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Abstract— In this paper, we consider the feedback represen-
tation of open-loop saddle points for irregular linear-quadratic
(LQ) two-person zero-sum games, where the control weighting
matrices in the cost functional are only semidefinite. The
existence of an open-loop saddle point is characterized by the
solvability of a system of constrained linear forward-backward
differential equations (FBDEs), together with a convexity-
concavity condition. In classical zero-sum games, the feedback
representation is obtained by decoupling the FBDEs through
the regular solution to a Riccati differential equation. But
the associated Riccati equation cannot be used to decouple
the FBDEs to obtain the feedback representation of open-loop
saddle points. The essential differences between regular and
irregular LQ zero-sum games are investigated. The irregular
feedback representation can be derived from two equilibrium
conditions in two different layers by using the “two-layer
optimization” approach.

I. INTRODUCTION

This paper is concerned with the solution to a class of sin-
gular two-person zero-sum linear quadratic (LQ) differential
games. Singular games have received sustained attention due
to the widely application, including pursuit-evasion games
[5], robust interception problems of maneuvering targets
[9], robust trajectory tracking problems [6], and robust
investment problems [7]. The zero-sum games has been
solved when the weighting matrices in the cost functional
related to the control of all players are definite. The main
approaches include the Isaacs MinMax principle [12] and
the Bellman–Isaacs equation method [13]. The open-loop
and closed-loop saddle points for two-person LQ games
are studied in [14], [15]. The existence of an open-loop
saddle point is characterized by the solvability of a system
of constrained linear forward-backward differential equations
(FBDEs), together with a convexity-concavity condition.
Since the weighting matrices in the cost functional related
to the control are definite, the associated Riccati equation
admits an unique solution such that the regular condition
holds. Thus the feedback representation of the open-loop
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saddle point can be derived from the equilibrium condition
by using the regular Riccati equation to decouple the FBDEs.
Due to the importance of the regularity, we call this case as
the regular two-person zero-sum game.

But in singular two-person zero-sum games, the regu-
lar condition does not hold even if the associated Riccati
equation admits solutions. The associated Riccati equation
cannot be used to decouple the FBDEs to obtain the feedback
representation of open-loop saddle points. This is the main
difficulty of singular games. In this paper we term this case
of singular zero-sum games as irregular zero-sum games.
Irregular two-person games have been extensively studied
in the literature by different approaches. The regularization
approach is used in [16]–[18]. The singular perturbation
technique is applied to transform the irregular game to a
new regular game with a partial cheap control. The saddle
point is obtained by using the limitation of the solution to
Riccati equation when the perturbation is approaching to
zero. The second approach is the “transformation in state
space” [8]. A regular differential game is obtained but an
initial impulse control must be applied. In [19], [20], the
higher-order optimality conditions are considered. However,
the higher-order optimality conditions do not provide a
candidate optimal control for the game, having no solution in
the class of regular functions. In summary, although irregular
games has been studied for more than 50 years, some fun-
damental problems still remain to be solved. The controllers
are not analytical or cannot be derived in L2(t0, T ;Rm),
where L2(t0, T ;Rm) is the space of the Rm-valued, square
integrable functions over (t0, T ). Recently, a new “two-layer
optimization” approach is proposed to solve the irregular LQ
optimal control problem in [1]–[3]. For any initial value, the
optimal controller can be derived in L2(t0, T ;Rm) in two
different layers without the initial impulse control. Thus the
controller is analytic and implementable.

In this paper, we study the irregular two-person zero-
sum LQ differential games. By variational analysis, the
existence of an open-loop saddle point is characterized by the
solvability of a system of FBDEs. Inspired by the irregular
optimal control, the “two-layer optimization” approach is
used to further tackle the FBDEs. A new system of FBDEs
characterizing the existence of open-loop saddle points is
obtained. The irregular zero-sum game admits open-loop
saddle points if and only if the new system of FBDEs is
controllable. Moreover, the feedback representation can be
divided into two parts designed in two different layers. The
first part of feedback representation can be derived from
a new equilibrium condition based on the solution to two
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Riccati equations in the first layer. The second part can
be obtained by solving a controllability problem for one
specific system in the second layer such that the final value
of the system is zero under the controller. Compared with the
existing works following the singular perturbation approach
[16]–[18] and the “transformation in state space” approach
[8], the designed controller can be derived in L2(t0, T ;Rm)
for arbitrary initial values. Therefore the controller is analytic
and implementable.

