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Abstract— Linear quadratic games on very large dense net-
works can be modelled with discrete time linear quadratic
graphon field games with Q-noise. In such a game, each node
in the graph corresponds to an agent weakly connected via an
undirected network, with a correlated Brownian disturbance af-
fecting each agent. The limit of the finite-sized linear quadratic
network tracking game in discrete time is formulated, and it
is shown that under the proper assumptions, the game has a
graphon limit system with Q-noise. Then, the optimal control of
the discrete time system is found in closed-form and the Nash
equilibrium behavior of the game is numerically demonstrated.

I. INTRODUCTION

Large systems composed of interacting non-cooperative
agents arise in many applications such as cellular networks,
financial markets, and electrical networks. Modelling and
control of such systems can be difficult or intractable due
to their size and the complexity of their respective networks.

When the agents are uniform and their network completely
connected one can use Mean Field Game theory to find the
approximate system behavior by simulating a system with
an infinite number of agents and finding the distribution
of agents’ states under different control methods ( [1], [2],
[3]). Standard mean field games can be extended to games
on networks where each node has an infinite population of
players by the use of graphons ( [4], [5], [6]). Graphons
[7] are a limit object for graphs, allowing the adjacency
matrix of an infinitely large graph to be represented as an
L2([0, 1]) integral operator. Under the Graphon Mean Field
Games (GMFG) model each node in a network contains a
separate, infinite population interacting with the agents local
to their node uniformly and the agents in the network through
the graphon. As there are an infinite number of agents, the
actions of a single agent do not change the mean field.

In this work, a linear quadratic game on an infinitely
large dense graph is investigated where each node represents
a single agent, and where there is a correlated Gaussian
noise affecting the agents. A continuous time, deterministic
model with stochastic initial conditions for this type of
linear-quadratic game was investigated by Gao, Foguen-
Tchuendom, and Caines [8]. To distinguish this from the
infinite-agent-per-node GMFG model, this approach was
termed the Graphon Field Game model. As in the GMFG
model, the actions of any individual agent do not directly
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affect the field of the system. The Nash equilibria of such
a system requires the consistency of each agent’s chosen
actions with the field generated by each agent’s optimal
strategy, rather than the verification that no agent benefits
by deviating from their current strategy.

This work extends the work of Gao, Foguen-Tchuendom,
and Caines [8] by applying the Q-noise foundations of Dun-
yak and Caines [9] to discrete time systems. The expansion
of results to discrete time allows the Nash Equilibrium of the
game to be precisely simulated numerically. This model is
analogous to the limit behavior of a finite dimensional graph
system with a correlated Gaussian disturbance impacting
each node at each time step. It is demonstrated that the
discrete time linear quadratic Q-noise tracking game has an
adapted Nash equilibrium solution, and the behavior of the
equilibrium solution is shown numerically.

II. PRELIMINARIES

A. Notation

For any function f(·), f∗(·) denotes the adjoint of f .
Consider the set of bounded symmetric non-negative func-

tions Q : [0, 1]2 → R. The function Q serves as the
covariance of a stochastic process. The class of such func-
tions denoted Q consists of those for which the following
inequality is satisfied for every function f ∈ L2[0, 1],

0 ≤
∫ 1

0

∫ 1

0

Q(x, y)f∗(x)f(y)dxdy < ∞. (1)

For any f , g in the Hilbert space L2[0, 1], the inner product
is defined via the Lebesgue integral,

⟨f , g⟩ = f∗g =

∫ 1

0

f(x)g(x)dx. (2)

The linear integral operator using Q ∈ Q as a kernel acting
on a function f ∈ L2[0, 1] is defined by

(Qf)(x) =

∫ 1

0

Q(x, y)f(y)dy, ∀ x ∈ [0, 1]. (3)

The identity operator is denoted I.
This article focuses on systems on games where each

agent possesses a scalar state. The extension to vectors of
states is straightforward, though it may add some technical
considerations with regard to the commutation of operators.

