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Abstract— Stochastic optimal control requires an adequate
representation of state uncertainty. For stochastic nonlinear
systems, the probability distribution over the states given
measurements can often not be represented in closed form. In
this paper, we thus propose to address this control task based
on Monte-Carlo sampling, integrating the state estimation step
with stochastic gradient descent-based control optimisation. A
deep neural network approximation of the nonlinear system is
the key to speeding up both parts. We motivate and demonstrate
the approach for district heating systems, where the security
of supply shall be guaranteed with high probability in the
face of uncertain consumer demands. Our conceptually simple
approach enables representing multimodal distributions and
achieving computation times feasible for the online operation
of district heating systems.

Index Terms – Nonlinear systems, Stochastic optimal control,
Neural networks

I. INTRODUCTION

District heating systems (DHS) play a key role for the
decarbonisation of the heating sector. Traditional DHS are
dominated by single thermal power plants, but modern DHS
contain multiple heat generators. This raises many new
challenges including the online control of the generators to
ensure the security of supply for all customers. Specifically,
sufficiently high consumer supply temperatures have to be
guaranteed with high probability while keeping the grid
temperatures overall as low as possible to minimise losses
and maximise the efficiency of heat pump-based generators
[1]. This control task is non-trivial since the DHS tem-
peratures depend strongly nonlinearly on the current heat
demands and these are typically not known to the operator.
The posterior probability distribution over the current supply
temperatures given typical measurements at the heat gener-
ators, can therefore often not be represented well by closed
form distributions such as the Gaussian distribution. It may
even be multimodal in important, realistic application cases.

Previous work on the control of DHS has, for example,
employed a nonlinear dynamic model of the hydraulic part
of DHS for a distributed control scheme to drive gen-
erators and storages to predefined reference values while
guaranteeing closed-loop system stability [2]. Determining
the optimal generator values in DHS is often based on
model predictive control (MPC) and linearisation [3], [4] or
piecewise linearisation [5]. Demand uncertainty is dealt with
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via robust optimisation [3], stochastic optimisation [4], or the
certainty equivalence principle [5]. Note that [5] assumes
that a reference trajectory for the generator set points is
already available from day-ahead planning and focuses on
adapting these schedules online to optimally react to the
current grid situation; a setup, we also consider in this paper.
For the related control problem of heating, ventilation, and
air conditioning in buildings with uncertain thermal loads,
discrete Markov decision processes can be used to compute
optimal control laws [6]; however, discretisation becomes
impractical for DHS with many consumers and thereby
exploding state space dimension.

More generally, our work falls into the large group of
approaches for the optimal control of nonlinear systems
affected by uncertainties [7] and learning-based MPC [8]. It
shares some similarity to scenario-based MPC [9] but more
tightly integrates state estimation and stochastic optimisation.
During state estimation for the nonlinear system, it does
not target a Gaussian distribution like, e.g., the unscented
Kalman filter [10], but uses a sampling-based approach.
Compared to sequential Monte-Carlo approaches [11], it
integrates the sampling with stochastic optimisation and
approximates a known, complex physical system model by a
deep neural network (DNN) for speed purposes; a currently,
common idea in various disciplines, e.g. [12], [13].

Motivated by the online control of DHS, we develop a
novel approach for the stochastic optimal control (SOC)
of nonlinear systems. The method is specially tailored to
situations where the current state distribution cannot be
described accurately by any parametric distribution. The key
idea is to integrate state estimation and optimal control based
on Monte-Carlo sampling and deep learning: probability dis-
tributions are represented via samples and the system model
is approximated with an DNN. The latter allows the fast
evaluation of the nonlinear system model and its derivative
during stochastic gradient descent-based optimisation. The
key contributions of our approach are that it

• circumvents the necessity for system linearisation or
parametric probability distributions,

• is able to represent all kinds of probability distributions
over states, including multimodal ones,

• has low computation times for evaluating the approxi-
mated nonlinear system model as well as for computing
gradients.