The remainder of this paper is organized as follows.
Section II introduces the irregular LQ two-person zero-sum
games. Section III reviews the standard LQ zero-sum games
and shows the difficulty of irregular zero-sum games. Section
IV presents the solution to the irregular zero-sum games.
A numerical example is given in Section V. Section VI
concludes this paper.

Through the paper, for a vector or matrix M , MT de-
notes its transpose, M† denotes its (Moore-Penrose) pseudo-
inverse, and R(M) denotes its range. We use 0n×m to denote
the n×m zero matrix , ∗n×m to denote the n×m non-zero
irrelevant term, and In to denote the n-dimensional identity
matrix.

II. PROBLEM FORMULATION

Consider a two-person zero-sum games where the linear
system is given by the following differential equation:{

ẋ(t) = A(t)x(t) +B1(t)u1(t) +B2(t)u2(t),

x(t0) = x0, t ∈ [t0, T ],
(1)

where x(t) ∈ Rn is the state of this system with the initial
state x0 at the initial time t0; for i = 1, 2, ui(t) ∈ Rmi is
the control of player Ai. We assume that A(·), B1(·), B2(·)
are deterministic matrix-valued functions with appropriate
dimensions. To measure the performance of the controls
u1(·) and u2(·), we introduce the following performance
functional:

JT (t0, x0;u1(·), u2(·))

=

∫ T

t0

[xT (t)Q(t)x(t) + uT
1 (t)R1(t)u1(t) (2)

+ uT
2 (t)R2(t)u2(t)]dt+ xT (T )Hx(T ),

where Q(t), R1(t) ≥ 0, R2(t) ≤ 0, H are deterministic
symmetric matrices with appropriate dimensions. We assume
that the performance functional (2) is a cost functional for
player A1 and a payoff functional for player A2. Therefore,
player A1 wishes to minimize (2) by selecting a control
process u1(·), while player A2 wishes to maximize (2)
by selecting a control process u2(·). The above described
problem is referred to as a LQ two-person zero-sum game.

For notational simplicity, we let m = m1+m2 and denote
B(·) ≜

[
B1(·) B2(·)

]
, and

u(·) ≜
[
u1(·)
u2(·)

]
, R(·) ≜

[
R1(·) 0m1×m2

0m2×m1
R2(·)

]
.

The associated Riccati equation for the state equation (1)
with the performance functional (2) is given by

0n×n = Ṗ (t) + P (t)A(t) +AT (t)P (t) +Q(t)

− P (t)B(t)R†(t)BT (t)P (t), P (T ) = H.
(3)

We introduce the following definitions.
Definition 1: The performance functional (2) is called

regular if the associated Riccati equation (3) admits solution
P (·) such that the regular condition

R(BT (t)P (t)) ⊆ R(R(t)). (4)

holds, otherwise it is called irregular if

R(BT (t)P (t)) ⊈ R(R(t)). (5)
Definition 2: For the system (1) with the performance

functional (2), a control pair (u∗
1(·), u∗

2(·)) is called a saddle
point for the initial pair (t0, x0) ∈ [0, T ]× Rn if

JT (t0, x0;u
∗
1(·), u2(·)) ≤ JT (t0, x0;u

∗
1(·), u∗

2(·))
≤ JT (t0, x0;u1(·), u∗

2(·)).
(6)

In this paper, we mainly study the following problem.
Problem 1 (P1): For the system (1) with the performance

functional (2) and any (t0, x0) ∈ [0, T ]× Rn, find an open-
loop saddle point (u∗

1(·), u∗
2(·)) such that (6) holds.

III. COMPARISON BETWEEN REGULAR AND IRREGULAR
ZERO-SUM GAMES

In this section, we will show that the difficulty of singular
games is caused by the so-called irregularity. By the vari-
ational method, we have the following results for Problem
(P1).