B. Discrete Time Q-noise Processes

Discrete time Q-noise processes are L2([0, 1]) valued
random processes satisfying the following axioms (modified
from [9] for discrete time):
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1) Let Q ∈ Q, and let ([0, 1]×{0, 1, ..., T}×Ω,B([0, 1]×
{0, 1, ..., T} × Ω),P) be a probability space with
the measurable random variable gk(α, ω) : [0, 1] ×
{0, 1, ..., T} × Ω → R for all k ∈ {0, 1, ..., T}, α ∈
[0, 1], ω ∈ Ω. For notation, ω is suppressed when the
meaning is clear.

2) For all α ∈ [0, 1], gk(α) ∼ N (0,Q(α, α)).
3) For all α and β, E[gk(α)gk(β)] = Q(α, β).

An orthonormal basis example: Let {W 1
k ,W

2
k , · · · } be a

sequence of independent standard normal random variables
for each k ∈ {0, 1, ..., T}. Let Q ∈ Q have a diagonalizing
orthonormal basis {ϕr}∞r=1 with eigenvalues {λr}∞r=1. Then

gk(α, ω) =

∞∑
r=1

√
λrϕr(α)W

r
k (ω) (4)

is a discrete time Q-noise process. For general Gaussian
measures in function spaces, see e.g. [10].

III. PROBLEM STATEMENT

A. Discrete-time network system games

Consider a discrete time system on a graph GN =
(V N , EN ) where each node i represents an agent. The state
of agent i at time k (denoted xi

k with control ui
k) evolves

with the following stochastic difference equation:

xi
k+1 = (Axi

k +Bui
k +

1

N

N∑
j=1

MN
ij x

j
k) +W i

k (5)

where A,B ∈ R, MN is the weighted adjacency matrix of
GN , and {W i

k} is a collection of Gaussian disturbances with
covariance matrix QN for each k. Subject to the actions of all
other agents, each agent i minimizes the expected quadratic
cost function with respect to their information set F i

k,

J i(ui, u−i|{zik}Ni=1) = E

[
T∑

k=0

||xi
k − zik||2S + ||ui

k||2R
∣∣∣∣F i

k

]
,

(6)

where zik = 1
N

∑N
j=1 M

N
ij x

j
k, ||v||2S = v∗Sv for some S ∈

R, R ∈ R, S ≥ 0 and R > 0.
There exists a Nash Equilibrium of the game when no

agent can benefit by deviating from their current strategy. If
the optimal strategy tuple is {ui∗}Ni=1, this implies

J i(ui∗, u−i∗) ≤ J i(ui, u−i∗) ∀i ∈ {1, ..., N}. (7)

As the network size grows, the networked system adjacency
matrix MN approaches its associated graphon which is a
bounded measurable function mapping [0, 1]×[0, 1] → [0, 1],
denoted M (see [11], [7]). When the underlying graph is
undirected, its graphon is also symmetric. An example of this
network convergence is shown with the two finite networks
in Fig. 1 converging to the graphon limit (Fig. 2).

B. Graphon Field Tracking Games

By letting the size of the network approach infinity, each
agent in the system is associated with a point α on the unit

Fig. 1. Graphs of graphs with 50 and 500 nodes, respectively, where
their associated adjacency matrices converge to the graphon in Fig. 2 when
mapped to the unit square. Lower indexed nodes are more likely to be
connected than higher indexed nodes.

