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Abstract— In this paper, distributed optimal solutions are de-
signed for networked multiagent pursuit-evasion (MPE) games
for capture and formation control. In the games, the pursuers
aim to minimize the distance from their target evaders while
the evaders attempt to maximize it, and at the same time,
all players desire to maintain cohesion with their teammates.
The goals of agents are obviously reflected in the obtained
optimal control strategies which consist of an attracting term
and/or a repelling term. Nash equilibrium is obtained by
means of optimal strategies using the solutions of the HJI
equations. Furthermore, three scenarios are considered in
the MPE game: one-pursuer-one-evader, multiple-pursuer-one-
evader, and multiple-pursuer-multiple-evader, where sufficient
conditions are given for pursuers in achieving capture or
formation control with ultimate zero or bounded errors. It
is shown that the conditions depend on the structure of the
communication graph, the parameters in the controllers, and
the expected formation configurations. Finally, both simulations
and real flight experiments successfully demonstrate the effec-
tiveness of the proposed strategies.

I. INTRODUCTION

The last decade has witnessed wide development of multi-
agent systems due to their high application values in coopera-
tive transportation, localization [1], [2], security surveillance,
and logistic delivery, to name just a few. Pursuit-evasion
(PE) games are one of the most interesting research topics.
They are widely used both in military implementations
such as missile guidance and aircraft control [3], [4], and
civilian areas like sport strategies. In nature, animal hunting
behaviors are also pursuit-evasion differential games.

The study of PE games starts from the simplest case
with a single pursuer and a single evader [5], [6]. The
PE game in [6] is formulated as a zero-sum game which
is solved using the Hamilton-Jacobi-Isaacs (HJI) equations.
The result is extended to the cases of two pursuers versus
one evader [7], [8], and multiple pursuers versus one evader
[9], [10]. However, it is difficult to solve the HJI equations
for nonlinear systems. Instead of solving the HJI equations,
the control strategies were derived by differentiation of a
particular value function in [11].

In recent years, more general multiple-pursuer-multiple-
evader PE games [12] have gained much attention, owing to
the increased interest in multi-agent problems. In [13], a dis-
tributed hybrid controller is proposed for each pursuer using
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both local coordination protocols and time-varying poten-
tial fields. Conditions for guaranteed capture or guaranteed
evasion are analyzed in [14] for multiple nonlinear players.
Suboptimal approaches for the multiplayer PE differential
games were presented in [15] by decoupled player control
strategies. In [16], distributed optimal strategies are obtained
for all players by using a graph-theoretic approach which
depends on the player’s teammates and neighbors of the
opposite team. The obstacle avoidance PE games are further
studied in [17]. The framework of [16] was extended by [18]
to search for an adaptive Nash equilibrium solution for the
differential games.

In most PE games, the objective of pursuers is to capture
the target evader, that is, to achieve position consensus [5]–
[18]. However, this kind of perish-together strategy may
lead to the ruin of pursuers. Instead, formation control or
surrounding control is of more practical [19]–[22]. With
surrounding the target, the pursuers can jet a mesh to capture
the target and then carry it to a safety zone. Specifically, a
distributed estimation-and-control hierarchical framework is
developed in [19], [20] for, respectively, linear systems and
surface vessels. The surrounding formation control can also
be achieved by defining an expected displacement, under
which the evaders lie in the convex hull formed by the
pursuers. Besides, the evaders may also want to maintain
some formation configurations to better complete their tasks.

In this paper, distributed optimal control strategies for
MPE games for capture and formation control are designed
over complex communication graphs. The contributions of
this paper are summarized as follows. (1) We appropriately
defined distinct local error variables and novel performance
indices for players in both teams, based on which the
obtained distributed optimal solutions consist of an attract-
ing term and/or a repelling term that reflect the goals of
agents. More importantly, when group cohesion is ignored,
the solutions for the evaders are still valid for them to
maximize their distance from the pursuers. (2) Formation
control is also studied when developing optimal solutions for
the MPE games. Besides capture, the formation control can
achieve surrounding control of the target and also considers
the case that the evaders desire to maintain some forma-
tion configurations. The results show that diverse expected
formation configurations may result in zero or bounded
formation control error. (3) We present conditions for capture
and formation control for three scenarios: one-pursuer-one-
evader, multiple-pursuer-one-evader, and multiple-pursuer-
multiple-evader. Under a novel analysis, the results present
that both the communication graph and the expected con-
figuration will affect the capture and formation control. Due
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to the decoupling of the solutions in achieving the goals
of agents, the interdependence of subsystems caused by the
three communication graphs, and the existence of expected
formation configurations, the closed-loop system is complex
to analyze.

