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Abstract— We propose relaxed Lyapunov-based conditions
to ensure input-to-state stability (ISS) of nonlinear time-delay
systems. Their strength lies in the fact that the dissipation rate
of the Lyapunov-Krasovskii functional (LKF) involves only the
current value of solution’s norm rather than the LKF itself. The
additional requirement takes the form of a growth condition
between the dissipation rate and its maximal increase along the
system’s solutions. We show through examples that the obtained
conditions are more general than existing techniques, including
the strictification method through the addition of an exponential
term in the integral kernel of the LKF, whose limitations are
highlighted through a counter-example.

I. INTRODUCTION

A fundamental tool to study stability of nonlinear time-
delay systems is the Lyapunov-Krasovskii approach. For
input-free systems, the existence of a Lyapunov-Krasovskii
functional (LKF) that dissipates in a point-wise manner
along the system solutions (namely, V̇ ≤ −α(|x(t)|)) is
enough to conclude global asymptotic stability [11], [6].
Nevertheless, when addressing input-to-state stability (ISS,
[19]), a dissipation involving the whole LKF itself (namely,
V̇ ≤−α(V )+ γ(|u|)) is requested [18], [3].

This requirement often complicates the analysis, as an
LKF-wise dissipation is often harder to obtain than a point-
wise one. This problem is often circumvented by what can
be called the “exponential trick”, which consists in weighting
the kernel of the integral term of the LKF by a convenient
exponential term. This trick has been widely used in the
literature of time-delay systems: see for instance [17], [15],
[5], [7], [13] and it has been shown in [16] that it always
provides a LKF-wise dissipation based on a point-wise one
in the case when the bounds on the LKF and the dissipation
rate are all quadratic functions.

A first contribution of this paper is to extend the class
of systems for which this “exponential trick” works, by
replacing the quadratic requirement by the assumption that
the dissipation rate is of the same order (or dominates) the
term under the integral. Nevertheless, despite the popularity
of this method, we also show with a counter-example that
the “exponential trick” cannot be systematically employed to
derive a LKF-wise dissipation based on a point-wise one.
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It has been conjectured in [4] that a point-wise dissipation
could be enough to conclude ISS. To date, this conjecture
remains open, although several advances have been made on
this question, as reviewed in [3]: it has been proved to hold
for a weaker notion known as integral input-to-state stability
[1] and some additional conditions have been proposed under
which ISS can indeed be derived [4], [2], [14]. In particular,
in [2] some growth restrictions have been proposed to estab-
lish an exponential version of ISS (exp-ISS) based on a point-
wise dissipation. The extra condition essentially imposes that
a quadratic function does not increase (or decrease) faster
than exponentially along the system’s solutions.

Until now, this approach was restricted to exp-ISS, which
significantly limits its application. In this paper, we extend it
to ISS and thus allow to cover a much wider class of time-
delay systems, as illustrated through academic examples.
Roughly speaking, our main result states that ISS holds under
point-wise dissipation if the dissipation rate dominates at
infinity its maximal increase along the system’s solution.

II. PRELIMINARIES AND DEFINITIONS

Notation. Given ∆≥ 0, we denote by X :=C([−∆,0],R),
the set of continuous functions from [−∆,0] to R. The
symbol U denotes the set of Lebesgue mesurable and
locally essentially bounded functions from R≥0 to R. Given
z ∈ Rn, |z| denotes its Euclidean norm. Given an interval
I ⊂ R≥0 and u ∈U , uI denotes the restriction of u to I and
‖uI‖ := ess supτ∈I |u(τ)|. In particular, given φ ∈X n, ‖φ‖=
maxτ∈[−∆,0] |φ(τ)|. We will also make use of comparison
functions: α : R≥0 → R≥0 is of class K if it is zero at
zero, continuous, and increasing; α ∈K∞ if α ∈K and it is
unbounded; β ∈K L if, for each t ≥ 0, β (·, t)∈K and for
each s≥ 0, β (s, ·) is continuous, non-increasing, and tends to
zero at infinity. Given a continuously differentiable function
W : Rn → R, ∇W : Rn → Rn denotes its gradient. Given a
functional V : X n→Rn, its Driver’s derivative D+V : X n×
Rn→ [−∞,+∞] is defined for all (φ ,w) ∈X n×Rn as (see
[3] for more details): D+V (φ ,w) := limsuph→0+

V (φh,w)−V (φ)

h ,
where the function φh,w ∈X n is defined by

φh,w(τ) :=
{

φ(τ +h) if τ ∈ [−∆,−h]
φ(0)+(τ +h)w if τ ∈ (−h,0].