Lemma 1: Let x∗(·) be the state process under the con-
trols (u∗

1(·), u∗
2(·)). Then the pair (u∗

1(·), u∗
2(·)) is an open-

loop saddle point for the system (1) with the performance
functional (2) if and only if the following equilibrium con-
dition holds for t ∈ [t0, T ]:

0 =R(t)u∗(t) +BT (t)p∗(t), (7)

where (x∗(·), p∗(·)) is the solution to the following system
of FBDEs:

ẋ∗(t) =A(t)x∗(t) +B(t)u∗(t), x∗(t0) = x0, (8a)

ṗ∗(t) =−AT (t)p∗(t)−Q(t)x∗(t), p∗(T ) = Hx∗(T ), (8b)

and the following convexity-concavity condition holds:

JT (t0, 0;u1(·), 0) =
∫ T

t0

[
⟨Q(t)x1(t), x1(t)⟩

+ ⟨R1(t)u1(t), u1(t)⟩
]
dt+ ⟨Hx1(T ), x1(T )⟩ ≥ 0, (9a)

JT (t0, 0; 0, u2(·)) =
∫ T

t0

[
⟨Q(t)x2(t), x2(t)⟩

+ ⟨R2(t)u2(t), u2(t)⟩
]
dt+ ⟨Hx2(T ), x2(T )⟩ ≤ 0, (9b)

where xi(·) is the solution to the following differential
equation for i = 1, 2:

ẋi(t) = A(t)xi(t) +Bi(t)ui(t), xi(t0) = 0n×1. (10)
Proof. This result can be obtained directly from [14], [15].
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A. The review of regular zero-sum games

In regular two-person zero-sum games (R1(t) > 0 and
R2(t) < 0), the feedback representation can be analytically
derived from the equilibrium condition (7) by using the
Riccati equation (3). If we replace p∗(t) with P (t)x∗(t),
then the equilibrium condition (7) becomes

0 = R(t)u∗(t) +BT (t)P (t)x∗(t). (11)

Thus when the regular condition (4) holds, the linear equa-
tion (11) is solvable for any x∗(t) ∈ Rn, which implies
the optimization problem is solvable as well. The results of
feedback representation in the regular case are summarized
as follows.

Proposition 1: Assume the convexity-concavity condition
(9) holds. The Problem (P1) is solvable if the Riccati
equation (3) admits solution P (t) on t ∈ [t0, T ] such that the
regular condition (4) holds. In this case, the state-feedback
representation of saddle points u∗(·) is given by

u∗(t) = −R†(t)BT (t)P (t)x∗(t). (12)

The value function is given by

J∗
T (t0, x0;u

∗
1, u

∗
2) = xT

0 P (t0)x0. (13)
Proof. This result can be obtained directly from [14].
The convexity-concavity condition can be checked by

Riccati equations with regular conditions.
Proposition 2: The convexity-concavity condition (9)

holds if the following Riccati equations

0n×n =Π̇1(t) + Π1(t)A(t) +AT (t)Π1(t) +Q(t) (14a)

−Π1(t)B1(t)R
†
1(t)B

T
1 (t)Π1(t), Π1(T ) = H,

0n×n =Π̇2(t) + Π2(t)A(t) +AT (t)Π2(t)−Q(t) (14b)

+Π2(t)B2(t)R
†
2(t)B

T
2 (t)Π2(t), Π2(T ) = −H,

admit solutions Π1(·),Π2(·) such that the following regular
conditions hold:

[I −R1(t)R
†
1(t)]B

T
1 (t)Π1(t) = 0m1×n, (15a)

[I −R2(t)R
†
2(t)]B

T
2 (t)Π2(t) = 0m2×n. (15b)

Proof. This result can be obtained directly from [15].

B. The difficulty of irregular two-person zero-sum games

But in the singular case, the regular condition (4) may
not be true. Conversely, when the regular condition dose not
holds, i.e., (5) holds, the linear equation (11) is unsolvable for
arbitrary x(·). This case of (5) is termed as irregular games.
This inspires us to study the irregular zero-sum games.