Unlike classic approaches, we deliberately neglect the sepa-
ration principle between state estimation and control optimi-
sation: as we perform stochastic gradient descent, the esti-
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mated posterior distribution in each iteration of the algorithm
does not have to be perfect; only the derived gradients of the
optimal control problem have to point in the right direction.
This allows us to significantly reduce the required sample
size and, thus, the computation times. All these benefits are
demonstrated for a small, but relevant and challenging DHS
example.

The remainder of this paper is structured as follows: Sec-
tion II formally introduces the problem setting and Section III
describes our solution approach. A case study for DHS is
presented in Section IV, before concluding in Section V.

II. PROBLEM SETTING

The goal of this work is to propose an approach that allows
solving the SOC problem for nonlinear systems of the form

x = h(u,d), (1)

where x is the system state, u are the control inputs, and
d are unknown disturbances. The formulation presented in
this paper assumes that the application can be described by
a steady state model: u, d, and x, thus only cover one time
step. This applies to two types of systems: first, for systems
whose dynamics are either much faster, than the control
intervals, such that a steady-state is reached in each time
step. Second, for systems whose deviations from a steady-
state are small compared to the uncertainties in the system.
If dynamics were to be incorporated, the state and control
variables could be extended to cover several time steps. We
also assume that the plant h(·) is deterministic and bijective,
i.e., the same input always yields the same output and every
output is unique to one input. We show in Section IV that
both assumptions holds for the DHS use case.

The system’s state x is observed via measurements y
that depend probabilistically on the system state x. The
measurement is assumed to be partial in the sense that
it does not uniquely determine the system state but only
yields some information about it. The state estimation task is
thus addressed in a probabilistic Bayesian way: given prior
knowledge p(d) about the uncertain factors and a known
measurement likelihood p(y|x), the posterior p(d|y,u−) for
the unknowns given the measurements and the control signal
prior to optimisation u− is expressed via Bayes’ theorem as

p(d|y,u−) ∝ p(y|h(d,u−))p(d). (2)

This holds since h(·) is bijective and the probability of state
x = h(d,u−) and the corresponding disturbance d can thus
be identified.

The optimised control input u shall minimise the SOC
problem

min
u

Ed|y,u− [c(u,w,h(u,d))],

s.t.
¯
u ≤ u ≤ ū,

Pd|y,u− [¯
x ≤ h(u,d) ≤ x̄] ≥ 1− δ,

(3)

where δ ≥ 0 is a, typically small, risk-controlling parameter,
E[·] the expectation and P [·] the probability that the condi-
tion holds. c(u,w,x) denotes the cost for a certain control
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Fig. 1: System setup. The utilisation of a DNN in a com-
bined state estimation and stochastic optimisation enables a
sample-based uncertainty representation at acceptable com-
pute times.

input and state, and also depends on a given reference value
w for u.

¯
u, ū,

¯
x and x̄ denote the minimal and maximal

values for the control input and the system state, respectively.

III. PROPOSED APPROACH

A common approach for solving the estimation step (2)
and the optimisation step (3) is to assume that all involved
(conditional) probability distributions are Gaussian, the sys-
tem model h(·) is linear, and the cost function c(·) is convex
quadratic. In this case, the posterior p(d|y,u−) is also
Gaussian and the optimisation problem (3) becomes a convex
quadratic problem, or a convex second order cone problem
if constraints with δ > 0 are considered [14].

For nonlinear system models h(·), however, the posterior
distribution does not in general belong to any parametric
class of distributions, even if the prior distribution and
measurement likelihood are assumed to be Gaussian; the
experimental section shows an example thereof. The expec-
tations and chance constraints of the SOC problem can then
not be expressed and optimised in terms of the distribution
parameters. Therefore, the key idea of this paper is to
represent the posterior distribution via a flexible Monte-Carlo
sampling procedure. The SOC problem can then be written
in terms of these samples using the sample average approx-
imation (SAA) [14] and the optimisation can be performed
via (stochastic) gradient descent. Figure 1 schematically
illustrates our control approach: the state estimator generates
a set of posterior samples {di}Ni=1 based on the control input
before optimisation u− and the measurement y.