We consider time-delay systems (TDS) of the form

ẋ(t) = f (xt ,u(t)). (1)

The history function xt ∈X n is defined as xt(τ) := x(t + τ)
for all τ ∈ [−∆,0], where ∆ ≥ 0 is the maximum delay of
the system. The input u belongs to U m and the vector field
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f : X n×Rm→ Rn is assumed to be Lipschitz on bounded
sets with f (0,0) = 0. A central property for the stability
and robustness analysis of TDS is the input-to-state stability,
originally introduced in [19] for finite-dimensional systems
and more recently extended to TDS as reviewed in [3].

Definition 1 (ISS): The TDS (1) is said to be input-to-
state stable (ISS) if there exist β ∈K L and µ ∈K∞ such
that, for all x0 ∈X n and all u ∈U m, its solution satisfies

|x(t,x0,u)| ≤ β (‖x0‖, t)+µ(‖u[0,t]‖), ∀t ≥ 0.

A powerful tool to study input-to-state stability of (1) is the
Lyapunov-Krasovskii approach. We first recall the definition
of a Lyapunov-Krasovskii functional candidate.

Definition 2 (LKF): A functional V : X n→R≥0 is called
a Lyapunov-Krasovskii functional candidate (LKF) if it is
Lipschitz on bounded sets and, for some α,α ∈K∞,

α(|φ(0)|)≤V (φ)≤ α(‖φ‖), ∀φ ∈X n. (2)

It is called coercive if, in addition,

α(‖φ‖)≤V (φ)≤ α(‖φ‖), ∀φ ∈X n. (3)

We may consider different types of dissipation of such a
LKF along the system’s solutions.

Definition 3 (Point-wise/LKF-wise ISS LKF): A LKF V :
X n→ R≥0 is said to be:
• an ISS LKF with LKF-wise dissipation if there exist

α,γ ∈K∞ such that, for all φ ∈X n and all v ∈ Rm,

D+V (φ , f (φ ,v))≤−α(V (φ))+ γ(|v|). (4)

• an ISS LKF with point-wise dissipation if there exist
α,γ ∈K∞ such that, for all φ ∈X n and all v ∈ Rm,

D+V (φ , f (φ ,v))≤−α(|φ(0)|)+ γ(|v|). (5)

It is known since [9] that ISS is equivalent to the existence
of an ISS LKF with LKF-wise dissipation. Due to (2), it can
easily be seen that a point-wise dissipation is less restrictive
than a LKF-wise one, as it requires negativity only in the
current value of the solution’s norm. This feature is appealing
in practice, as it is often easier to get such a negativity rather
than imposing negativity in terms of the whole LKF as in
(4). It has been conjectured in [4] that the existence of an
ISS LKF with point-wise dissipation is enough to conclude
ISS. However, this conjecture has not yet been proved or
disproved in its full generality.

III. THE EXPONENTIAL TRICK

A. When it works

A classical way to obtain a LKF-wise dissipation based
on a point-wise one can be referred to as the “exponential
trick”, which is particularly useful for LKFs of the form

W (φ) := w1(φ(0))+
∫ 0

−∆

w2(φ(τ))dτ, ∀φ ∈X n, (6)

where w1,w2 ∈C1(Rn,R≥0) are positive definite and radially
unbounded functions. This class of LKFs is widely used in

the TDS literature, but often fails at guaranteeing a LKF-wise
dissipation: only a point-wise dissipation is usually obtained.
In order to obtain a LKF-wise dissipation, the “exponential
trick” consists in adding an exponential term within the
integral, namely to consider the alternative LKF

W̃ (φ) := w1(φ(0))+k
∫ 0

−∆

ecτ w2(φ(τ))dτ, ∀φ ∈X n, (7)

for some k,c> 0. In [16, Lemma 1], it was shown that, in the
case where w1,w2 are quadratic functions and the dissipation
rate is itself quadratic, the fact that W is an ISS LKF with
point-wise dissipation ensures that W̃ is an ISS LKF with
LKF-wise dissipation for suitably chosen constants k and c.
The following proposition, proved in Section VI-A, shows
that this method actually works for a wider class of LKFs.

