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Abstract— This paper proposes a methodology for scalable
kernel-based regularized system identification based on indirect
methods. It leverages stochastic trace estimation methods and
an iterative solver such as LSQR for the efficient evaluation of
hyperparameter selection criteria. It also uses a derivative-free
optimization approach to hyperparameter estimation, which
avoids the need for computing gradients or Hessians of the
objective function. Moreover, the method is matrix-free, which
means it only relies on a matrix-vector oracle and exploits fast
routines for various structured matrix-vector products. Our
preliminary numerical experiments indicate that the method-
ology scales significantly better than direct methods, especially
when dealing with large datasets and slowly decaying impulse
responses.

I. INTRODUCTION

System identification is a fundamental problem in control
theory with important applications in several domains. A
popular approach is to use kernel-based regularization to
introduce prior information about stability and smoothness
[18]. Kernels such as the SS kernel [19] and the TC and DC
kernels [6] have been thoroughly studied and often work very
well in practice. These kernels lead to kernel matrices that
can be efficiently factorized and enjoy linear time and space
complexity; see, e.g., [5], [2]. However, when combined with
the input matrix, which is a Toeplitz matrix, it is generally
difficult to concurrently exploit the Toeplitz structure and the
efficient representation of the kernel matrix when employing
a direct method based on, e.g., a QR factorization. Thus,
kernel-based regularization methods can be computationally
expensive, especially when dealing with large datasets.

This paper proposes a methodology for scalable kernel-
based regularized system identification based on indirect
methods. The performance of kernel-based regularization
methods is highly dependent on the choice of hyperpa-
rameters, which control the trade-off between fitting the
training data and avoiding overfitting. Our approach lever-
ages stochastic trace estimation methods and an iterative
solver such as the conjugate gradient (CG) method [11]
or LSQR [17] for the efficient (but inexact) evaluation of
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hyperparameter selection criteria such as generalized cross-
validation (GCV) and profile marginal likelihood (PML).
We combine this with a derivative-free optimization method
for hyperparameter estimation, which avoids the need for
computing gradients or Hessians of the objective function.
The method is also matrix-free in the sense that it only
relies on the availability of a matrix-vector oracle rather than
an explicit representation of a matrix. This means that the
memory footprint is low and that fast routines for various
structured matrix-vector products are readily exploited, e.g.,
products with Toeplitz, band, and/or semiseparable matrices.
Using techniques from randomized linear algebra, we con-
struct efficient preconditioners that significantly improve the
computational efficiency of the overall methodology.

Our work builds on several existing techniques in the
field. For instance, we leverage the use of trace estimation
for hyperparameter selection, which was first explored by
Hutchinson [12]. Since then, Hutchinson’s trace estimator
has been extended to the estimation of the trace of functions
of large matrices using stochastic Lanczos quadrature [21].
We also draw upon sketching and randomized linear algebra
techniques for trace and/or log-determinant estimation, which
have been extensively studied in the literature, including in
[20] and [4]. Additionally, our methodology relies on precon-
ditioning, which has recently been explored in the context
of Gaussian process regression [22]. These techniques are
crucial components of our proposed methodology.

The paper is organized into the following sections. In
Section II, we provide a brief review of the model and
hyperparameter selection criteria that form the basis of
our proposed methodology. In Section III, we outline our
methodology, including iterative solver techniques, stochastic
trace estimation methods, and derivative-free optimization
methods that we employ. We present some numerical re-
sults in Section IV, where we showcase the efficiency and
scalability of our methodology. Finally, in Section V, we
summarize our contributions and conclude the paper.

II. BACKGROUND
A. Model

Consider the linear observation model

y = Φθ + e (1)

where y ∈ Rm is a vector of observations, Φ ∈ Rm×n is
a Toeplitz matrix constructed from a given input signal u ∈
Rm, θ ∈ Rn is a vector of unknown parameters, and e ∈ Rm

represents measurement noise. We will assume that θ and e
are independent random variables satisfying

θ|ν, β ∼ N (0, νK(β)), e|σ2 ∼ N (0, σ2I),
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where σ2 > 0 is the noise variance and the covariance matrix
νK(β) associated with θ is parameterized by ν > 0 and
a vector of kernel parameters β ∈ Rd. We will focus on
the case where there is a small number of hyperparameters,
which is true for kernels such as the DC, TC, and SS kernels.