IV. THE COMPLETE SOLUTION TO PROBLEM (P1)

In this section we seek the solution to the two-person
zero-sum game with irregular performance. The performance
is irregular, namely R(BT (t)P (t)) ⊈ R(R(t)). Without
loss of generality, let rank(R1(t)) = m̄1(t) < m1 and
rank(R2(t)) = m̄2(t) < m2. Thus rank(I−R†

1(t)R1(t)) =
m̃1 = m1 − m̄1 > 0 and rank(I − R†

2(t)R2(t)) = m̃2 =
m2− m̄2 > 0. Let m̃ = m̃1+ m̃2. There are two elementary

row transformation matrices T1(t) ∈ Rm1×m1 and T2(t) ∈
Rm2×m2 such that

T1(t)[I −R†
1(t)R1(t)] =

[
0m̄1×m1

ΥT1
(t)

]
,

T2(t)[I −R†
2(t)R2(t)] =

[
0m̄2×m2

ΥT2(t)

]
,

(16)

where ΥT1
(t) ∈ Rm̃1×m1 and ΥT2

(t) ∈ Rm̃2×m2 are full
row rank. Or equivalently, there is also an elementary row
transformation matrix

T0(t) ≜

[
T1(t) 0m1×m2

0m2×m1
T2(t)

]
(17)

such that

T0(t)[I −R†(t)R(t)] =


0m̄1×m1

0m̄1×m2

ΥT1
(t) 0m̃1×m2

0m̄2×m1 0m̄2×m2

0m̃2×m1 ΥT2(t)

 . (18)

In addition, let[
∗n×m̄1

CT
1 (t) ∗n×m̄2

CT
2 (t)

]
≜ P (t)B(t)[I −R†(t)R(t)]T−1

0 (t),[
∗n×m̄1 B̄1(t) ∗n×m̄2 B̄2(t)

]
≜ B(t)[I −R†(t)R(t)]T−1

0 (t),

A0(t) ≜ A(t)−B(t)R†(t)BT (t)P (t),

D0(t) ≜ −B(t)R†(t)BT (t),

T−1
0 (t) ≜

[
∗m1×m̄1

G1(t) 0m1×m̄2
0m1×m̃2

0m2×m̄1
0m2×m̃1

∗m2×m̄1
G2(t)

]
,

G0(t) ≜

[
G1(t) 0m1×m̃2

0m2×m̃1 G2(t)

]
,

B0(t) ≜
[
B̄1(t) B̄2(t)

]
,

CT
0 (t) ≜

[
CT

1 (t) CT
2 (t)

]
,

ΥT0 ≜

[
ΥT1 0m̃1×m̃2

0m̃2×m̃1 ΥT2

]
,

and define

0n×n = Ṗ1(t)+P1(t)A0(t)+AT
0 (t)P1(t)+P1(t)D0(t)P1(t),

(20)
where the terminal value P1(T ) is to be determined.

We are now in the position to give the main results of this
section as follows.

Lemma 2: Assume the Riccati equation (3) admits solu-
tion P (t) on t ∈ [t0, T ] such that the condition (5) holds
and the convexity-concavity condition (9) holds. Problem
(P1) is solvable if and only if there exists a pair ū(t) ≜
(ūT

1 (t), ū
T
2 (t))

T ∈ Rm̃1 × Rm̃2 such that

0 = C0(t)x
∗(t) +BT

0 (t)∆
∗(t), ∆∗(T ) = 0n×1, (21)

where ū(t), x∗(t), and ∆∗(t) satisfy the FBDEs

ẋ∗(t) =A0(t)x
∗(t) +D0(t)∆

∗(t) +B0(t)ū(t), (22a)

∆̇∗(t) =−AT
0 (t)∆

∗(t)− CT
0 (t)ū(t). (22b)

Proof. The proof is given in Appendix A.
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Next we decouple the FBDEs (22) to obtain the feedback
representation in the irregular case.

Theorem 1: Assume the convexity-concavity condition
(9) holds and the Riccati equation (3) admits solution P (t)
on t ∈ [t0, T ] such that the condition (5) holds. Problem (P1)
is solvable if there exists a P1(t) in (20) with terminal value
P1(T ) such that

0 = C0(t) +BT
0 (t)P1(t), t0 ≤ t ≤ T, (23)

and a ū(t) that achieves

P1(T )x
∗(T ) = 0, (24)

where x∗(t) obeys

ẋ∗(t) = [A0(t)+D0(t)P1(t)]x
∗(t)+B0(t)ū(t), x

∗(t0) = x0.
(25)

In this case, the feedback representation u∗(·) is given by

u∗(t) =−R†(t)BT (t)[P (t)+P1(t)]x
∗(t)+G0(t)ū(t).