Proposition 1 (Exponential trick): Consider the LKF W
defined in (6) for some continuously differentiable, positive
definite and radially unbounded functions w1,w2 :Rn→R≥0.
Assume that there exist α,γ ∈K∞ such that W satisfies the
point-wise dissipation estimate (5) for all φ ∈X n and all
v ∈ Rm. If there exists p > 0 such that

α(|x|)≥ pw2(x), ∀x ∈ Rn, (8)

then there exist k,c > 0 such that the functional W̃ in (7) is
an ISS LKF with LKF-wise dissipation, and (1) is ISS.

Condition (8) imposes that the dissipation rate α somehow
dominates the term under the integral sign in W . In the
case when both these functions are quadratic, this additional
condition is immediately fulfilled, meaning that Proposition
1 encompasses [16, Lemma 1] as a particular case.

B. When it does not work

In view of the success of this method, a natural question
is whether the “exponential trick” constitutes a systematic
way to contruct a LKF-wise dissipation based on a point-
wise one. The following example gives a negative answer. It
provides an LKF of the form (6) with point-wise dissipation
for which, no matter how we select the constants k and c, the
corresponding LKF (7) does not dissipate LKF-wise. As we
will see, the considered one-dimensional time-delay system
turns out to be ISS. The proof is given in Section VI-B.

Proposition 2 (Limitation on the exponential trick):
Consider the scalar TDS

ẋ(t) =−x(t)− x(t)
1+ x(t)2 +

x(t−1)4

1+ |x(t)|3
+

u(t)
1+ x(t)2 , (9)

and the LKF W defined as

W (φ) :=
φ(0)4

4
+
∫ 0

−1
φ(τ)4dτ, ∀φ ∈X n, (10)

meaning (6) with w1(z) := z4/4 and w2(z) := z4 for all z∈R.
Then we have the following:

i) the TDS (9) is ISS
ii) the LKF W is an ISS LKF with point-wise dissipation

iii) given any k,c > 0, the corresponding LKF W̃ (as in
(7)) is not an ISS LKF with LKF-wise dissipation.
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IV. ISS FROM A POINT-WISE DISSIPATION

Motivated by the above limitation of the “exponential
trick”, our objective here is to provide alternative ways to en-
sure ISS based on a point-wise dissipation. Our main result,
proved in Section VI-C, provides a growth rate condition,
linking the point-wise dissipation rate to its maximal increase
along the system’s solutions, under which ISS indeed holds.

Theorem 1 (ISS under point-wise dissipation): Assume
that there exist a functional V : X n → R≥0, Lipschitz
on bounded sets and satisfying V (0) = 0, α,γ ∈ K∞ and
Q ∈ C1(Rn,R≥0) positive definite and radially unbounded
such that, for all φ ∈X n and all v ∈ Rm,

D+V (φ , f (φ ,v))≤−α(Q(φ(0)))+ γ(|v|). (11)

Assume further that there exists σ ∈K∞ such that, for all
φ ∈X n and all v ∈ Rm,

∇Q(φ(0)) f (φ ,v)≤ σ

(
max

τ∈[−∆,0]
Q(φ(τ))

)
+ γ(|v|). (12)

Then the TDS (1) is ISS provided that

liminf
s→+∞

α(s)
σ(se∆)

> 0. (13)

Theorem 1 generalizes the exp-ISS result given in [2,
Theorem 3], which focuses on the case when Q is quadractic
and α and σ are both linear. Note that V is not required here
to be a LKF, as no specific bounds on V are imposed. The
left-hand side of (12) corresponds to the derivative of the
function Q along the solutions of (1). The function σ thus
provides an estimate on the maximal increase of Q along the
system’s solutions. Per se, it constitutes a mild requirement
but, according to the growth condition (13), this function σ

has to be dominated by the dissipation rate α at infinity.
Since Q is a function of φ(0) only, the dissipation inequal-

ity (11) indeed corresponds to a point-wise dissipation. But
this appears more clearly in the following statement, which
provides a growth condition that no longer depends on the
maximal delay ∆: see [12] for the proof.