From a Bayesian viewpoint, we have that

y|θ, σ2 ∼ N (Φθ, σ2I)

y|σ2, ν, β ∼ N (0,Σy)

θ|y, σ2, ν, β ∼ N (θ̂,Σθ|y)

where θ̂ = σ−2Σθ|yΦ
T y is the posterior mean, and the

covariance matrices Σy and Σθ|y are defined as

Σy = ν

(
σ2

ν
I +ΦK(β)ΦT

)
Σθ|y = σ2

(
ΦTΦ+

σ2

ν
K(β)−1

)−1

.

Letting K(β) = LLT be a Cholesky factorization of K(β)
and defining Φ̃ = ΦL and λ = σ2/ν, we can express the
posterior mean θ̂ as

θ̂ = argmin
θ

{
∥Φθ − y∥22 + λ θTK(β)−1θ

}
= L argmin

θ̃

{
∥Φ̃θ̃ − y∥22 + λ∥θ̃∥22

}
= Lθ̃⋆, (2)

where θ̃⋆ =W−1
η Φ̃T y = Φ̃TC−1

η y with η = (λ, β) and

Wη = λI + Φ̃T Φ̃, Cη = λI + Φ̃Φ̃T . (3)

It is straightforward to verify that Cη = ν−1Σy and
σ2Σ−1

θ|y = LTWηL. The model output defined by the
parameter estimate θ̂ can be expressed as

ŷ = Φθ̂ = Φ̃θ̃⋆ = Hηy (4)

where Hη = Φ̃W−1
η Φ̃T is the so-called influence matrix.

Both θ̂ and ŷ depend on the hyperparameters λ and β, which
must somehow be selected.

B. Hyperparameter Selection
Next, we outline two popular hyperparameter selection

criteria: generalized cross-validation (GCV) and marginal
likelihood maximization.

1) Generalized cross-validation: The GCV approach to
the hyperparameter selection problem is to minimize the
criterion [10]

GCV(η) =
1
m∥(I −Hη)y∥22
(tr(I −Hη)/m)

2 .

It follows from the Sherman–Morrison–Woodbury identity
that tr(I−Hη) = λ tr(C−1

η ). Moreover, if we let σ̃1, . . . , σ̃r
denote the r = min(m,n) singular values of Φ̃, then

tr(I −Hη) = m− tr(Hη) = m−
r∑

i=1

σ̃2
i

λ+ σ̃2
i

= m−
r∑

i=1

λ+ σ̃2
i

λ+ σ̃2
i

+

r∑
i=1

λ

λ+ σ̃2
i

= m− n+ λ tr(W−1
η ).

This implies that we can evaluate the GCV criterion by
computing ŷ and either tr(Hη), tr(C−1

η ), or tr(W−1
η ). The

quantity deff(η) = tr(Hη) is referred to as the effective
degrees of freedom. We will define ψGCV(η) = lnGCV(η),
which can also be expressed as

ψGCV(η) = ln(∥y − ŷ∥22)− 2 ln(λ tr(C−1
η )) + ln(m). (5)

2) Marginal likelihood maximization: The marginal like-
lihood maximization approach amounts to minimizing
yTΣ−1

y y + ln det(Σy) with respect to η and ν, or, equiv-
alently, minimizing

ML(η, ν) = ν−1yTC−1
η y −m ln(ν−1) + ln det(Cη).

For a fixed η, this function is convex in ν−1, so we may
eliminate ν by setting the partial derivative with respect to
ν to zero, which yields ν̂ = (yTC−1

η y)/m and leads to the
PML objective

ψPML(η) = (1/m)ML(η, ν̂) + ln(m)− 1

= ln(yTC−1
η y) + (1/m) ln det(Cη). (6)

This can also be expressed as

ψPML(η) = ln(yT (y − ŷ))

+
1

m
ln det(Wη)−

n

m
ln(λ)

(7)

which follows from the fact that y − ŷ = λC−1
η y and the

Weinstein–Aronszajn identity

λ−m det(Cη) = λ−n det(Wη).

The main benefit of using the PML objective instead of
the ML objective is that the number of hyperparameters is
reduced by one.