State estimation (2) and stochastic optimisation (3) based
on samples requires many evaluations of h(·) and its deriva-
tive. In the case of heating grids, h(·) is defined implicitly
as the solution of a set of nonlinear, hydraulic and thermal
equations; solving this set of equations is done via iterative
algorithm and takes considerable time [15]. In order to
significantly speed up the process, we propose to train a
DNN hθ(·) to approximate the system model h(·), i.e.,

hθ(u,d) ≈ h(u,d) = x, (4)

for all relevant u, d. Determining optimal parameters θ, i.e.,
training the DNN can be done in advance and, therefore,
does not influence the online computation times. Evaluating

4381



the DNN and its derivative, however, can be performed many
orders of magnitude faster than evaluating the original system
model, at least for the DHS use case. Practically, the DNN
approximation is the key step to enable the sampling-based
approach in the first place.

The SOC controller then solves (3) in a SAA-based
fashion using these samples. In the following, we detail each
step. An overview of the whole process is given in Figure 2

A. Learning the DNN model approximation

To learn hθ(·) we generate a training set of N train

training samples by sampling di from the prior p(d). The
corresponding control inputs are sampled to cover the range
between the control limits

¯
u, ū and slightly beyond. We then

evaluate h(·) for each sample. For DHS, h(·) is defined
implicitly by a set of nonlinear equations. By exploiting the
form of these equations, the generation of training samples
can be made very efficient [16]. Afterwards, we use standard
least squares DNN training.

B. State estimation via SIR

The goal of the state estimation is to gather N samples
{di}Ni=1 that represent the posterior probability distribution
(2). This can be achieved by different Monte Carlo (MC)
algorithms; we use sampling importance resampling (SIR)
[17]. To this end, we first draw M ≫ N samples {d′

i}Mi=1

from the prior distribution p(d) and weight each sample by
its approximated likelyhood

ω′
i = p(y|hθ(u−,d

′
i)) ≈ p(y|h(u−,d

′
i)). (5)

Using the DNN approximation and batch processing, these
weights can be computed very fast, as demonstrated below.
This set of weighted samples represents the posterior distri-
bution well, however, since M is large and many weights
are close to zero, we reduce the number of samples for
the following processing steps by resampling. Hence, we
draw N samples with replacement form this weighted set,
where the probability for drawing each sample is given by
its normalised weight ωi = ω′

i/
∑

j ω
′
j . Note that during

SOC optimisation only the gradient derived from the sample
set is required to point in the right direction, but an exact
representation of the posterior distribution is not needed.

C. Stochastic Optimisation

The SOC problem (3) can be expressed using the gener-
ated samples via SAA principles, i.e., replacing population-
based measures with their equivalents for the finite sample.
Again, h(·) is replaced by hθ(·) in (3) to speed up the calcu-
lations. However, the resulting optimisation problem remains
nonlinear and non-convex. Depending on the tightness of the
bounds and the variance of the inferred disturbance samples,
there might be no control input u that satisfies the boundary
constraints for all realisations of d or there may be multiple
locally optimal solutions.

Finding the global optimum of large, non-convex optimisa-
tion problems is mostly very difficult and takes considerable
computation time. Solving (3), therefore, remains impractical

Offline Computations

Prior distribution
p(d)

Training samples
{ui,di,xi}N

train

i=1

Train DNN

Reference values
w

Online Computations

Prior control inputs
u−

Initial samples
{di}Mi=1

Weighted samples
(5); {di, ωi}Mi=1
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Optimised Control
inputs u

Real System

Real disturbance
d

Initial response
x− = h(u−,d)
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y
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x = h(u,d)

A
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C

Fig. 2: Our approach can be separated into computations
which are done offline (left column) and those which are
done online (middle column). Only the online computations
depend on the observations gathered from the real system
(right column). Dashed elements indicate, that they can
not directly be accessed by the controller. The blue boxes
mark the parts of the algorithm detailed in the respective
subsections III-A - III-C.

for an online controller, even after integrating the DNN ap-
proximation. However, considering that the primary goal of
the controller is to keep the system’s state within predefined
bounds and that a reference trajectory exists, we assume that
two trade-offs are made: first, having a low computation time
and a high probability for a valid system state is valued
higher than finding the globally optimal solution.