Corollary 1 (Delay-free condition): Assume that there
exist a functional V : X n→R≥0, Lipschitz on bounded sets
with V (0) = 0, γ ∈ K∞ and a continuously differentiable
α ∈K∞ such that, for all φ ∈X n and all v ∈ Rm,

D+V (φ , f (φ ,v))≤−α(|φ(0)|)+ γ(|v|). (14)

Assume further that there exists a function σ ∈K∞ such that,
for all φ ∈X n with φ(0) 6= 0 and all v ∈ Rm,

∇Q(φ(0)) f (φ ,v)≤ σ(‖φ‖)+ γ(|v|), (15)

with Q(·) := α(| · |). Then the TDS (1) is ISS provided that

liminf
s→+∞

α(s)
σ(s)

> 0. (16)

The proofs of Theorem 1 and Corollary 1 are constructive,
in the sense that we explicitly build an ISS LKF with LKF-
wise dissipation. In addition, the constructed LKF turns
out to be coercive, which might constitute an additional

interesting feature. The proof relies on the following result,
established in [8, Lemma 6.7] and recalled in [3, Lemma 2],
which was already the cornerstone of [2].

Lemma 1: Given any Q∈C1(Rn,R≥0) and any c > 0, the
functional V : X n→ R≥0 defined as

V (φ) := max
τ∈[−∆,0]

Q(φ(τ))ecτ , ∀φ ∈X n,

is Lipschitz on bounded sets and, given any φ ∈X n and any
w ∈ Rn, V̇ := D+V (φ ,w) satisfies

Q(φ(0))<V (φ) ⇒ V̇ ≤−cV (φ)

Q(φ(0)) =V (φ) ⇒ V̇ ≤max{−cV (φ),∇Q(φ(0))w}.

V. ILLUSTRATIVE EXAMPLES

The following example illustrates the applicability of
Theorem 1 and Proposition 1, and underlines their novelty
with respect to [2, Theorem 3] and [16, Lemma 1].

Example 1: Consider the scalar TDS

ẋ(t) =−2x(t)3 + x(t)x(t−∆)2 + x(t)u(t). (17)

By letting f (φ ,v) :=−2φ(0)3 +φ(0)φ(−∆)2 +φ(0)v for all
φ ∈X and all v∈R, and considering the LKF W defined in
(6) with w1(z) := z2 and w2(z) := z4 for all z ∈ R, we have:

D+W (φ , f (φ ,v))

=−3φ(0)4 +2φ(0)2
φ(−∆)2 +2φ(0)2v−φ(−∆)4

≤−3φ(0)4 +φ(0)4 +φ(−∆)4 +φ(0)4 + v2−φ(−∆)4

≤−φ(0)4 + v2

≤−α(Q(φ(0)))+ γ(|v|),

where α(s)= γ(s) := s2 for all s≥ 0 and Q(z) := z2 for all z∈
R. Clearly, W is not an ISS LKF with LKF-wise dissipation,
yet it is indeed an ISS LKF with point-wise dissipation. We
can apply Theorem 1 to establish ISS by noticing that

∇Q(φ(0)) f (φ ,v) =−4φ(0)4 +2φ(0)2
φ(−∆)2 +2φ(0)2v

≤−4φ(0)4 +φ(0)4 +φ(−∆)4 +φ(0)4 + v2

≤ σ

(
max

τ∈[−∆,0]
Q(φ(τ))

)
+ γ(|v|),

with σ(s) := s2. With these functions, it holds that
lims→+∞

α(s)
σ(se∆)

= e−2∆ > 0, making the growth condition (13)
fulfilled. Thus, by Theorem 1, the system (17) is ISS. Notice
that this system is not exponentially ISS, meaning that [2,
Theorem 3] cannot be applied. To see this more clearly,
exponential ISS would imply that the input-free system
ẋ(t) =−2x(t)3+x(t)x(t−∆) is globally exponentially stable.
However, considering the initial state defined as x0(t) = a for
all t ∈ [−∆,0] for some a > 0, it can be seen that x(t) ≥ 0
for all t ≥ 0 (since ẋ(t) = 0 whenever x(t) = 0) and therefore
ẋ(t)≥−2x(t)3. Invoking the comparison lemma, we see that
x(·) does not converge exponentially to zero. Another way
to see this is to rely on [3, Theorem 10] by noticing that the
Fréchet derivative of the vector field vanishes at zero.
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It is fair to note that the “exponential trick”, as formalized
in Proposition 1, can also be used to conclude ISS for this
system, by noticing that α(Q(z)) = w2(z), which makes (8)
fulfilled. Nevertheless, [16, Lemma 1] cannot be invoked
here as w2 is not a quadratic function. 4

Existing works, including [4, Theorem 8], have already
provided sufficient conditions under which the existence
of an ISS LKF with point-wise dissipation is enough to
conclude ISS. The next example shows that our main results
apply to a wider class of systems.