C. Direct Evaluation

To evaluate the GCV criterion (5) for a given η, we need to
compute ŷ and either tr(Hη), tr(C−1

η ), or tr(W−1
η ), and to

evaluate PML criterion (6), we need ŷ and either ln det(Cη)
or ln det(Wη). We now outline how this can be done using
a direct method, i.e., we explicitly form and factorize the
matrix Φ̃ = ΦL. We will consider indirect methods in the
next section, i.e., methods that only rely on matrix-vector
products with Φ̃ and its transpose.

To simplify notation, we will assume that rank(Φ̃) = n
(and hence m ≥ n) and that Φ̃ = Q1R is a “thin” QR
decomposition of Φ̃. This can be computed in O(mn2)
arithmetic operations. One way to proceed is to compute
a factorization Wη = λI +RTR = BTB where B is upper
triangular. This can be done using another QR factorization
or a Cholesky factorization, both of which require O(n3)
operations. We then have θ̃⋆ = B−1B−T Φ̃T y, ŷ = Φ̃θ̃⋆,
and

ln det(Wη) = 2

n∑
i=1

ln(Bii), tr(Hη) = ∥Φ̃B−1∥2F,

where ei denotes is the ith standard unit vector. It follows
that the cost of evaluating the GCV and PML criteria as
outlined above grows as O(mn2).

1499



III. INDIRECT METHOD

To leverage both the Toeplitz structure of Φ and the
structure of the kernel matrix K(β), we propose an indirect
method to compute θ̂ and evaluate ψGCV and/or ψPML

using only a matrix-vector oracle. We will assume that an
implicit factorization K(β) = LLT can be computed in
linear time and that matrix-vector products with L and its
transpose take O(n) time. For example, this is true for the
SS, TC, and DC kernels. Additionally, using the fast Fourier
transform (FFT), matrix-vector products with Φ and Φ̃, as
well as their transposes, take O((m + n) ln(m + n)) time.
Before introducing two simple preconditioning methods to
enhance performance, we start by considering the problem
of evaluating ψGCV and/or ψPML.

A. Function Evaluation

The posterior mean θ̂ and the hyperparameter selection
criteria ψGCV and ψPML can be evaluated in several ways.
We first consider the problem of computing ŷ, which appears
in the first term of (5) and (7), and then we consider
the problem of evaluating or approximating tr(C−1

η ) and
ln det(Cη) via stochastic trace estimation.

1) Computing θ̂ and ŷ: The posterior mean θ̂ = Lθ̃⋆

can be computed by solving the regularized least-squares
problem in (2), i.e., we need to solve Wη θ̃

⋆ = Φ̃T y, which
can be computed using an indirect method such as CG
or LSQR. We note that analytically, LSQR and CG yield
the same iterates, but in finite-precision, LSQR is generally
preferred over CG for problems of the form (2) [17]. In both
cases, a good preconditioner can often significantly improve
the performance of iterative solvers such as CG and LSQR;
we return to preconditioning techniques later in this section.
Alternatively, we can solve Cηz = y using CG or LSQR
and compute θ̃⋆ = Φ̃T z. Finally, given θ̃⋆, we can readily
compute ŷ = Φ̃θ̃⋆.

2) Stochastic trace estimation: The trace of a matrix
A ∈ Rn×n can be expressed as tr(A) = E[vTAv] where
v is a random variable such that E[vvT ] = I . This identity
underpins Hutchinson’s trace estimator [12], which is a
sample average approximation of the form

T̂N (A) =
1

N

N∑
i=1

vTi Avi,

where the vectors v1, . . . , vN are independent realizations
of a Rademacher random variable. Note that the N terms
in the sum can be computed in parallel. We observe that
T̂1(A) = tr(A) if A is diagonal. More generally, T̂N (A) is
unbiased, and its variance is O(1/N). We note that improved,
variance-reduced versions exist, e.g., Hutch++ [14], and the
more general problem of approximating tr(f(A)) where f
is a function of a symmetric matrix A can be tackled using
series expansion or stochastic Lanczos quadrature methods;
see, e.g., [4], [21], [20].

Stochastic trace estimation can be used to estimate the
GCV criterion (5) by computing either T̂N (Hη), T̂N (C−1

η ),
or T̂N (W−1

η ). Products with Hη , C−1
η , and W−1

η can be

evaluated using LSQR or CG, as outlined earlier in this
section.

