large number of developments have been witnessed.
For example, the investigation of the pursuit-evasion dynamic
with three kinds of malicious pursuers is conducted in
[2] within a non-zero-sum game framework. A hierarchi-
cal framework-based two-resolution decision-making mech-
anism is established to address the discrete pursuit-evasion
problem in [7]. [8] shows that lacking common knowledge
turns a zero-sum pursuit-evasion game into a non-zero-sum
game, and the existence of Nash equilibrium is also provided.

Most of existing results are model-based; however, due to
the presence of uncertainties in real world applications, it
is usually hard to establish accurate models. Reinforcement
learning (RL), capable of exploring strategies in a model-
free way, has thus been widely used to address pursuit-
evasion problems [9]–[12]. The belief state of the evader’s
position is defined through vision field images in [11], and
the optimal pursuit strategy is determined via the soft Actor-
Critic algorithm. [13] introduces two network structures
using deep deterministic policy gradients (DDPG) to quickly
resolve strategy issues and simplify the complexity of multi-
agent algorithms under limited visibility. The formula for
DDPG is vectorized and improved in [14], leading to the

This work was supported in part by the Natural Science Foundation
of China under Grants U2341216 and 62373375. D. Yang, Y. Feng,
and Y. Li are with Information Engineering College, Zhejiang Univer-
sity of Technology, 288 Liuhe Road, Hangzhou, Zhejiang, China. B.
Luo is with School of Automation, Central South University, 932 South
Lushan Road, Changsha, Hunan, China. Corresponding author: Yu Feng
(yfeng@zjut.edu.cn)

development of a multi-agent collaborative target prediction
network for the target’s trajectory.

Note that most aforementioned pursuit-evasion solutions
rely on positioning information, for instance [2], [7], [8],
[12], which may be unavailable in certain specific settings.
For example, in underwater, GPS cannot be used since the
rapid attenuation of radio signals [15], [16]. Hence, it is
of great importance to study the pursuit-evasion problem
with only distance information. A distance-based capture
strategy based on the Grow-Intersect algorithm is proposed
to handle a pursuit-evasion game in [17]. Triangulation with
fixed beacons for precise localization, including a method
to eliminate measurement noise, is developed in [18]. [19]
introduces a gradient localization algorithm using distance
measurements and convex optimization.

In this paper, we consider an N-to-1 pursuit-evasion
problem under asymmetric information within the stochastic
game framework. For this problem, only the pursuit leader
can measure the relative distance to the evader and shares it
to the followers; while the evader has the global information.
By introducing a hypothetical circle to estimate the evader’s
position, we form a zero-sum continuous stochastic game for
the pursuit group and show the existence of the stationary
Nash equilibrium through the fixed-point theorem. Thanks
to evader’s information advantage, a full states MDP is
constructed based on the stationary Nash equilibrium pursuit
strategy, and a pure stationary optimal strategy for the evader
is also given. Moreover, an algorithm with fictitious self-play
(FSP) and RL is presented to solve strategies.

The rest of this paper is organized as follows. Section II
presents the problem. Section III is devoted to the decision-
making process of establishing pursuit/evasion strategies via
a continuous stochastic game and an MDP with full states.
An algorithm is given in Section IV for computing station-
ary strategies. A pursuit-evasion experiment with quadruped
robots is included in Section V to show the effectiveness of
the presented results and conclusion is given in Section VI.

II. PROBLEM DESCRIPTION

An N-to-1 pursuit-evasion problem is considered. Denote
N pursuers as Pi, i ∈ {1, · · · , N}, where P1 is the leader
and others are followers, and the evader is denoted as E. Let
P ti := (xtPi

, ytPi
) and Et := (xtE , y

t
E) represent the positions

of the ith pursuer and the evader at stage t, respectively.
Detailed descriptions are as follows:
• Environment: As shown in Figure 1, the environment

consists of boundaries and obstacles. Both pursuers and
evader realize the environmental information and are
prohibited from colliding with boundaries and obstacles.
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• Information: Pursuers do not know the location of the
evader and only the leading pursuer, equipped with a
range-only sensor, is able to measure the relative dis-
tance D(P ti , E

t) := ||(xtPi
, ytPi

)− (xtE , y
t
E)||2 from the

evader in the end of stage t. Such distance information,
together with the locations (xtPi

, ytPi
), i ∈ {1, · · · , N},

is shared among pursuers.
• Capture Condition: The whole duration of the pursuit-

evasion process is limited by a positive number T . Then
the problem ends up with two cases: (i) if the relative
distance between any pursuer and the evader is less than
a prespecified chasing tolerance ` at stage t ≤ T ; (ii)
otherwise, the evader wins.