II. PRELIMINARIES

Consider a team of N pursuers who have dynamics

ẋpi = Axpi +Bupi , i = 1, · · · , N (1)

where xpi ∈ Rn and upi ∈ Rm are, respectively, the state and
input of the ith pursuer. Consider also a group of M evaders
with dynamics

ẋej = Axej +Buej , j = 1, · · · ,M (2)

where xej ∈ Rn and uej ∈ Rm are, respectively, the state and
input of the jth evader.

The pursuers (1) and evaders (2) form a group of N +M
agents. Define Gp = (Vp, Ep) the communication graph
among the N pursuers, where V = {vp1, · · · , vpN} and
Ep = Vp × Vp. (vpk, vpi) ∈ Ep if and only if pursuer i
has access to the information of pursuer k, and we say agent
k is a neighbor of agent i. Let aik be the communication
weight of the graph Gp, with aik = 1 if (vpk, vpi) ∈ Ep,
otherwise, aik = 0. LetAp = [aik] ∈ RN×N be the weighted
adjacency matrix where aii = 0. Denote by dppi =

∑N
k=1 aik

the in-degree of pursuer i and Dpp = diag{dppi } the in-
degree matrix of the graph. Then, the Laplacian matrix can
be defined as Lp = Dpp − Ap. Similarly, the interaction
topology among evaders is represented by Ge = (Ve, Ee)
with the nodes Ve = {ve1, · · · , veM}. The edge weights are
bjl with bjl = 1 if (vel, vej) ∈ Ee and bjl = 0 otherwise. The
in-degree of evader j is deej =

∑M
l=1 bjl and the in-degree

matrix Dee = diag{deej }. Define the matrices Ae = [bjl] and
Le = Dee −Ae.

Let Gpe = (Vpe, Epe) represent the communication topol-
ogy among all the agents. Specifically, for i ∈ Vp and
j ∈ Ve, the edge weight cij = 1 if pursuer i can obtain
the information of evader j, otherwise, cij = 0. Similarly,
eji = 1 if evader j knows the information of pursuer i. The
in-degree of pursuer i in the graph Gpe is defined as dpei =∑M
j=1 cij , and the in-degree of evader j is depj =

∑N
i=1 eji.

The graph is undirected if (i, j) ∈ E implies (j, i) ∈ E with
i 6= j. In this paper, we assume the graph Gpe is undirected.

Based on the above information, we define two local
error variables for each pursuer, with respect to its pursuer
neighbors and evader neighbors, respectively,

x̃ppi =

N∑
k=1

aik(xpk−x
p
i ), x̃

pe
i =

M∑
j=1

cij(x
e
j−x

p
i +∆xpeij ) (3)

where ∆xpeij is the expected displacement between the pur-
suer i and the evader j, and it can be a zero vector. The
justification for the formation is that, in many practical
applications, the team of pursuers may want to surround the
target evader, instead of achieving state consensus to collide
with it.

Similarly, we define another two local errors for each
evader, with respect to its evader neighbors and pursuer
neighbors, respectively,

x̃eej =

M∑
l=1

bjl(x
e
l − xej + ∆xeejl ), x̃epj =

N∑
i=1

eji(x
p
i − x

e
j)

(4)

where ∆xeejl denotes the expected displacement between
evaders j and l. In many application scenarios, the evaders
desire to move in formation to increase the opportunity to
complete the tasks.

Remark 1: It is well known that, for x1, x2 ∈ Rn, x2−x1
is a vector pointing from x1 to x2. It physically represents
an attracting force of agent 2 to agent 1, and also a repelling
force of agent 1 to agent 2. Thus, x̃ppi and x̃pei denote
the attracting forces from the pursuer neighbors and evader
neighbors, respectively, to pursuer i. Similarly, x̃eej and
x̃epj are, respectively, the attracting forces from the evader
neighbors and repelling forces from the pursuer neighbors
to evader j.