The problem of estimating ln det(Wη), which appears in
the PML criterion (7), can be cast as a trace estimation prob-
lem, which follows by noting that ln det(Wη) = tr(ln(Wη)).
Using the approach from [4], we let 0 < α < 2/∥Cη∥2 be
a constant such that ∥I − αWη∥2 < 1 and use the Mercator
series

− ln(1− x) =
∞∑
k=1

xk

k
, |x| < 1,

to expand tr(ln(Wη)) as

tr(ln(Wη)) = tr(ln(I − (I − αWη)))−m ln(α)

= − tr

( ∞∑
k=1

(I − αWη)
k

k

)
−m ln(α). (8)

The sum converges faster the smaller ∥I − αWη∥2 is, and
the choice

α⋆ = argmin
α>0

∥I − αWη∥2 =
2

λmax(Wη) + λmin(Wη)

attains the minimum

∥I − α⋆Wη∥2 =
κ(Wη)− 1

κ(Wη) + 1
,

where κ(Wη) denotes the 2-norm condition number of Wη .
This can be improved via preconditioning, which we address
later in this section.

Algorithm 1 combines Hutchinson’s method with the
series expansion in (8) to compute an estimate of ln det(Wη).
The algorithm is closely related to that of [4] but uses only k
matrix-vector products with Wη to compute 2k terms in the
series. Moreover, rather than truncating the sum after a fixed
number of terms, Algorithm 1 truncates the sum adaptively
based on a user-defined tolerance.

Algorithm 1: Log-determinant estimation.
Data: A ∈ Sn such that ∥A∥2 < 1, N > 0, ε > 0.
Result: s ≈ ln det(I −A).
s← 0
for l← 1 to N do

v ← Rademacher(n)/
√
n

t← 0, k ← 1
do

v̄ ← v, v ← Av
t← t+ (vT v̄)/(2k − 1) + (vT v)/(2k)
k ← k + 1

while vT v > 2kε
s← s− t

end
s← (n/N)s
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B. Preconditioning

It is well known that preconditioning can greatly improve
the performance of iterative methods such as LSQR and
CG, reducing the number of iterations required to obtain
a given accuracy. When applied to the system of equations
Wη θ̃ = Φ̃T y with the initial vector θ̃0, the iterates θ̃1, θ̃2, . . .
produced by the CG method satisfy the worst-case bound
[16]

∥θ̃k − θ̃⋆∥2Wη
≤ 2

(√
κ(Wη)− 1√
κ(Wη) + 1

)k

∥θ̃0 − θ̃⋆∥2Wη
.

The basic idea behind preconditioning is to apply a trans-
formation to the original problem that makes it easier to
solve while preserving the solution. Roughly speaking, we
would like the preconditioner M to approximate Wη well,
e.g., in the sense that κ(M−1/2WηM

−1/2) ≪ κ(Wη),
and products with M−1/2 and/or M−1 should be cheap
to compute. Preconditioning can also dramatically improve
the performance of Algorithm 1. Indeed, we can express
ln det(Wη) as

ln det(Wη) = ln det(M−1/2WηM
−1/2) + ln det(M),

and M should be chosen in such a way that ln det(M) and
products with M−1/2 are cheap to evaluate. Alternatively, if
we choose to work with Cη instead of Wη , we can instead
construct a preconditioner for Cη .

Next, we outline two simple, yet powerful, methods that
produce a preconditioner of the form Mk = V (D+λI)V T +
(λ + δ)(I − V V T ) where V ∈ Rn×k has orthonormal
columns, D is diagonal and positive semidefinite, k ≪ n, and
δ ≥ 0. The first one is based on a truncated singular value
decomposition (SVD) of Φ̃, and the second one is based on
a randomized Nyström approximation of Φ̃T Φ̃ (or Φ̃Φ̃T if
we wish to construct a preconditioner for Cη). The operation
x←M

−1/2
k x can then be implemented as

x̃← V Tx, x← V (λI +D)−1/2x̃+
1√
λ+ δ

(x− V x̃),

which costs O(kn) operations.
1) Truncated SVD: A low-rank approximation of Φ̃ can

be obtained using a truncated SVD. Specifically, if Φ̃ =
USV T is an SVD of Φ̃ where S is the diagonal matrix
with the singular values σ1 ≥ · · · ≥ σmin(m,n), then the
Eckart–Young–Mirsky theorem states a truncated SVD

Φ̃[k] =

k∑
i=1

σiuiv
T
i = UkSkV

T
k , 1 ≤ k ≤ min(m,n),

is optimal in the sense that

Φ̃[k] ∈ argmin
Z∈Rm×n

{
∥Φ̃− Z∥ | rank(Z) ≤ k

}
.