Second, having a small risk of violating the boundary con-
ditions, especially regarding the system’s state, is preferred
over not making any decision at all. We thus conclude that,
for many practical applications, it is sufficient to find a local
optimum of the relaxed optimisation problem

min
u

1

N

N∑
i=1

[
c(u,w,hθ(u,di))

+ λ∥max(x̄− hθ(u,di), 0)∥22

+ λ∥min(hθ(u,di)−
¯
x, 0)∥22

]
+ λ∥max(u− ū, 0)∥22 + λ∥min(u−

¯
u, 0)∥22,

(6)

where λ is a hyperparameter balancing cost-optimality versus
constraint satisfaction and ∥·∥22 denotes the squared Eu-
clidean norm. This problem can be solved using off-the-shelf
stochastic gradient descent algorithms.
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IV. NUMERICAL CASE STUDY FOR DHS
Our test case represents a typical, important new chal-

lenge in modern DHS with several decentral heat sources.
The grid is supplied by two heat generators from different
ends, see Figure 3a. The supply temperatures in the grid
depend strongly non-linearly on the exact demand and supply
conditions and are in danger of being too low. Even though
the number of nodes is small, the example captures a lot of
the key challenges of this novel control task as we discuss in
detail after introducing the setup. We then describe our im-
plementation and three baseline models and demonstrate that
the proposed approach achieves good control performance
while being sufficiently fast for this application.

A. Setup
Taking the role of the DHS operator, the task is to control

the heating plants A and E such that the consumers B, C, and
D are supplied with a sufficiently high temperature without
using a too high temperature overall. The heat demands
are unknown to the operator, who can only measure at the
heating plants.

We use a set of steady-state physical grid equations to
implicitly define the system model h(·) of the DHS [15].
The system’s state x consists of all temperatures, pressures,
and mass flows in the grid. It is the only solution of the
steady state equations given the unknown heat demand d
and the manipulated variables u. The manipulated values u
are the supply temperatures of plants A and E as well as
the supplied heat of plant E. For these values and the heat
output of plant A a day-ahead schedule w is assumed to
be available. Plant A serves as a slack generator, required
to ensure the energy balance; its heat output is a flexible
consequence of the remaining system conditions. The mass
flow at plant A and the return temperatures at both plants are
the measurements y available to the operator. Fixed system
parameters are the supply and return pressures at plant A
and the return temperatures of the consumers.

In the test case, the demands’ thermal power d is modelled
as a zero-truncated multivariate normal distribution, p(d) =
N+(µd,Σd) with mean µd and covariance matrix Σd. The
mean consumption of the middle node C is much smaller
than the mean demands at B and D. The demands at B and
D are negatively correlated to each other, and independent
of the demand at C.

The cost function c(·) penalises the deviation of u from
the corresponding entries of the day-ahead schedule w as
well as the deviation of the slack plant’s power output to
the corresponding day-ahead reference. Limits for the heat
power output of the heat generators are defined relative to
the day-ahead schedule and in absolute terms for their supply
temperatures. The default, non-optimised input u− is set
equal to w. A minimum supply temperature of 80 ◦C is
defined for all consumer nodes. The exact model equations
are presented in [15]. The equations and all parameter values
are also found in our open-source implementation 1.

1The code of our implementation is available at https://github.com/EINS-
TUDa/DNN SOC4DHS

(a) The test DHS consists of supply (red) and return (blue) pipes
connecting heat generators A, E with heat demands B, C, D.

(b) Supply temperatures at nodes B, C, D over the measured mass
flow at plant A, using the day-ahead schedule w as the control
input. The mass flow at plant A can be varied by changing the heat
demand at B or D, respectively. The dashed black line denotes the
flow measurement for the mean a priori demand.