Fig. 2. The graph sequence shown in Fig. 1 converges to the graphon
W (α, β) = 1−max(α, β), α, β ∈ [0, 1].

interval. Define the discrete time Q-noise gα
k , α ∈ [0, 1], and

the resulting discrete time system evolves according to

xα
k+1 =(Axα

k +Buα
k +Dzα

k ) + gα
k , (8)

zα
k =

∫ 1

0

M(α, β)xβ
kdβ ∀ α ∈ [0, 1]. (9)

The local field for an agent designated by α refers to the
value zα

k found using the above integral.
The objective function for agent α has the limit

Jα(uα,x0) = E

[
T∑

k=0

||xα
k − zα

k ||2S + ||uα
k ||2R

∣∣∣∣Fα
k

]
. (10)

As with mean field games and graphon mean field games,
the graphon field term zα

k is asymptotically independent of
both the state xα

k and the action uα
k of any other single agent.

As with many mean-field game problems, this changes the
limit problem from a game to a tracking control problem
where each node in the network is penalized for deviating
from its associated graphon field.

IV. SOLUTION TO THE Q-NOISE GRAPHON FIELD GAME

The objective of agent α in the limit graphon field game
is to minimize the following functional,

Jα(uα,x0) = E

[
T∑

k=1

||xα
k − zα

k ||2S + ||uα
k ||2R

∣∣∣∣Fα
k

]
, (11)
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where
xα
k+1 = (Axα

k +Buα
k +Dzα

k ) + gα
k , (12)

and xk ∈ L2([0, 1]), zα
k =

∫ 1

0
M(α, β)xβ

kdβ, zk ∈
L2([0, 1]), T is an integer representing the terminal time
step, and uk is assumed to be adapted to the information
set Fk.

For the simplicity of notation of the following sections,
the filtration Fk will be omitted from the expectation, i.e.
Ek[·] := E[·|Fα

k ]. The game is solved in two steps, first by
formulating the response of an individual agent α ∈ [0, 1]
as a stochastic tracking problem, then by showing that the
individual actions of each agent generate a Nash equilibrium.

A. Solution to the Stochastic Control Tracking Problem
The first step is to solve the stochastic tracking problem,

where a given agent α is tracking an exogenous square-
integrable drift signal vk(α), α ∈ [0, 1]. The value function
is found using dynamic programming,

V α
k (Fα

k ) = E
[
||xα

k − vα
k ||2S + ||uα

k ||2R (13)

+ Vk+1(Fα
k+1)|Fα

k

]
,

V α
M (Fα

M ) = ||xα
k − vα

k ||2S . (14)

This work considers the case where all agents have the full-
information set Fk consisting of xη

k and vη
k for all η ∈ [0, 1].

For simplicity, the scalar case is analyzed, where xα
k , uα

k , and
vα
k are real scalar values for all α ∈ [0, 1].
Lemma 4.1: The value function of agent α at time k, V α

k ,
is given by

V α
k (xk) =Ek[(x

α
k )

∗Pk(x
α
k ) + 2(xα

k )
∗sαk +mα

k ], (15)
k = {0, ..., T},

where Pk is an positive scalar, and sk and mα
k are L2([0, 1])

valued functions for all k = {0, ..., T} derived from the
following backwards recurrence relations,

Fk =(R+B∗Pk+1B)−1B∗Pk+1A, (16)

Gk =(R+B∗Pk+1B)−1B∗Pk+1D, (17)

Hk =(R+B∗Pk+1B)−1B∗, (18)
Pk =S + F ∗

kRFk + (A−BFk)
∗Pk+1(A−BFk), (19)

sαk =− Svα
k + F ∗

kR(Gkv
α
k +HkEk[s

α
k+1]) (20)

+
1

2
(A−BFk)

∗Pk+1

·
[
(D −BHk)v

α
k −BHkEk[s

α
k+1]

]
+ (A−BFk)

∗Ek[s
α
k+1],

mα
k =vα∗

k Svα
k + (Gkv

α
k +HkEk[s

α
k+1])

∗R (21)
· (Gkv

α
k +HkEk[s

α
k+1])

+
[
(D −Gk)v

α
k −BHkEk[s

α
k+1]

]∗
Pk+1

·
[
(D −Gk)v

α
k −BHkEk[s

α
k+1]