Example 2: Consider the bi-dimensional TDS

ẋ1(t) =−2x1(t)+ x2(t−∆)3 + x2(t)3 +u(t) (18a)

ẋ2(t) =−x2(t)− x2(t)9− x1(t)3. (18b)

Let W be the LKF defined in (6) with w1(z) := 1
4 (z

4
1 + z4

2)
and w2(z) := z12

2 for all z = (z1,z2) ∈ R2, namely:

W (φ) =
1
4

φ1(0)4 +
1
4

φ2(0)4 +
∫ 0

−∆

φ2(τ)
12dτ. (19)

By letting f (φ ,v) := (−2φ1(0) + φ2(−∆)3 + φ2(0)3 +
v,−φ2(0)− φ2(0)9 − φ1(0)3)> for all φ = (φ1,φ2)

> ∈ X 2

and all v ∈R, and Ẇ := D+W (φ , f (φ ,v)) for short, we have

Ẇ =−2φ1(0)4 +φ1(0)3
φ2(−∆)3 +φ1(0)3

φ2(0)3 +φ1(0)3v

−φ2(0)4−φ2(0)12−φ2(0)3
φ1(0)3 +φ2(0)12−φ2(−∆)12.

(20)

Using Young’s inequality, it follows that

Ẇ ≤ −2φ1(0)4 +
3
4

φ1(0)4 +
1
4

φ2(−∆)12 +
3
4

φ1(0)4 +
v4

4
−φ2(0)4−φ2(−∆)12

≤ −α(Q(φ(0)))+ γ(|v|), (21)

where α(s) := s2/2, γ(s) = s2/2 + s4/4 for all s ≥ 0
and Q(z) = |z|2/2 for all z ∈ R2. Moreover, letting Q̇ :=
∇Q(φ(0)) f (φ ,v) for compactness, it holds that

Q̇ = −2φ1(0)2 +φ1(0)φ2(−∆)3 +φ1(0)φ2(0)3 +φ1(0)v

−φ2(0)2−φ2(0)10−φ2(0)φ1(0)3

≤ −2φ1(0)2 +
1
4

φ1(0)4 +
3
4

φ2(−∆)4 +
1
4

φ1(0)4 +
3
4

φ2(0)4

+
1
2
(φ1(0)2 + v2)+

1
4

φ2(0)4 +
3
4

φ1(0)4

≤ 5
4
(φ1(0)4 +φ2(0)4 +φ2(−∆)4)+

v2

2

≤σ

(
max

τ∈[−∆,0]
Q(φ(τ))

)
+ γ(|v|),

where σ(s) := 10s2. Thus, liminf
s→+∞

α(s)/σ(e∆s) = e−2∆/20 >

0 and the growth condition (13) is fulfilled. Combining this
with (21), we conclude with Theorem 1 that (18) is ISS.

It turns out that the LKF W cannot be used to conclude
ISS of system (18) using [4, Theorem 8]. Indeed, for any
φ ∈X 2, it holds from (19) that

1
8
|φ(0)|4 ≤W (φ)≤ 1

4
|φ(0)|4 +

∫ 0

−∆

α1(|φ(τ)|)dτ

with α1(s) = s12 for all s ≥ 0 and any such upper bound
would involve a function α1 under the integral sign which is
at least of order s12 at infinity. As pointed out in [3, Theorem
25], a necessary condition to apply [4, Theorem 8] is to have

liminf
s→+∞

α(s)
α1(s)

> 0. (22)

But, in view of (20), we see that this is not possible as α(s)
is at most of order s4. To see this more clearly, consider v= 0
and any ϕ = (ϕ1,ϕ2)

> ∈X 2 satisfying ϕ2(−∆) = ϕ1(0)1/3.
Then it holds from (20) that Ẇ = −2ϕ1(0)4 − ϕ2(0)4 ≥
−2|ϕ(0)|4. Since ϕ1(0) and ϕ2(0) are arbitrary, this shows
that any ISS point-wise dissipation rate indeed necessarily
satisfies α(s)≤ 2s4 for all s≥ 0, which in turn violates (22)
and makes [4, Theorem 8] inapplicable. 4