(26)
Proof. The proof is given in Appendix B.
Based on the above discussion, the sufficient condition for

the solvability of Problem (P1) is given as follows.
Theorem 2: Assume the convexity-concavity condition

(9) holds. Problem (P1) is solvable if there exists matrices
P (t) and P1(t) satisfying 0 = BT

0 (T )[P (T ) + P1(T )] such
that the following changed performance functional

J̄T (t0, x0;u1, u2) = JT (t0, x0;u1, u2) + xT (T )P1(T )x(T )
(27)

is regular and P1(T )x(T ) = 0 is achieved with the saddle
point for the performance functional (27). In this case, the
value function is given by

J∗
T (t0, x0;u

∗
1, u

∗
2) = xT

0 [P (t0) + P1(t0)]x0. (28)
Proof. The proof is given in Appendix C.

At this time, the controller has not yet been fully explic-
itly given and a new problem about the controllability of
P1(T )x(T ) appears, i.e., find ū(·) to make P1(T )x

∗(T ) =
0n×1, where P1(·)x∗(·) satisfies

d

dt
P1(t)x

∗(t) =−AT
0 (t)P1(t)x

∗(t)− CT
0 (t)ū(t). (29)

Below, we study the controllability problem and give the
complete solution of Problem (P1).

Theorem 3: Given condition (5), Problem (P1) admits
open-loop saddle point if there exists a P1(t) in (20) such
that (23) holds and

R(P1(t0)) ⊆ R(G1[t0, T ]), (30)

where the Gramian matrix G1[t0, T ] is defined by

G1[t0, T ] ≜
∫ T

t0

Φ(t0, t)C
T
0 (t)C0(t)Φ

T (t0, t)dt (31)

and Φ(t0, t) satisfies

Φ̇(t, s) = −AT
0 (t)Φ(t, s), Φ(t, t) = I. (32)

In this case, the open-loop solution is given by (26) with

ū(t) = C0(t)Φ
T (t0, t)G

†
1[t0, T ]P1(t0)x0. (33)

Proof. See Theorem 3 in [1].

V. A NUMERICAL EXAMPLE

In this section, we give the following example to show the
efficiency of the results in this paper.
Example 1. Consider the system

ẋ(t) =
[
1 1

]
u1(t) + u2(t), x(0) = 1, (34)

with the performance functional

J 1
2
(0, 1;u1, u2)

=

∫ 1
2

0

{
uT
1 (t)

[
1
2 0
0 0

]
u1(t)− |u2(t)|2

}
dt+ |x(1

2
)|2.

(35)

The convexity-concavity condition for this zero-sum game is

J 1
2
(0, 0;u1(·), 02×1) =

∫ 1
2

0

uT
1 (t)

[
1
2 0
0 0

]
u1(t)dt (36a)

+ |x1(
1

2
)|2,

J 1
2
(0, 0; 02×1, u2(·)) =−

∫ 1
2

0

|u2(t)|2dt+ |x2(
1

2
)|2.

(36b)

The convexity condition J 1
2
(0, 0;u1(·), 0) ≥ 0 for

any u1(·). Next we show the concavity condition
J 1

2
(0, 0; 02×1, u2(·)) ≤ 0. Consider the following Riccati

equation

Π̇(t)−Π2(t) = 0, Π(
1

2
) = −1. (37)

The solution to the above Riccati equation is

Π(t) = − 2

2t+ 1
, 0 ≤ t ≤ 1

2
. (38)

Thus the regular condition R(Π(t)) ⊆ R(−1) holds.
It follows by Proposition 2 that the concavity condition
J 1

2
(0, 0; 02×1, u2(·)) ≤ 0. Thus the convexity-concavity

condition (36) holds. The zero-sum game admits open-loop
saddle points. The open-loop saddle points can be derived
from the equilibrium condition

0 =

[
1
2

0 0
0 0 0
0 0 −1

]
u∗(t) +

[
1
1
1

]
p∗(t), (39)

where (x∗(·), p∗(·)) is the solution to the following system
of FBDEs:

ẋ∗(t) =
[
1 1 1

]
u∗(t), x∗(0) = 1, (40a)

ṗ∗(t) = 0, p∗(T ) = x∗(T ). (40b)

The Riccati equation for the system (34) with the perfor-
mance functional (35) is given as follows.

Ṗ (t)− P 2(t) = 0, P (
1

2
) = 1. (41)

The solution to the above Riccati equation is

P (t) = − 2

2t− 3
, 0 ≤ t ≤ 1

2
. (42)

The curves of P (·) is shown in Fig. 1. Then, it holds that
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Fig. 1. The numerical solution of P (·).