]
+ 2

[
(D −Gk)v

α
k −BHkEk[s

α
k+1]

]
Ek[s

α
k+1]

+Q(α, α) + Ek[m
α
k+1],

with the terminal conditions

PT =S, (22)

sαT =− S · vα
T , (23)

mα
T =S · |vα

T |2. (24)

Further, the optimal control is given by

uo,α
k =− (R+B∗Pk+1B)−1B∗[Pk+1(Axα

k +Dvα
k ) (25)

+ Ek[s
α
k+1]]

=:− Fkx
α
k −Gkv

α
k −HkEk[s

α
k+1]. (26)

Proof : The proof follows from the ansatz 15. See A.
The value function above solves a general discrete-time

stochastic optimal control problem where an agent α tracks
an exogenous signal vα

k . The problem is intractable in
general as it requires the computation of the expectation of
the offset, Ek[s

α
k+1]. However, for the optimal strategy with

the value function V α
k to give a Nash equilibrium for the

overall game, at each time step k the chosen strategy must
generate the local field term z to be tracked, i.e. uo

k must
generate a trajectory satisfying zα

k = Mxα
k = vα

k for all
α. This is known as the consistency condition for the Nash
equilibrium in the limit game [8]. In the full state feedback
case, the consistency condition allows the expectation of the
offset sk to be explicitly calculated.

B. Nash Equilibrium Consistency Condition with Full State
Information

By definition, for each k, the local field zk is given by
zk = Mxk. As xk is square-integrable for each k when
generated by the optimal strategy uk and M is an L2[0, 1]
to L2[0, 1] operator, zk ∈ L2[0, 1]. For the game to yield
a Nash equilibrium, it is necessary for all agents to apply
their respective control uα

k generating the local field process
zα
k . To denote the function over the whole index set the

superscript α is omitted.
Lemma 4.2: Let the signal to be tracked be given by zk =

Mxk for time k. Let Γk and Ψk be L2([0, 1]) operators
which are defined by the backwards recursion equations

Ψk =− SI+ FkR(Gk +HkΨk+1Γk) (27)

+
1

2
(A−BFk)

∗Pk+1

[
(D −BHk)

−BΨk+1HkΓk

]
+ (A−BFk)

∗Ψk+1Γk,

Γk =(I+BHkMΨk+1)
−1[(A−BFk)I (28)

+ (D −BGk)M ]

with the terminal conditions

ΨT =− SI, (29)

ΓT−1 =(I− SBHT−1M)−1[(A−BFT−1)I (30)
+ (D −BGT−1)M ].

Assume that for all k = {0, ..., T − 1}, the inverse (I +
BHkMΨk+1)

−1 exists. Then,

Ek[zk+1] =Γkzk, (31)
sk =Ψkzk, (32)
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and the trajectory generated by

uk = −Fkxk − (GkI+HkΨk+1Γk)zk (33)

gives the optimal tracking trajectory for each α.
Proof: See B.

Combining Lemma A and B yields the Nash equilibrium
of the game.

Theorem 4.3: Given the limit graphon tracking game of
the type (11) for the family of systems (12), where each
agent α indexed by [0, 1] has the information pattern Fα

k =
{xk, zk}, the control strategy given in equations (27), (28),
and (33) yields a Nash equilibrium.

V. NUMERICAL SIMULATION

The behavior of the full information Nash equilibrium sys-
tem is demonstrated by simulating a large network averaging
game of N = 500 agents with a scalar state, where each
agent is given a position on the unit interval uniformly. Set
A = 0.5, B = 1, and D = 1. The connection strength of
the network is approximated by the graphon M(α, β) =
cos(π(α− β)), evaluated on the points of a uniform grid of
partition length 0.002. Set the initial state xα

0 = 1 for all
agents.