VI. PROOFS

A. Proof of Proposition 1

For brevity, given φ ∈ X n and v ∈ Rm, we let Ẇ :=
D+W (φ , f (φ ,v)) and ˙̃W := D+W̃ (φ , f (φ ,v)). Proceeding as
in [3, Example 1], the Driver derivative of W and W̃ along
the solutions of (1) reads, for all φ ∈X n and all v ∈ Rm,

Ẇ =∇w1(φ(0)) f +w2(φ(0))−w2(φ(−∆)),

˙̃W =∇w1(φ(0)) f + kw2(φ(0))− ke−∆cw2(φ(−∆))−I (φ),

where I (φ) := kc
∫ 0
−∆

ecτ w2(φ(τ))dτ and some arguments
were omitted. Combining these two expressions, we get that
˙̃W = Ẇ − (1− k)w2(φ(0))− (ke−∆c− 1)w2(φ(−∆))−I (φ).

Using the point-wise dissipation estimate (5), it follows that

˙̃W ≤ −α(|φ(0)|)− (1− k)w2(φ(0))

− (ke−∆c−1)w2(φ(−∆))−I (φ)+ γ(|v|).

Using condition (8), we obtain that ˙̃W ≤
−(p+1− k)w2(φ(0)) − (ke−∆c − 1)w2(φ(−∆))−I (φ) +
γ(|v|). Consider any c > 0 such that e∆c < 1+ p. Then, for
any k ∈ (e∆c,1 + p), we have that p := p + 1 − k > 0
and ke−∆c − 1 > 0. Consequently, it holds that
˙̃W ≤ −pw2(φ(0))−I (φ) + γ(|v|). As w1 and w2 are

positive definite and radially unbounded, there exists
α0 ∈K∞ such that w2(·)≥ α0(w1(·)). Hence

˙̃W ≤−pα0(w1(φ(0)))−I (φ)+ γ(|v|)

≤−α0(w1(φ(0)))−α0

(
k
∫ 0

−∆

ecτ w2(φ(τ))dτ

)
+ γ(|v|),

where α0(s) := min{pα0(s),cs}. Since α0 ∈ K∞, [10,
Lemma 9] ensures that α0(2r)+α0(2s) ≥ α0(r+ s) for all
r,s ≥ 0. Thus, we get from (7) that ˙̃W ≤ −α0(W̃ (φ)/2)+
γ(|v|), meaning that W̃ is indeed an ISS LKF with LKF-
wise dissipation. ISS then follows from [18, Theorem 3.4].

B. Proof of Proposition 2

For all φ ∈X and all v ∈ R, let

f (φ ,v) :=−φ(0)− φ(0)
1+φ(0)2 +

φ(−1)4

1+ |φ(0)|3
+

v
1+φ(0)2 .
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Then f is Lipschitz on bounded sets and satisfies f (0,0) = 0.
We proceed to the proof of the three items of the statement.

i) System (9) is ISS. We rely on the Razumikhin approach
for ISS, as recalled in [3, Theorem 26]. To that aim, consider
the function V0 ∈C1(R,R≥0) defined as V0(z) := 1

4 z4, for all
z ∈ R. Then V0 is positive definite and radially unbounded
and, for all φ ∈X and all v ∈ R, it holds that

V̇0 := ∇V0(φ(0)) f (φ ,v)

= −φ(0)4− φ(0)4

1+φ(0)2 +
φ(0)3φ(−1)4

1+ |φ(0)|3
+

φ(0)3v
1+φ(0)2

≤ −φ(0)4
(

1+
1/4

1+φ(0)2

)
+φ(−1)4 +

v4/4
1+φ(0)2 . (23)

Let us define ρ ∈ K∞ by the inverse of the K∞ function
ρ−1 defined as ρ−1(s) := s

(
1+ 1/8

1+2
√

s

)
for all s ≥ 0. Let

us also consider the function γ ∈K∞ defined as γ(s) := s4,
for all s ≥ 0. By setting ‖V0(φ(·))‖ := max

τ∈[−∆,0]
V0(φ(τ)), the

following implications hold:

V0(φ(0))≥ ρ (‖V0(φ(·))‖) ⇒
φ(−1)4

4
≤ ρ

−1(V0(φ(0))
)

V0(φ(0))≥ γ(|v|) ⇒ v4 ≤V0(φ(0)).