Here ∥ · ∥ is either the Frobenius norm or the spectral
norm. For a given k < min(m,n), we can construct a
preconditioner Mk for Wη as

Mk = Vk(S
2
k + λI)V T

k + (λ+ δ)(I − VkV T
k ), (9a)

where δ ≥ 0 is a constant. The condition number of the
preconditioned matrix W̃η =M

−1/2
k WηM

−1/2
k satisfies

κ(W̃η) =


σ2
k+1+λ

σ2
n+λ , m ≥ n, δ ∈ [σ2

n, σ
2
k+1],

σ2
k+1+λ

λ , m < n, δ ∈ [0, σ2
k+1].

The simple choice δ = 0 leads to κ(W̃η) = (σ2
k+1 + λ)/λ.

This is much smaller than κ(Wη) for k ≪ min(m,n) if the
singular values of Φ̃ decay quickly and λ ≳ σ2

r where σr
denotes is the smallest nonzeros singular value of Φ̃. We note
that the leading k singular values of Φ̃ and the corresponding
left and/or right singular vectors can be computed using
the Arnoldi iteration [3], which only requires matrix-vector
products. This is implemented in, e.g., the svds routine in
MATLAB and Python/SciPy.

2) Randomized Nyström approximation: Randomized
techniques such as randomized Nyström approximation [7],
[8] is a fast alternative to the truncated SVD. To construct a
preconditioner for Wη , we first compute Y = Φ̃T Φ̃Ω where
Ω ∈ Rn×k is a random matrix, e.g., with independent stan-
dard normal entries. The rank k matrix Y (Y TΩ)†Y T is then
a randomized Nyström approximation of Φ̃T Φ̃. Computing
an eigenvalue decomposition,

Y (Y TΩ)†Y T = V̂kD̂kV̂
T
k ,

which costs O(nk2), we construct a randomized Nyström
preconditioner as

M̂k = V̂k(D̂k + λI)V̂ T
k + (λ+ δ)(I − V̂kV̂ T

k ).

Assuming that m ≥ n and δ ∈ [σ2
n, σ

2
k+1], it can be shown

that [8, Thm. 5.1]

E[κ(M̂−1/2
k WηM̂

−1/2
k )] < 28

if k = 2⌈1.5 deff(η)⌉. However, the effective degrees of
freedom are not known in practice (the preconditioner is used
to estimate deff(η) = tr(Hη)), so a more practical approach
is to choose k as large as one can afford. Finally, we note that
the same procedure can be used to construct a randomized
Nyström preconditioner P̂k for Cη .

C. Optimization

The hyperparameter criteria ψGCV and ψPML can be
minimized locally using, e.g., derivative-unaware Bayesian
optimization [9] or a derivative-free method such as the
Nelder–Mead method [15], [13], both of which rely only on
function evaluations. On one hand, the Nelder–Mead method
is conceptually simple and has minimal overhead, but it can
be sensitive to noise when the objective function is stochastic.
On the other hand, Bayesian optimization is more robust to
noise but has a higher computational overhead.

First-order or second-order methods that rely on partial
derivatives can also be used, but the indirect evaluation or
estimation of a partial derivative costs as much as a function
evaluation. The constraint λ > 0 can be handled using a
change of variables: we express λ as λ = 10−ρ and define
our optimization variable as η̃ = (ρ, β). An added benefit
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of this change of variables is that it is generally more com-
patible with the default step sizes and stopping criteria used
in off-the-shelf optimizers. A similar transformation can be
applied to β, e.g., if one or more kernel parameters are more
naturally explored on a logarithmic scale or if anticipated
hyperparameter ranges differ by orders of magnitude.