R(BTP (t)) ⊈ R(R). Thus this is an irregular zero-sum
game. By Theorem 1, we introduce the following Riccati
equation

Ṗ1(t)− 2P1(t)P (t)− P 2
1 (t) = 0, P1(

1

2
) = −1. (43)

By (42), we can obtain P1(t) = −P (t), which further
gives P̄ (t) = 0, t ∈ [0, 1

2 ]. Thus we design the following
controllers

u∗
1(t) = −

[
0
2

]
, u∗

2(t) = 0, 0 ≤ t ≤ 1

2
. (44)

Under the controllers (44), the state x∗(t) is given by

x∗(t) = −2t+ 1. (45)

Thus we have x( 12 ) = 0. Then (1− 2t, 0) is the solution to
the FBDEs (40). Therefore the controllers (44) are an open-
loop saddle point for the system (34) with the performance
function (35) and the corresponding value function is 0.

VI. CONCLUSION

In this paper, we have studied the irregular LQ two-person
zero-sum games by the “two-layer optimization” approach.
The existence of an open-loop saddle point is characterized
by the solvability of a system of constrained controlled
FBDEs, together with a convexity-concavity condition. The
feedback representation of open-loop saddle points is ob-
tained by two Riccati equations together with solving a
terminal controllability problem. In future work, we will
consider the irregular LQ two-person zero-sum stochastic
games and nonzero-sum games.

APPENDIX

A. Proof of Lemma 2

Proof of necessity. By Lemma 1, Problem (P1) is solvable
then the FBSDE (8) admit solution (x∗(t), p∗(t)). We will
show the FBDEs (22) admit solution (x∗(t),∆∗(t)) on t ∈
[t0, T ]. Based on the discussion of (11), we can see that
p∗(t) ̸= P (t)x∗(t) under the condition (5), where P (t) is
the solution to (3). We therefore define a new variable ∆∗(t)
as

p∗(t) = P (t)x∗(t) + ∆∗(t), (46)

where it is clear that ∆∗(T ) = 0. Next, we aim to derive the
new FBDEs (22) under the solvability of Problem (P1).

First, we take the derivative of (46), obtaining

ṗ∗(t) = Ṗ (t)x∗(t) + P (t)[A(t)x∗(t) +B(t)u∗(t)] + ∆̇∗(t).
(47)

From (8b) and (46), we then find that

ṗ∗(t) =−AT (t)[P (t)x∗(t) + ∆∗(t)]−Q(t)x∗(t). (48)

By comparing (47) and (48), we obtain

Ṗ (t)x∗(t) + P (t)A(t)x∗(t) + P (t)B(t)u∗(t) + ∆̇∗(t)

+AT (t)P (t)x∗(t) +AT (t)∆∗(t) +Q(t)x∗(t) = 0n×1.
(49)

Second, we aim to find the saddle point u∗(t) and the new
equilibrium condition (21). By using (46), we can formulate
the equilibrium condition (7) as

0 =R(t)u∗(t) +BT (t)P (t)x∗(t) +BT (t)∆∗(t). (50)

Thus we have

u∗(t) =−R†(t)BT (t)[P (t)x(t) + ∆∗(t)]

+ [I −R†(t)R(t)]z(t),
(51)

where z(t) is an arbitrary vector with compatible dimension
such that the following equality holds:

0 = [I −R(t)R†(t)][BT (t)P (t)x∗(t) +BT (t)∆∗(t)]. (52)

Using (18) we have

T0(t)[I −R†(t)R(t)]z(t)

=


0m̄1×m1 0m̄1×m2

ΥT1(t) 0m̃1×m2

0m̄2×m1
0m̄2×m2

0m̃2×m1
ΥT2

(t)

[
z1(t)
z2(t)

]
=


0m̄1×1

ū1(t)
0m̄2×1

ū2(t)

 ,
(53)

where ū1(t) = ΥT1
(t)z1(t) ∈ Rm̃1 , ū2(t) = ΥT2

(t)z2(t) ∈
Rm̃2 . Then

T−1
0 (t)T0(t)[I −R†(t)R(t)]z(t) = G0(t)ū(t). (54)

Now, we can rewrite (51) as

u∗(t)=−R†(t)BT (t)[P (t)x∗(t)+∆∗(t)]+G0(t)ū(t).
(55)

Note that

I −R(t)R†(t)

=

[
0m1×m̄1

ΥT
T1
(t) 0m1×m̄2

0m1×m̃2

0m2×m̄1
0m2×m̃1

0m2×m̄2
ΥT

T2
(t)

]
× T−1

0 (t)T [I −R(t)R†(t)].