• Speed and Direction Constraints: All pursuers have
identical sets of selectable speeds and directions. Let
VP and VE be the finite sets of possible speeds for
the pursuers and the evader, respectively. The following
conditions are further made. (i) Different pursuers can
choose different speeds at each stage. (ii) Speeds of
pursuers and evader remain constant during each stage.
(iii) vP,max < vE,max, where vP,max = maxVP and
vE,max = maxVE . Moreover, let the possibilities of the
pursuers’ directions be MP , which is obtained by evenly
dividing 2π. Then, the set of the pursuers’ directions
is defined as DP =

¶
2kπ
MP
|k = 0, 1, · · · ,MP − 1

©
.

Similarly, denote the number of the evader’s directions
as ME and the corresponding set of directions is defined
as DE =

¶
2kπ
ME
|k = 0, 1, · · · ,ME − 1

©
.

• Purpose: The pursuers aim to capture the evader as
quickly as possible; while the evader’s goal is to avoid
being caught before the number of stages runs out.

P1

PN

P2

E...

Fig. 1: Environment of pursuit-evasion problem

III. PURSUIT PROBLEM WITH INCOMPLETE
INFORMATION

In this section, we conduct the strategies of the pursuers
and the evader via a stochastic game with an imaginary circle
and an MDP with full states, respectively.

A. Imaginary Circle

Since the pursuers are not able to locate their opponent
and merely access the relative distance, an imaginary circle
is introduced to tackle such information deficiency. It is
observed that at each stage t, the pursuit group knows
the distance D(P t1 , E

t) between the evader and the leading

pursuer, therefore, they consider that the evader is uniformly
distributed on the imaginary circle (x−xtP1

)2+(y−ytP1
)2 =

d2 with d := D(P t1 , E
t).

Unlike the leading pursuer, followers are not able to
measure relative distances to the evader, and their main role
is to surround the evader, instead of capturing it directly.
To this end, at stage t, the pursuit circle with position P ti
being the center and chasing tolerance ` being the radius
needs to cover as much as possible the arc length of the
aforementioned hypothetical circle, i.e., the goal of Pi is
to maximize the arc ÃB, shown in Fig. 2. Note that this
objective is equivalent to the maximization of ∠AP1B, with
∠AP1B = 2 arccos

d2+D2(P t
1 ,P

t
i )−`

2

dD(P t
1 ,P

t
i
)

, and can be fulfilled

when D(P t1 , P
t
i ) =

√
d2 − `2.

P1

Pi

Pj

A

B

C

D
d

` `

Fig. 2: Intersecting arcs between hypothetical and pursuit
circles

As mentioned previously, both pursuers and evader are
prohibited from touching the boundaries and obstacles. To
this end, we introduce the caution zones in the environment,
which are depicted as the red areas in Fig 1. The caution zone
associated with the boundary is established by extending one
maximum stage distance. Note that both pursuers and evader
know the environment and their own locations, so they are
also aware of the information of caution zones. Moreover, it
is clear that when someone locates in caution zones, it runs
a risk of hitting boundaries/obstacles at next stage.

B. Pursuit Game
To address the issue of asymmetry information, we intro-

duce a hypothetical evader that is considered to be uniformly
distributed on the imaginary circle mentioned previously.
Define X1 ×Y1 ×O as the state of the hypothetical evader,
where X1 × Y1 is the set of positions of P1 and O is
the set of observation distances. We establish the pursuers’
strategy through a continuous stochastic game between the
hypothetical evader and the pursuers.

Note that the pure actions of the pursuers and the hy-
pothetical evader are formed by the motion directions and
speeds. Thus, their action sets are written as AP = VP ×DP
and AE = VE × DE , respectively. The pursuit game G is
established by the following quintuple {I,A,U , T,R}.
• Player: Let I = {P ,E} be the set of rational players,

where P = {P1, · · · , PN} and E denote the pursuit
group and the hypothetical evader, respectively.