(c) Histogram and kernel density estimate of the supply tempera-
tures at nodes B, C, and D, derived from 10000 samples from the
prior distribution over heat demands and the day-ahead schedule
w. The dashed black line denotes the temperatures for the mean a
priori demand.

Fig. 3: The considered DHS test case.

B. DHS specific goals & challenges

A key goal of DHS control is ensuring a sufficiently high
supply water temperature at the inlet of all heat demands. To
understand the resulting operational challenges the physical
processes in DHSs can be separated into two parts: fast
hydraulic processes, which determine the flow directions in
all pipes, and slower thermal processes, which describe the
temperature losses. The hydraulic system reaches a steady
state within few seconds, whereas the thermal system may
still be in transition for much longer. While steady-state
thermal consequences of changing flows can be large and
non-linearly complex, the impact of transients in thermal
state is typically limited, as argued in the Appendix of
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[15]. Therefore, the state uncertainty can be represented
reasonably well using a steady-state model and the proposed
approach is suitable for the task of online control of DHSs.

As shown in Figure 3b the following operation challenge
arises for the test grid in the face of unknown heat demands:
the day ahead schedule is selected such that both heating
plants supply demand C, with a major share coming from
generator E. If the thermal demand of consumer B changes,
the flow directions in all pipes remain the same, as the
additional power is provided by the slack supply in A. As
a result, the temperatures remain mostly constant. If, on the
other hand, the thermal power at demand D changes, the
temperatures change strongly non-linearly. If the demand
decreases, the flow direction in the pipes between demands
B and C changes, indicated by a sudden temperature change
for these demands. Demand C is now fully supplied from the
plant at E and the flows from both supplies mix at demand
B. Similarly, if the demand for D increases, the demand C
is increasingly supplied from power plant A. This leads to
a slowly reducing temperature at demand C until the flow
directions in the pipes between C and D changes.

Figure 3c examines the consequences of these non-
linearities on the supply temperature distributions when the
heat demands are uncertain. For node C a multi-modal state
distribution can be observed. Linear systems and Gaussian
uncertainty models cannot represent this behaviour well.

C. Implementation

The used DNN for hθ(·) has four fully connected trainable
layers, consisting of 200, 400, 400, and 74 neurons with a
rectifier activation function in the first three layers and a
linear activation function in the last layer. It is trained with
150000 training and 10000 validation samples. The SOC
formulation (6) is solved locally using the Adam optimiser
[18] with an initial learning rate of 0.1 and mini-batches of
10 samples each. The SIR based state estimation generates
M = 1000000 initial demand samples and redraws N = 10,
100, or 1000 samples, respectively, which are then used in
the optimisation step.

D. Baselines

We compare our approach against three baselines. The first
baseline, the ”Slack Controller” (SC), makes no adaptations
to the day-ahead schedule; the slack plant reacts automati-
cally, according to the varying demand situations and grid
losses.

The second baseline approach, the ”Linear Controller”
(LC), is an elaborate linearised approach. It linearises the
system model around the a priori most probable demand
and neglects the truncation of the demand’s uncertainty. This
leads to a Gaussian prior distribution for the system state.
The posterior distribution given the measurements can then
be computed analytically [15]. To avoid matrix singularity
during this step, a small value is added to the diagonal of
the state’s covariance matrix. The LC baseline resembles a
classical Bayesian filter, which is equivalent to a Kalman
filter for linear systems. We then draw random samples from

Fig. 4: Histograms of the posterior distribution of the supply
temperature at node C based on 1000 samples, given exem-
plary demands and measurement values. (Top) using original
system model h(·) and non-optmised input u−, (middle)
using approximate system model hθ(·) and non-optmised
input u−, (bottom) using approximate system model hθ(·)
and control input u optimised with the proposed approach.
The red line denotes the minimum allowed supply temper-
ature and the black line denotes the temperature given the
(unknown) true underlying demand values.

the posterior state distribution, compute the corresponding
demand values, and linearise the system model again around
the most likely posterior demand estimate. The control inputs
are optimised using these estimates and the second linearised
model via stochastic gradient descent.