IV. NUMERICAL SIMULATION

A. Implementation

The main steps involved in estimating ψGCV(η) and/or
ψPML(η) are as follows:

1) Factorize K(β) = LLT .
2) Compute randomized Nyström preconditioner M̂k.
3) Compute θ̂ and ŷ using preconditioned LSQR.
4) Estimate tr(Hη) using LSQR with Hutchinson’s

method (GCV) or estimate ln det(M̂
−1/2
k WηM̂

−1/2
k )

using Algorithm 1 (PML).
We illustrate the methodology using the SS kernel and the
implicit O(n) kernel matrix factorization proposed in [2].
The SS kernel can be expressed as

Kss
2 (s, t) =

{
e−2βs(e−βt/2− e−βs/6), s ≥ t ≥ 0,

e−2βt(e−βs/2− e−βt/6), t ≥ s ≥ 0,

i.e., it is parameterized by a scalar parameter β > 0. We note
that kernels such as the TC and DC kernels possess a similar
structure that can readily be exploited in the proposed frame-
work. Our preliminary MATLAB implementation makes use
of the FFT to compute products with Φ and its transpose,
and we use the EGRSS package [1] to factorize K(β) and
to compute products with L and LT . We note that Φ and L,
which are stored implicitly, require only O(m+n) memory.
The implementation can be improved in several ways, e.g.,
by caching intermediate FFTs that are used repeatedly and/or
by parallelizing the stochastic trace estimation.

The following algorithmic parameters are used in our
numerical experiments: In step 2), we use the algorithm from
[8] to compute a randomized Nyström preconditioner with
k = 150 and δ = 0. In step 3), we use MATLAB’s built-in
lsqr routine with the tolerance 10−5. In step 4), we use
Algorithm 1 with N = 50 and the tolerance ε = 10−4.
Moreover, as an approximation to α⋆ = argminα>0 ∥I −
αM̂

−1/2
k WηM̂

−1/2
k ∥2, we use α̂ = 1.8/(1 + ζ̂) where

ζ̂ ≈ ∥M̂−1/2
k WηM̂

−1/2
k ∥2 is estimated using power iteration.

For the hyperparameter optimization, we use MATLAB’s
fminsearch with tolerances TolX and TolFun set to 0.1
and a change of variables η̃ = (ρ, β̃) where λ = 10−ρ and
β̃ = 103β. We note that more sophisticated derivative-free
optimization methods exist, but fminsearch is sufficient
for the purpose of our MATLAB-based proof of concept.

B. Test data

To evaluate the indirect approach to the hyperparameter es-
timation problem, we generated a data bank with ten discrete-
time systems (S1-S10) following the procedure outlined in
[6]: first, we randomly generated 10 SISO continuous-time
systems of order 50 using rss in MATLAB, and each of

these systems was then discretized by sampling at 3 times the
bandwidth of the system. For each system, we generated test
data by simulating the system using unit variance Gaussian
white noise u ∈ Rm with m = 104 as input, and we
added Gaussian white noise e ∈ Rm to the output of the
simulation ȳ ∈ Rm to generate a noisy output observation
y = ȳ+ e. The variance of the noise e was chosen such that
Var(e) = 0.1 ·Var(ȳ).

C. Simulation results

We report our numerical results from two experiments
based on the PML criterion. The first experiment assesses
the precision of stochastic function evaluations using the
indirect method whereas the second experiment compares
runtimes and fits obtained using MATLAB’s impulseest
and the proposed direct and indirect methods for different
values of the FIR order n. The experiments were conducted
in MATLAB R2022b on a MacBook Pro with a 2.3 GHz
Quad-Core Intel Core i7 CPU and 16 GB of memory.

1) Function evaluation: To assess the precision of the
PML criterion evaluations using the indirect method, we
analyzed 144 hyperparameter pairs η̃ = (ρ, β̃) on a regular
grid where ρ ranges from 1 to 6 and β̃ ranges from 1 to 12.
We estimated the mean relative error of the PML objective
using the direct method as the reference. We performed this
analysis for all ten systems based on 12 function evaluations
for each hyperparameter pair with the FIR order n = 103 and
using the algorithmic parameters described at the beginning
of this section.