For all φ ∈ X for which V0(φ(0)) ≥
max{ρ (‖V0(φ(·))‖) ,γ(|v|)}, it follows from (23) that

V̇0 ≤ −φ(0)4
(

1+
1/4

1+φ(0)2

)
+4ρ

−1(V0)+
V0/4

1+φ(0)2

≤ −φ(0)4
(

1+
1/4

1+φ(0)2

)
+φ(0)4

(
1+

1/8
1+φ(0)2

)
+

φ(0)4/16
1+φ(0)2 ≤−

φ(0)4/16
1+φ(0)2 .

Since ρ−1(s) > s, it also holds that ρ(s) < s for all s > 0.
ISS then follows from [3, Theorem 26] or [20, Theorem 1].

ii) W dissipates point-wisely. In view of (10), it holds that

D+W (φ , f (φ ,v))

=− φ(0)4

1+φ(0)2 −φ(−1)4
(

1− φ(0)3

1+ |φ(0)|3

)
+

vφ(0)3

1+φ(0)2

≤− φ(0)4

1+φ(0)2 +
1

1+φ(0)2

(
3
4

φ(0)4 +
1
4

v4
)

≤− φ(0)4

4(1+φ(0)2)
+

1
4

v4 ≤−α(|φ(0)|)+ γ(|v|),

where α(s) := s4/4(1+ s2) and γ(s) := s4/4 for all s ≥ 0.
Observing that α,γ ∈ K∞, we conclude that W is an ISS
LKF with point-wise dissipation.

iii) W̃ does not dissipate LKF-wisely. In the absence of an
input (meaning u≡ 0), the TDS (9) reads

ẋ(t) =−x(t)− x(t)
1+ x(t)2 +

x(t−1)4

1+ |x(t)|3
. (24)

The LKF W̃ resulting from the “exponential trick” is
W̃ (φ) := φ(0)4

4 + k
∫ 0
−1 ecτ φ(τ)4dτ , with k,c > 0. For all φ ∈

X , its derivative ˙̃W := D+W̃ (φ , f (φ ,0)) along (24) reads

˙̃W = −φ(0)4− φ(0)4

1+φ(0)2 +
φ(0)3φ(−1)4

1+ |φ(0)|3

+ kφ(0)4− ke−c
φ(−1)4− kc

∫ 0

−1
ecτ

φ(τ)4dτ

= −φ(0)4
(

1+
1

1+φ(0)2 − k
)

(25)

−φ(−1)4
(
−ke−c− φ(0)3

1+ |φ(0)|3

)
− kc

∫ 0

−1
ecτ

φ(τ)4dτ.

We see from this expression that k needs to be smaller than
1 to get the first term negative. In that case, for |φ(0)| large
enough, the second term becomes positive and cannot be
compensated by the third term if φ(·)4 happens to have
a small integral over [−1,0]. Hence, W̃ does not decrease
everywhere along the solutions of the input-free system, no
matter how k and c are chosen. This is the intuition behind
the proof, which is fully provided in [12].

C. Proof of Theorem 1

We will make use of the following observation, whose
proof is omitted due to space constraints.

Lemma 2: Let η ,µ ∈ K∞ be such that liminf
s→+∞

µ(s)
η(s) >

0. Then, there exists a positive definite, non-decreasing,
continuous and bounded function ω : R≥0→ R≥0 such that
ω(s)≤ µ(s)

η(s) for all s≥ 0.

Since V (0) = 0 and V is Lipschitz on bounded sets, it can
be checked that

V (φ)≤ α(‖φ‖), ∀φ ∈X n, (26)

for some α ∈ K∞. Consider the functional defined for all
φ ∈X n as V1(φ) := max

τ∈[−∆,0]
Q(φ(τ))eτ . Then V1 is Lipschitz

on bounded sets by Lemma 1 and

e−∆ ‖Q(φ(·))‖ ≤V1(φ)≤ ‖Q(φ(·))‖ , (27)

where ‖Q(φ(·))‖ := max
τ∈[−∆,0]

Q(φ(τ)). By (13) and Lemma

2, there exists a continuous, positive definite, nondecreasing
and bounded function ω0 such that

α(s)
2σ(e∆s)

≥ ω0(s), ∀s≥ 0. (28)

Let ω ∈K∞ be defined as ω(s) :=
∫ s

0 ω0(r)dr for all s≥ 0,
and define Ṽ : X n → R≥0 as Ṽ (φ) := V (φ) + ω(V1(φ)).
Since ω is continuously differentiable, Ṽ is Lipschitz on
bounded sets. By (26)-(27), we have that

ω

(
e−∆ ‖Q(φ(·))‖

)
≤ Ṽ (φ)≤ ᾱ(‖φ‖)+ω (‖Q(φ(·))‖) .