• Action: A = AP ×AE denotes the set of pure actions
for the pursuit group and the hypothetical evader where
AP = AP × · · · × AP .
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• Joint state: The joint state set U is composed of the
pursuit group coordinates

∏N
i=1 Xi ×Yi and the set O,

i.e., U = (
∏N
i=1 Xi × Yi)×O.

• Joint state transition probability: T (u′|u, aP , aE) de-
notes the transition probability from joint state u and
action (aP , aE) to next joint state u′.

T (u′|u, aP , aE)

=Pr(d′|d, aP1 , aE)
N∏
i=1

Pr((x′Pi
, y′Pi

)|(xPi , yPi), aPi).

• Reward: R = {ri(u, aP , aE)}i∈I where ri(u, aP , aE)
denotes the reward to player i with state u and action
(aP , aE). The reward to pursuit group is given by

rP (u, aP , aE) = −E [D(P ′1, E
′)]−

N∑
i=1

κ((xPi
, yPi

), aPi
)

−
N∑
i=2

E
[∣∣∣D(P ′i , P

′
1)−

»
D(P ′1, E

′)2 − `2
∣∣∣] . (1)

In Eq. (1), E[D(P1, E
′)] represents the expected dis-

tance between the pursuit leader and the hypothet-
ical evader after taking the action (aP , aE), and
κ((xPi

, yPi
), aPi

) is a continuous and bounded penalty
function of (xPi , yPi) when Pi enters caution zones
or collides with boundaries or obstacles. A specific
expression of κ(·, ·) can be obtained by the given
environmental information. For example, see Section V.
The third term is related to the surrounding effect of
followers. Moreover, since the loss of the pursuit group
is the gain of the hypothetical evader, the one-stage
profit for the evader is

rE(u, aP , aE) = −rP (u, aP , aE).

We focus on stationary strategies that are defined by
a mapping from joint state to action space φi : U →
∆(Ai), i ∈ I, where ∆(Ai) represents the set of all prob-
ability measures on Ai. Hence, with stationary strategies
φ = (φP , φE) the discounted payoff on infinite-time horizon
to player i is given by

Vi(u, φ) = E

[ ∞∑
t=0

ρtri(u
t, φt)

∣∣∣∣u0 = u

]
, (2)

with u0 and 0 < ρ < 1 being the initial joint state and
discount factor, respectively. The purpose of each decision
maker is to maximize its own payoff by holding the correct
expectation about the opponent’s moves and acting rationally.
Solving such problem amounts to finding a stationary Nash
equilibrium (SNE) of the pursuit game. Given the zero-sum
nature of this game, the SNE strategy (φ∗

P
, φ∗
E

) has the
property such that

VP (u, φP , φ
∗
E

) ≤ VP (u, φ∗
P
, φ∗
E

) ≤ VP (u, φ∗
P
, φE). (3)

Theorem 1 There exists an SNE of the pursuit game G.

Proof: Define

rP (u, φP , φE) =
∑
a
P

∑
a
E

rP (u, aP , aE)φP (aP |u)φE(aE |u),

T (u′|u, φP , φE) =
∑
a
P
,a

E

T (u′|u, aP , aE)φP (aP |u)φE(aE |u).

It is evident that T (u′|u, φP , φE) and rP (u, φP , φE) are both
continuous on ∆(AP )×∆(AE). Denote the operator K:

KVP (u, φP , φE) = rP (u, φP , φE)

+ ρ

∫
U
VP (u′)dT (u′|u, φP , φE).

Since AP and AE are finite, the sets of probability measures
∆(AP ) and ∆(AE) are both compact. Further define the
operator M :

MVP (u) := max
φ
P

min
φ
E

KVP (u, φP , φE).

It is easy to check that M is a contraction. Then from the
Banach Fixed Point Theorem [20] there exists a unique fixed
point V ∗

P
such that MV ∗

P
= V ∗

P
, i.e.,

V ∗
P

(u) = max
φ
P

min
φ
E

KV ∗
P

(u, φP , φE). (4)

Note that for any VP , KVP (u, ·, ·) is a bilinear function.
Due to the zero-sum attribute of the game, it follows that

max
φ
P

min
φ
E

KV ∗
P

(u, φP , φE) = min
φ
E

max
φ
P

KV ∗
P

(u, φP , φE).