Last, we consider the hypothetical case where the operator
has perfect knowledge of the demands (OPT). This approach
serves as an optimality bound. To this end, we conduct
a grid search for the optimal u where the plants’ supply
temperatures are changed in steps of 2.5 ◦C and the power
output of E in 1.5 kW steps. To reduce the computational
complexity, the grid search is pruned using various heuristics;
nevertheless, the approach was only barely feasible for
this small example. For larger grids with more degrees of
freedom and for realistic settings with unknown demands,
the grid search is impractical.

E. Numerical Results

First, we qualitatively access the performance of our pro-
posed approach for an example demand setting. Second, we
discuss the computation times and comparative performance
of the results for randomised demand settings.

a) Qualitative Analysis: Figure 4 shows the posterior
distributions for the supply temperature of demand C using
the original system model h(·) and its approximation hθ(·),
given a measurement generated by simulating an arbitrarily
chosen set of demand values. The two distributions visually
match well. The finding that the supply temperature limit
of 80 ◦C is violated with high probability for the non-
optmised control inputs u− is consistent in both evaluations.
Using the optimised u, the risk of violating the temperature
requirements is significantly reduced.

Figure 5 shows for the same measurements the resulting
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Fig. 5: The power provided by slack plant A depending on
chosen power set point for plant E, for consumer demands
following the posterior distribution over demands given the
same measurement as in Figure 4; colour intensity encodes
the probability of each combination. The green and blue
colours indicate the posterior probability of the resulting grid
state being feasible, given the measurement. Left: default
supply temperatures of the heating plants, right: optimised
temperatures. Optimisation of the cost function (isolines
denoted grey) of the feasible control inputs (black dashed)
yields the optimised heat power for plant E, shown yellow.
The slack supply A remains uncertain and depends on the
demands.

power output of slack power plant A given the set point
for the power output of plant E, for two different supply
temperature set points of the two heat generators, the default
temperatures and the optimised ones. The combinations that,
given the measured values, have a high probability of leading
to feasible temperature form a complex non-convex set in
this two dimensional slice of the full state space of the
model. The set also depends on the supply temperatures
of the heating plants. The optimised control inputs imply
a high probability of the grid states being feasible while not
deviating too much from the default reference values.

b) Quantitative Analysis: Truthfully representing the
gradients of the original plant h(·) is crucial for our plant
approximation hθ(·) since they drive the employed stochastic
gradient descent algorithm to optimise the control inputs. We
examine the gradient of the supply temperature for demand
C with respect to the three independent decision variables
at the initial control set points as an example. We compute
the gradients of the true plant h(·) via the implicit function
theorem and compare them with the gradients received by
backpropagation from the DNN hθ(·). The length of the
gradient vector is not relevant since the step-size of the
gradient descent algorithm can be chosen accordingly. We
thus compare the gradients by computing the scalar product
between the normalised gradients, receiving a numerical
value between -1, which indicates that the gradients point in
opposite directions, and 1, if the gradient’s directions align.

The quality of the gradients depends on the evaluated
point, i.e., the demands’ heat power values. We first draw
10000 random power values from the demands’ prior dis-
tribution and compare the gradients to estimate an upper

TABLE I: Numerical evaluation of proposed approach for
500 random demand situations. The evaluation step uses the
true demands to determine costs and constraint violation.