In addition, since Q is continuous, positive definite and radi-
ally unbounded, there exist α1,α2 ∈K∞ such that α1(|z|)≤
Q(z)≤α2(|z|) for all z∈Rn, which ensures in particular that

α1(‖φ‖)≤ ‖Q(φ(·))‖ ≤ α2(‖φ‖), ∀φ ∈X n. (29)
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Combining the two above bounds, we get that

ω

(
e−∆

α1(‖φ‖)
)
≤ Ṽ (φ)≤ ᾱ(‖φ‖)+ω (α2(‖φ‖)) . (30)

Thus, Ṽ is a coercive LKF. Using (11) and [7, Lemma 7],

˙̃V ≤−α(Q(φ(0)))+ γ(|v|)+ω0(V1)V̇1, (31)

where ˙̃V := D+Ṽ (φ , f (φ ,v)) and V̇1 := D+V1(φ , f (φ ,v)).
From Lemma 1, V1 satisfies

V1(φ)> Q(φ(0)) ⇒ V̇1 ≤−V1(φ) (32)

V1(φ) = Q(φ(0)) ⇒ V̇1 ≤max
{
−V1(φ), Q̇

}
, (33)

with Q̇ := ∇Q(φ(0)) f (φ ,v). Hence, we consider two cases.
Case 1: V1(φ)> Q(φ(0)). Then we have from (31) -(32) that

˙̃V ≤−α(Q(φ(0)))+ γ(|v|)−ω0(V1(φ))V1(φ)

≤−ω0(V1(φ))V1(φ)+ γ(|v|).

Using (27) and (29), it follows that

˙̃V ≤−ω0

(
e−∆ max

τ∈[−∆,0]
Q(φ(τ))

)
e−∆ max

τ∈[−∆,0]
Q(φ(τ))+ γ(|v|)

≤−ω0

(
e−∆

α1(‖φ‖)
)

e−∆
α1(‖φ‖)+ γ(|v|). (34)

Case 2: V1(φ) = Q(φ(0)). Then we have from (33) and (31):

˙̃V ≤−α(Q(φ(0)))+ γ(|v|+ω0(V1(φ))max{−V1(φ), Q̇}.

If −V1(φ)≥ Q̇ then, proceeding as in Case 1, we get that

˙̃V ≤−α(Q(φ(0)))+ γ(|v|)−ω0(V1(φ))V1(φ)

≤−ω0

(
e−∆

α1(‖φ‖)
)

e−∆
α1(‖φ‖)+ γ(|v|). (35)

On the other hand, if −V1(φ)< Q̇, we get from (12) that

˙̃V ≤ −α(Q(φ(0)))+ γ(|v|)+ω0(V1(φ))Q̇

≤ −α(V1(φ))+ω0(V1(φ))σ (‖Q(φ(·))‖)
+(ω0(V1(φ))+1)γ(|v|).

Since ω0 is bounded, there exists ω̄0 > 0 such that ω0(·)≤
ω̄0. Using also (27), we obtain that ˙̃V ≤ −α(V1(φ)) +
ω0(V1(φ))σ

(
e∆V1(φ)

)
+(ω̄0 + 1)γ(|v|). Using successively

(28), (27) and (29), it follows that

˙̃V ≤−1
2

α(V1(φ))+(ω̄0 +1)γ(|v|)

≤−1
2

α

(
e−∆ max

τ∈[−∆,0]
Q(φ(τ))

)
+(ω̄0 +1)γ(|v|)

≤−1
2

α

(
e−∆

α1(‖φ‖)
)
+(ω̄0 +1)γ(|v|). (36)

Combining (34), (35) and (36), we obtain that ˙̃V ≤
−α̃(‖φ‖) + γ̃(|v|), with the K∞ functions α̃(s) :=
min

{
ω0
(
e−∆α1(s)

)
e−∆α1(s), 1

2 α(e−∆α1(s))
}

and γ̃(s) :=
(ω̄0 + 1)γ(s). In view of (30), we finally get that ˙̃V ≤
−α̃ ◦ (ᾱ + ω ◦ α2)

−1(Ṽ (φ)) + γ̃(|v|), meaning that Ṽ is a
coercive ISS LKF with LKF-wise dissipation.
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