(5)
Let φ∗

P
and φ∗

E
be the stationary strategies for the pursuers

and the hypothetical evader that satisfy Eq. (5). There holds

VP (u, φ∗) = V ∗
P

(u)

= max
φ
P

ï
rP (u, φP , φ

∗
E

) + ρ

∫
U

V ∗
P

(u′)dT (u′|u, φP , φ
∗
E

)

ò
≥VP (u, φP , φ

∗
E

).

Similarly, we have VP (u, φ∗) = V ∗
P

(u) ≤ VP (u, φ∗P , φE).
Therefore, there exists an SNE of the pursuit game G.

C. Evader Strategy: MDP With Full States

Since the evader possesses global information, the result-
ing decision process can be converted to an MDP, which is
represented by the following quadruple < H,AE , TE , rE >.
• Full states: H consists of the states of the pursuit game

and coordinates of the evader, i.e., H = U ×XE ×YE .
• Action: AE is the pure action set for the evader.
• Full states transition probability: TE(h′|h, aP , aE) de-

notes the transition probability from state h and action
(aP , aE) to the next state h′.

• Reward: rE(h, aP , aE) denotes the reward to evader
with state h and pure action (aP , aE) and is given by

rE(h, aP , aE)

= min{D(P ′1, E
′), · · · , D(P ′N , E

′)} − κ((xE , yE), aE),

where D(P ′i , E
′) is the relative distance between Pi and the

evader E after taking action (aPi , aE) and κ((xE , yE), aE)
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represents the penalty when the evader enters caution zones
or collides with boundaries and obstacles. Based on the
stationary Nash strategy φ∗

P
from the pursuit game, the

objective of the evader is to maximize its expected payoff as

JE(h, φE) := E

[ ∞∑
t=0

ρtrE(ht, (φ∗,t
P
, φtE))

∣∣∣∣h0 = h

]
. (6)

Theorem 2 There exists a pure stationary optimal strategy
for the evader.

Proof: One can claim that there exists a unique fixed
point J∗E(h) satisfying the optimal Bellman equation, i.e.,

J∗E(h) = max
φE

rE(h, φ∗P , φ
∗
E)

+ ρ

∫
H

JE(h′)dTE(h′|h, φ∗P , φ∗E).

Then we show that the optimal policy φ∗E for the afore-
mentioned MDP is a pure action. To this end, let C(h) :=
{aE |0 < φ∗E(aE |h) < 1}. The set C(h) contains at least
two elements. We show that ∀a′E , a′′E ∈ C(h), Q(h, a′′E) =
Q(h, a′E) by contradiction. Suppose that there exist actions
a′E , a

′′
E ∈ C(h) such that Q(h, a′E) 6= Q(h, a′′E). Without

loss of generality, assume Q(h, a′′E) > Q(h, a′E). For any
ε ∈ (0,min{φ∗(a′E |h), 1 − φ∗(a′′E |h)}), let φE(a′E |h) =
φ∗E(a′E |h) − ε and φE(a′′E |h) = φ∗E(a′′E |h) + ε. Then, there
holds

Q(h, φ∗E) = max
φE

Q(h, φE)

=Q(h, a′E)φ∗E(a′E |h) +Q(h, a′′E)φ∗E(a′′E |h)

+
∑

aE∈C\{a′E ,a
′′
E
}

Q(h, aE)φ∗E(aE |h)

<Q(h, a′E)φE(a′E |h) +Q(h, a′′E)φE(a′′E |h)

+
∑

aE∈C\{a′E ,a
′′
E
}

Q(h, aE)φ∗E(aE |h) = Q(h, φE),

(7)

which contradicts to the fact Q(h, φ∗E) ≥ Q(h, φE). There-
fore, for all a′E , a

′′
E ∈ C(h), we have Q(h, a′′E) = Q(h, a′E).

This fact indicates that there exists a pure optimal strategy
for the evader.

IV. POLICY SOLVING

In this section we present an algorithm for solving the
Nash strategy of the pursuit group and the optimal strategy
of the evader, based on the framework of FSP and the RL
algorithm PPO (Proximal Policy Optimization). Algorithm
1 outlines the process for solving Nash strategies for the
pursuit group and the optimal strategy for the evader.