Our results showed that the mean relative error was
consistently below 3.6 · 10−4 for every hyperparameter pair
and all ten systems. This level of precision is orders of mag-
nitude smaller than the fminsearch tolerances used in our
experiments. Overall, these findings support the reliability
and robustness of the methodology.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
0

20

40

60

80

100

Fi
t

200 800 3200
400 1600

Fig. 1. Fits obtained via the PML criterion for each of the ten systems
and different FIR orders.

2) Runtime and fit: To validate the proposed methodology
and to evaluate the runtime as a function of n, we applied it
to the ten systems from our data bank. To assess the quality
of an estimate θ̂ ∈ Rn, we compute the model fit, defined as

Fit(θ̂e) = 100 ·

[
1− ∥θe − θ̂e∥2
∥θe − µ1∥2

]
, µ =

1

ne
1T θe,
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Fig. 2. Comparison of runtime and fit for the PML criterion: the runtime for both MATLAB’s impulseest and our direct method grows quadratically
with the FIR order n. In contrast, we observe that the runtime for the indirect method exhibits sublinear growth. The computation time for impulseest at
n = 3200 was prohibitively long, and therefore no results were obtained for this parameter value. The right-most boxplot, which summarizes the difference
in fit from the impulseest fit to those obtained with the direct/indirect method for n up to 1600, shows that our implementation predominantly finds
hyperparameters that match or outperform those obtained with impulseest in terms of fit.

where θe ∈ Rne is the ground truth impulse response
truncated at length ne = 104, and θ̂e ∈ Rne is the estimated
impulse responses extended to length ne.

Fig. 1 shows the model fit for each of the ten systems
based on FIR orders ranging from 200 to 3200. Nearly
identical fits were obtained with the direct and indirect
methods. Observe that the fit increases with the FIR order n
until the order is sufficiently high, and for most systems, the
fit remains below 90 until the FIR order is relatively high
(n ≥ 800).

Fig. 2 shows boxplots of the runtime for the PML hy-
perparameter estimation with impulseest and the direct
and indirect methods for FIR orders ranging from 200 to
3200. The runtime was measured using the tic and toc
routines in MATLAB, and the reported runtime for the
indirect method is the mean runtime based on five runs. The
results are grouped by the FIR order n, and every group
is based on results from all ten systems. For small FIR
orders (n < 800), impulseest and the direct method are
faster than our preliminary implementation of the indirect
method. However, the runtime for these methods grows at
least quadratically. In contrast, the runtime for the indirect
method exhibits sublinear growth. We note that the outliers
in the boxplot for the indirect method all originate from the
same system, which has a relatively large bandwidth. The
runtime for this system drops significantly if a larger rank
parameter is used for the preconditioner. We will investigate
different strategies for choosing this automatically in future
work.

The kernel-regularized method is generally much more
expensive than simply computing an ordinary least-square
(OLS) fit of the form θ̂ls = Φ†y where Φ† denotes the
Moore–Penrose pseudo-inverse of Φ. However, the OLS ap-
proach leads to a significantly worse fit in all our experiments
(S1-S10): with the FIR order n = 1600, the OLS fit is at least
7.5 below that obtained with the kernel-regularized method,
and for n = 3200, the difference is at least 16.6.

Finally, we would like to mention that we obtained com-
parable results to those reported in this study when using,

e.g., the GCV criterion, the TC kernel, the truncated SVD
preconditioner, and/or different data sizes m. However, due
to space constraints, we have omitted these results from our
presentation.

V. CONCLUSION

We have proposed a methodology for kernel-based regu-
larized system identification based on a matrix-free, indirect
solution approach. It relies on stochastic techniques and
uses derivative-free optimization for efficient hyperparameter
estimation. Our preliminary results demonstrate that the
indirect approach scales better than existing methods such
as MATLAB’s impulseest, allowing us to speed up
hyperparameter estimation with large FIR orders.

The practical performance of the approach is greatly
enhanced by the use of an appropriate preconditioner, as
highlighted by our numerical study. To further improve
the methodology, future research could investigate a hybrid
approach that utilizes a direct method with a low FIR order to
quickly establish a suitable initialization and preconditioner
for the indirect method with a larger FIR order. Moreover,
the pursuit of scalable and robust hyperparameter estimation
methods could also include research into the balance between
function evaluation speed and precision, e.g., in the context
of Bayesian optimization.
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