Set the state cost S = 2 and the control cost R = 1,
and the initial condition for all agents to be equal to one.
To investigate the impact of the Q-noise intensity, a system
generating a Nash equilibrium is tested where the covariance
of the disturbance is given by Q1(α, β) = 1 − max(α, β)
in Fig. 3, Q2(α, β) = (1 − max(α, β))/10 in Fig. 4, and
Q3(α, β) = (1−max(α, β))/100 in Fig. 5.

By decreasing the noise intensity, the general structure of
the Nash equilibrium can be seen. Without the field tracking
penalty, each agent would independently drive its state xα

k to
zero. The field tracking behavior modifies the rate at which
an agent drives their local state to zero. This behavior is
evident in Fig. 4-II and Fig. 5-II.

Once the local states of all agents are near the origin, the
dynamics are dominated by the noise. This is apparent in Fig.
3-III, as the random perturbations to the state of each agent
overshadow the agents’ control. The decreasing maximum
and minimum values of Fig. 4-III and Fig. 5-III confirm this
as the system is less impacted by the noise, and hence the
agents’ local state xα

k is closer to their field term zα
k at the

terminal time.

VI. FUTURE WORK

There are some immediate directions for future research.
First, the work should be extended to limit graphs embedded
in metric spaces using the embedded graph limit theory
developed in Caines [12]. This theory generalizes the concept
used implicitly in the numerical simulations above, where
each node in the graph is located uniformly at a point on the
unit interval. Embedded graph limit theory is a method for
describing graph limits that exist in geometric spaces more
general than the unit interval, for instance those where each
node is located in R2 or R3.

Fig. 3. I: the state trajectory of a single sample path of the graphon field
tracking game with Q = 1−max(α, β), compensating for the field term
using Lemma 4.1. II: the graphon field being tracked at Nash equilibrium.
III: the difference between the terminal state xk and the terminal field zk ,
k = 30. The error present in this image is primarily a result of the high
noise intensity in the system.

The impact of different forms of the Q-noise covariance on
the resulting tracking game should also be further developed.

This article considered Nash equilibria with full state
information. This will be expanded to other information sets,
such as those where each agent has only local information
and, hence, estimation of the status of the overall graphon
field may be of value.
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APPENDIX

A. Proof of Lemma 4.1

The dynamic programming principle is applied to find the
optimal control. From the terminal condition

V α
T (xk) = ||xα

T − vα
T ||2S . (34)

Then, PT = S, sαT = −Svα
T , and mα

T = ||vα
T ||2S .
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By the dynamic programming assumption,

V α
k (xk) = min

u
Ek

[
||xα

k − vα
k ||2S + ||u||2R + V α

k+1(xk+1)
]

(35)

=min
u

||xα
k − vα

k ||2S + ||u||2R + Ek[V
α
k+1(xk+1)] (36)

=min
u

||xα
k − vα

k ||2S + ||u||2R (37)

+ Ek[(x
α
k+1)

∗Pk+1(x
α
k+1) + 2(xα

k+1)
∗sαk+1

+mα
k+1]

=min
u

||xα
k − vα

k ||2S + ||u||2R (38)

+ Ek[(Axα
k +Buα

k +Dvα
k + gα

k )
∗Pk+1

· (Axα
k +Buα

k +Dvα
k + gα

k )]

+ 2Ek[Axα
k +Buα

k +Dvα
k + gα

k ]Ek[s
α
k+1]

+ Ek[m
α
k+1]

=min
u

||xα
k − vα

k ||2S + ||u||2R (39)

+ (Axα
k +Buα

k +Dvα
k )

∗Pk+1

· (Axα
k +Buα

k +Dvα
k ) +Q(α, α)

+ 2(Axα
k +Buα

k +Dvα
k )Ek[s

α
k+1] + Ek[m

α
k+1].