Here, we initialize the strategies φP , φE and strategy pools
ΩP ,ΩE of the pursuers and the hypothetical evader. The
training process for pursuers involves uniformly sampling a
strategy from ΩE , then updating the pursuer’s strategy by
solving for the best response to the sampled strategy, and
adding this updated one to the strategy pool. The hypothetical
evader updates its strategy and strategy pool in a similar way.
Such process is repeated until the reward converges.

Fig. 3: Quadruped robots pursuit-evasion platform

In order to find the best response, we adopt the PPO
algorithm. For the pursuers: define an Actor network AP
with parameters θP and a Critic network CP with parameters
ξP . Pursuers interact with the environment using AP , and
obtain the joint state ut, action at

P
, and reward rt

P
. The

network AP updates θP based on the sample data. The
objective function of the pursuers is

LP (θP ) =E
ñ

min

Ç
φP (a|u, θP )

φold
P

(a|u, θP )
ÂP ,

clip

Ç
φP (a|u, θP )

φold
P

(a|u, θP )
, 1− δ, 1 + δ

å
ÂP

åô
,

where φP (a|u, θP ) is the current action distribution in net-
work AP , φold

P
(a|u, θP ) is the old action distribution in

network AP , the advantage function ÂP is the difference
between the pursuers’ total rewards and the value function,
i.e., ÂP =

∑
k ρ

krk
P
− VP , and clip(·) is the operation of

slicing the action policy distribution such that its value is
between 1− δ and 1 + δ, with δ being a slicing coefficient.
Continually update parameters θP and ξP , until the objective
function LP (θP ) reaches its optimum.

With global information, the evader’s strategy can be ob-
tained by solving the full state MDP based on the stationary
Nash strategy φ∗

P
for the pursuit group. Similarly, we can

define networks AE and CE with objective LE(θE) to solve
for evader’s optimal strategy.

V. APPLICATION WITH QUADRUPED ROBOTS

In this section, we use a pursuit-evasion experiment with
quadruped robots to show the effectiveness of the results.

A. Platform Description

The platform, depicted in Fig. 3, mainly consists of four
quadruped robots, one RTK (Real-Time Kinematics) base
station, and one host PC. Here, each pursuer is labeled
with a red flag and the evader is labeled with a blue one.
The quadruped robot is 0.645m long, 0.28m wide, 0.4m
high and weights 12kg. The pursuit leader assembles a
laser rangefinder with a range of 30 ± 0.01m to measure
the distance from the evader. The WTRTK-4G positioning
module is used to obtain the coordinates of the quadruped
robot with the static and dynamic accuracy of 1cm and 10cm.
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Algorithm 1 Pursuit and evader strategy solving algorithm

Input: Initialize parameters θP , θE , memory buffer DP , DE
and pools ΩP ,ΩE , maximum number of rounds T

1: for m = 1, 2, · · · do
2: if m%2 == 0 then
3: Sampling a strategy φE from ΩE uniformly
4: for n = 1, 2, · · · do
5: Utilize φP (aP |u, θP ) interaction with the envi-

ronment to obtain trajectories (ut, at
P
, rt
P

)Tt=1

6: Compute the value function {V t
P
}Tt=1 and the

advantage function {Ât
P
}Tt=1

7: Store data (ut, at
P
, rt
P
, V t
P
, Ât

P
)Tt=1 into DP

8: for k = 1, · · · ,K do
9: Extract samples and compute the objective

function LP (θP )
10: Update the gradient parameters θP
11: end for
12: Insert θP into the strategy pool ΩP
13: end for
14: end if
15: if m%2 == 1 then
16: Sampling a policy φP from the strategy pool ΩP
17: Use PPO to solve for the best response of φP and

place it into the strategy pool.
18: end if
19: end for
20: Obtain the stationary strategy φ∗

P
21: Use PPO to solve for φ∗

P
’s best response φ∗

E
22: return φ∗

P
, φ∗E

We take a rectangular area with 20m long and 15m wide
for experiments, and deploy three square obstacles with a
length of 1.2m. The direction sets for pursuers and the evader
are

{
0, · · · , 7π4

}
, and the speed sets are VP = {0, 0.8} and

VE = {0, 1.2}, respectively. The tolerance ` is set to 1.2m.
For the three obstacles, boundaries of the environment, and

the corresponding caution zones mentioned earlier, the result-
ing penalty term κ(·, ·) is given by κ(·, ·) =

∑4
i=1 κi(·, ·).