(56)

Thus we can rewrite (52) as

0 = [I −R(t)R†(t)][BT (t)P (t)x∗(t) +BT (t)∆∗(t)]

= ΥT
T0
(t)[C0(t)x

∗(t) +BT
0 (t)∆

∗(t)].
(57)

Note that ΥT
T0
(t) is of full column rank, and thus (57) can

be directly rewritten as (21).
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Third, we derive the dynamics of ∆∗(t). Substituting (51)
into (49) and using (3) yields

0 =∆̇∗(t) + [AT (t)− P (t)B(t)R†(t)BT (t)]∆∗(t)

+ P (t)B(t)[I −R†(t)R(t)]z(t).
(58)

Note that

P (t)B(t)[I −R†(t)R(t)]z(t) = CT
0 (t)ū(t). (59)

Thus (22b) follows by substituting (59) into (58).
Finally, we derive the dynamics equation (22a). By sub-

stituting (55) into (8a) and combining this with the fact that

B(t)[I −R†(t)R(t)]z(t) = B0(t)ū(t), (60)

we can derive the state dynamics (22a).
Proof of sufficiency. If (21) is true then (51) and (52) can

be jointly rewritten as (50). Further, by reversing the process
for (46)-(50), we can easily verify that p∗(t) = P (t)x∗(t)+
∆∗(t), where x∗(t) and ∆∗(t) satisfy the FBDE (22), solving
(7)-(8). Thus, Problem (P1) is solvable, completing the proof.

B. Proof of Theorem 1

Based on Lemma 2, Problem (P1) is solvable if the FBDEs
(22) admits solution (x∗(t),∆∗(t)). It is sufficient to verify
that (x∗(t),∆∗(t)) = (x∗(t), P1(t)x

∗(t)) is the solution to
the FBDEs (22). Taking the derivative of P1(t)x

∗(t) yields

d

dt
P1(t)x

∗(t) =−AT
0 (t)P1(t)x

∗(t)−P1(t)D0(t)P1(t)x
∗(t)

+ P1(t)D0(t)∆
∗(t)− CT

0 (t)ū(t) (61)

where (23) is used in the above equality. By comparing (61)
and (22b), we have the following corresponding:

∆∗(t) = P1(t)x
∗(t). (62)

Thus (x∗(t),∆∗(t)) = (x∗(t), P1(t)x
∗(t)) is the solution

to the FBDEs (22). Thus Problem (P1) is solvable. The
feedback representation (26) follows by (55) with (62). This
completes the proof.

C. Proof of Theorem 2

The aim is to prove if there exists matrices P (t) and
P1(t) satisfying 0 = BT

0 (T )[P (T )+P1(T )] such that (27) is
regular and P1(T )x(T ) = 0 is achieved, then the FBDEs (8)
can be solved in this case. The first step is to prove that the
Riccati equation P (t)+P1(t) is regular. From the regularity
of (27), we have the following Riccati equation is regular:

0 = ˙̄P (t) +AT (t)P̄ (t) + P̄ (t)A(t) +Q(t)

− P̄ (t)B(t)R†(t)BT (t)P̄ (t), P̄ (T ) = H + P1(T ).
(63)

That is,
[I −R(t)R†(t)]BT (t)P̄ (t) = 0. (64)

By some elementary computation, we can obtain

P̄ (t) = P (t) + P1(t). (65)

It follows by (64) that

[I −R(t)R†(t)]BT (t)[P (t) + P1(t)] = 0. (66)

Note that by using (56) we obtain

[I −R(t)R†(t)]BT (t)[P (t) + P1(t)]

= ΥT
T0
(t)BT

0 (t)[P (t) + P1(t)],
(67)

which further gives

0 = C0(t) +BT
0 (t)P1(t). (68)

Note that P1(T )x(T ) = 0 is achieved. The value function
(28) can be proved by completing square. The proof is
completed by Theorem 1.
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