λ
# opt

samples
mean
cost

invalid
states

invalid
power A

total
time [s]

SC – – 122 29.4% 5.6% –
OPT – true d 103 0% 0% –

100 10 183 15.6% 0.4% 18.0
100 100 182 11.8% 0% 13.5
100 1000 189 10.4% 0% 33.9

1000 10 249 9.0% 0.6% 19.9
Ours 1000 100 278 3.6% 0% 21.3

1000 1000 300 2.0% 0% 29.7
10000 10 327 4.8% 0.8% 21.0
10000 100 342 2.0% 0% 22.4
10000 1000 376 0.4% 0% 31.4

100 1000 678 16.2% 52.4% 15.2
LC 1000 1000 740 13.2% 53.4% 14.3

10000 1000 742 14.0% 55.0% 14.5

limit for the DNN’s quality. We achieved an average value
of 0.90 with an standard deviation of 0.20. Using only 100
samples, we obtain an average performance of 0.87 and a
standard deviation of 0.25. This indicates, that 100 samples
are sufficient to determine a gradient that is pointing in the
right direction with high probability.

Table I shows numerical indicators of our approach and the
two baseline cases SC and LC. We generated 500 random
realisation for the uncertain demand d and corresponding
measurements y and used all considered methods to compute
optimised control inputs. Using the true demands and the
control inptus, we then computed the true grid state using
h(·) and verified whether the resulting grid state violated any
constraints. The SC baseline approach reaches the lowest
(re-)scheduling costs, as it only changes the power value
of the slack heat supply to match the realised demands.
However, this approach leads to high rate of violated grid
states and requires the slack power plant to operate outside
of its desired operation range occasionally. The LC baseline
can adapt the temperature and power set points to reduce
the risk of constraint violation. However, it is not capable
of capturing the complex nonlinear system response and
the chance of violating grid constrains remains high. Our
approach is capable of capturing the nonlinearities and leads
to a valid grid state in nearly all cases, at rescheduling costs
below the linearised LC approach. The costs of our proposed
approach are higher than lower bound given by the OPT
approach. However, the OPT approach uses knowledge that
is not realistically available.

As expected, increasing the value of λ increases the
costs for rescheduling but reduces the risk of constraint
violating for our proposed approach. Additionally, it can
be observed that increasing the number of samples used
for the optimisation has a similar effect at a smaller scale.
If too few samples are used, no samples may violate the
boundary conditions during optimisation, which leads to
a less conservative rescheduling. For the LC baseline, no
significant impact can be observed since the probability
model is inadequate, independent of λ.
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TABLE II: Computation times for 10000 Jacobian matrices.

Model: Batch size Total time [s]
true h(·) 1 19730

DNN model hθ(·)
1 163

10 32
100 22

1000 22

c) Speed: Table II reports the required times to com-
pute the complete Jacobian matrix using the true state model
h(·) and the approximate DNN hθ(·), for varying batch
sizes. The DNN model is about two orders of magnitude
faster if each sample is computed individually and can
be further sped up by one order of magnitude if batch
processing is used. Note that the iterative process involved in
evaluating h(·) and the implicit computation of the gradients
prohibit batch processing for the DHS use case. All reported
computation times were derived on a laptop with an Intel
i5-8265U CPU processor and 16 GB RAM.

The compute times for the complete optimisation process,
as shown in Table I, imply that our approach is slower than
the LC approach, but fast enough for the online control
of DHS where time scales of minutes to quarters of hours
are relevant. Additionally, our approach scales well with an
increasing number of samples used during the optimisation,
which might be important for larger DHS.

V. CONCLUSION

In this paper, we proposed a conceptual simple, integrated
state estimation and control approach that is able to handle
stochastic nonlinear system models. By approximating the
plant by a DNN in order to speed up the evaluation of
the model and of its derivatives we enable sampling-based
MC state estimation and SAA-based algorithms for control
optimisation. We demonstrated the applicability of this novel
scheme for the online control of DHS. The model outper-
forms linear approximation methods due to its capability
of representing complex posterior distributions, even multi-
modal ones, without requiring a parametric representation.
Even though the approach is based on sampling, it is fast
enough for DHS online control due to the DNN model
approximation.

Future work could extend the research by using a dynamic
model for the DHS, which would increase the accuracy
shortly after the new set points are applied to the heating
plants and before a new steady state is reached. For signif-
icantly larger DHS more advanced MC algorithms, such as
Markov Chain Monte Carlo algorithm may be preferable to
generate samples more efficiently.
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