Taking one obstacle as an example, shown in Fig. 4 where
the black area strands for the obstacle and the red area is the
associated caution zone. Let (x, y) and (x′, y′) be the current
position and the next position after taking certain action a,
respectively. If the next position is in the obstacle �ABCD
(collision occurs), then κi(·, ·) = 1; if it is out of the caution
zone �A′B′C ′D′, then κi(·, ·) = 0; otherwise, the following
linear penalty function is used.

κi((x, y), a) =



y′−yA′
yA−yA′

if (x′, y′) ∈ Γ1;
x′−xB′
xB−xB′

if (x′, y′) ∈ Γ2;
y′−yC′
yC−yC′

if (x′, y′) ∈ Γ3;
x′−xD′
xD−xD′

if (x′, y′) ∈ Γ4.

(8)

Boundaries can be treated in a similar way.

x

y

A B

CD

Γ4 Γ2

Γ3

Γ1
A′ B′

C ′D′

Fig. 4: Domain of penalty function κi

B. Simulation and Experimental Results

We use Algorithm 1 to obtain the optimal strategies for the
pursuit-evasion problem. The policy network and the value
network utilize two fully connected layers as hidden layers,
with 64 and 32 neurons in each layer, respectively. The
learning rate is 0.0001, and the memory buffer capacities
of pursuers and the evader are both 500. The number of
policy updates, discount factor, and clipping coefficient are
set to 20, 0.99, and 0.2 respectively. Additionally, the training
sides are changed every 3, 000 episodes, and each episode
runs for a maximum of 30 stages. This training procedure is
independently realized 30 times.

Fig. 5: Pursuers’ reward

Fig. 6: Evader’s reward

The reward of the pursuit group is plotted in Fig. 5, where
the red curve represents the expected total reward and the
shadow indicates the variance. It is observed that the training

3946



process gradually stabilizes after 1500 episodes. Based on
the pursuers’ strategy, we also illustrate the training process
of the evader in Fig. 6, where the blue curve represents the
evader’s expected total reward and the shadow indicates the
training variance. It is seen that the evader’s expected reward
increases and converges around 5, 000 episodes.

With trained strategies of the pursuers and the evader, 100
episodes are conducted independently. The capture rate of the
pursuit group is 75% and the average number of rounds taken
for a successful capture is 22.14. Fig. 7 exhibits pursuit-
evasion trajectories of three episodes, where the blue dots,
red dots, and pink dots represent the evader, the leading
pursuer, and the followers. Here, the depth of the color
reflects the sequence of trajectories: the darker the color,
the newer the trajectory. It is seen that the movements of the
pursuers are all directed towards the evader, and the followers
form an encirclement to assist the leader.

(a) (b) (c)

Fig. 7: Simulated pursuit-evasion trajectory

We also implement the trained strategies on the real plat-
form and conduct 30 independent trails. The real capture rate
in experiments and the average number of rounds taken for a
successful capture are 73.3% and 24.76. Fig. 8 shows real-
time pursuit-evasion trajectories of one experiment, where
the red circles and blue circle stand for the initial positions
of pursuers and evader. Similar to the simulation, the leader
of the pursuers has a clear chasing trend and the followers
surround the evader to achieve the pursuit.

Fig. 8: Experimental pursuit-evasion trajectory

VI. CONCLUSIONS

This paper tackles an N-to-1 pursuit-evasion problem
where only the leader of pursuers can measure its relative
distance to the evader, while the evader has a global view. To
address the absence of location, the pursuit group estimates
the evader’s position using an imaginary circle. A zero-sum
continuous stochastic game and an MDP with full states

are established for the pursuit-evasion strategy. We show the
existence of a stationary Nash equilibrium of this game and
a pure optimal strategy for the MDP. Moreover, an algorithm
is presented and the effectiveness of the results is verified by
a quadruped robot pursuit experiment.
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