Note that the right-hand expression of (39) is differentiable
and convex in u, and hence the optimal control is

uo,α
k =− (R+B∗Pk+1B)−1B∗[Pk+1(Axα

k +Dvα
k ) (40)

+ Ek[s
α
k+1]]

=:− Fkx
α
k −Gkv

α
k −HkEk[s

α
k+1]. (41)

Applying the optimal control to the value function and re-
arranging terms gives equations (16–21) as required. □

B. Proof of Lemma 4.2

First, recall that by definition zk = Mxk, and hence when
applying the optimal control at time k = T − 1,

ET−1[zT ] = ET−1[MxT ] (42)
=ET−1[M(AxT−1 +BuT−1 +DzT−1 + gT−1)]]

(43)
=M [AxT−1 +B(−FT−1xT−1 (44)
−GT−1zT−1 −HT−1ET−1[sT ]) +DzT−1]

=M [(A−BFT−1)xT−1 + (D −BGT−1)zT−1 (45)
−BHT−1ET−1[sT ]]

=(A−BFT−1)MxT−1 (46)
+ (D −BGT−1)MzT−1 −BHT−1MET−1[sT ]

=(A−BFT−1)zT−1 + (D −BGT−1)MzT−1 (47)
−BHT−1MET−1[sT ].

Then, applying the terminal condition sT = −SzT ,

ET−1[zT ] = (A−BFT−1)zT−1 + (D −BGT−1)MzT−1

(48)
+BHT−1MET−1[SzT ]

ET−1[zT ]−BHT−1MET−1[SzT ] = (A−BFT−1)zT−1

(49)
+ (D −BGT−1)MzT−1.

Hence,

ET−1[zT ] =(I− SBHT−1M)−1[(A−BFT−1)I (50)
+ (D −BGT−1)M ]zT−1 (51)

=: ΓT−1zT−1. (52)

Observing this, make the following inductive hypothesis:

Ek[zk+1] =Γkzk, (53)
sk =Ψkzk, (54)

where Ψk and Γk are L2([0, 1]) operators for each k ∈
{0, ..., T}. Applying the inductive hypotheses to the expec-
tation of zk+1,

Ek[zk+1] = [(A−BFk)I+ (D −BGk)M ]zk (55)
−BHkMEk[sk+1]

= [(A−BFk)I+ (D −BGk)M ]zk (56)
−BHkMEk[Ψk+1zk+1]

= (I+BHkMΨk+1)
−1 (57)

· [(A−BFk)I+ (D −BGk)M ]zk

=: Γkzk, (58)

which shows equation (53). Applying the inductive hypothe-
ses to the recursion for sk,

sk =− Szk + F ∗
kR(Gkzk +HkEk[sk+1]) (59)

+
1

2
(A−BFk)

∗Pk+1

·
[
(D −BHk)zk −BHkEk[sk+1]

]
+ (A−BFk)

∗Ek[sk+1]

=− Szk + F ∗
kR(Gkzk +HkEk[Ψk+1zk+1]) (60)

+
1

2
(A−BFk)

∗Pk+1

[
(D −BHk)zk

−BHkEk[Ψk+1zk+1]
]

+ (A−BFk)
∗Ek[Ψk+1zk+1]

=− Szk + FkR(Gkzk +HkΨk+1Ek[zk+1]) (61)

+
1

2
(A−BFk)

∗Pk+1

[
(D −BHk)zk

−BΨk+1HkEk[zk+1]
]

+ (A−BFk)
∗Ψk+1Ek[zk+1]

=− Szk + FkR(Gkzk +HkΨk+1Γkzk) (62)

+
1

2
(A−BFk)

∗Pk+1

[
(D −BHk)zk

−BΨk+1HkΓkzk

]
+ (A−BFk)

∗Ψk+1Γkzk

=:Ψkzk. (63)

Then, the optimal control uo
k is given in

uo
k =− Fkxk −Gkzk −HkEk[sk+1] (64)
=− Fkxk −Gkzk −HkEk[Ψk+1zk+1] (65)
=− Fkxk − (GkI+HkΨk+1Γk)zk. (66)

□
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