III. PROBLEM FORMULATION AND SOLUTIONS FOR MPE
GAMES

In the MPE game, the objective of pursuers is to minimize
the distance from their neighboring evaders to intercept
them or achieve the desired formation for the surrounding
control. Moreover, the pursuers also intend to stay close
to their teammates to keep the group cohesion. Therefore,
the control strategy of each pursuer can be divided into two
parts. The first part is for remaining close to its teammates,
and the second part is for pursuing the evaders, that is,
upi = up1i + up2i .

The goals of each pursuer can be formulated as a scalar
function Jpi(x̃

pp
i , x̃

pp
i , u

p1
i , u

p2
i ), regarded as the performance

index for pursuer i which is defined as

Jpi =

∫ ∞
0

[
(x̃ppi )TQppi x̃

pp
i + (up1i )TRppi u

p1
i

+(x̃pei )TQpei x̃
pe
i + (up2i )TRpei u

p2
i

]
dt (5)

where Qppi , Qpei , Rppi and Rpei are positive definite matrices
with appropriate dimension. Pursuer i is thus concerned with
minimizing Jpi.

On the contrary, the goals of the evaders are to maximize
the distance from their neighboring pursuers, and at the same
time, to stay close to their teammates. Similarly, the control
input of evader j consists of two parts, i.e., uej = ue1j + ue2j .
The performance index for evader j can be defined as

Jej =

∫ ∞
0

[
(x̃eej )TQeej x̃

ee
j + (ue1j )TReej u

e1
j

−(x̃epj )TQepj x̃
ep
j + (ue2j )TRepj u

e2
j

]
dt (6)

where matrices Qeej , Qepj , Reej and Repj are positive definite.
Notice that minimizing the third term −(x̃epj )TQepj x̃

ep
j equals

maximizing the distance from the pursuers, which implies
escaping from them.
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Based on the above definitions, we define the following
MPE differential games on communication graphs Gpe.

Definition 1. (MPE game): The MPE game is defined as

Vpi = min
up1
i ,up2

i

Jpi(x̃
pp
i , x̃

pe
i , u

p1
i , u

p2
i ) (7)

Vej = min
ue1
j ,ue2

j

Jej(x̃
ee
j , x̃

ep
j , u

e1
j , u

e2
j ) (8)

where Vpi and Vej are the values of the MPE game for
pursuer i and evader j, respectively.

Let up−i and ue−i be the control strategies of the pursuer
neighbors and evader neighbors of pursuer i, respectively,
and ue−j and up−j be the control strategies of the evader
neighbors and pursuer neighbors of evader j. The Nash
equilibrium is defined as follows.

Definition 2. (Nash equilibrium): Control strategies up1∗i ,
up2∗i , i = 1, · · · , N , and ue1∗j , ue2∗j , j = 1, · · · ,M , form a
Nash equilibrium if the inequalities

Jpi(u
p1∗
i , up2∗i , up∗−i, u

e∗
−i) ≤ Jpi(u

p1
i , u

p2
i , u

p∗
−i, u

e∗
−i)

Jej(u
e1∗
j , ue2∗j , ue∗−j , u

p∗
−j) ≤ Jej(u

e1
j , u

e2
j , u

e∗
−j , u

p∗
−j)

hold for all agents in the game.
The optimal control strategy of pursuer i can be obtained

by the Hamiltonian function [9], [23]

Hp
i = (x̃ppi )TQppi x̃

pp
i + (up1i )TRppi u

p1
i

+ (x̃pei )TQpei x̃
pe
i + (up2i )TRpei u

p2
i

+ OV Tpi (x̃
pp
i ) ˙̃xppi + OV Tpi (x̃

pe
i ) ˙̃xpei

where Vpi is the value defined in (7). Following (3), it
satisfies that

˙̃xppi = −
N∑
k=1

aik(Axpi +Bup1i +Bup2i ) +

N∑
k=1

aikẋ
p
k

˙̃xpei = −
M∑
j=1

cij(Ax
p
i +Bup1i +Bup2i ) +

M∑
j=1

cij ẋ
e
j .

Letting the partial derivative of Hp
i

∂Hp
i

∂up1i
=2Rppi u

p1
i −d

pp
i B

TOVpi(x̃
pp
i )−dpei B

TOVpi(x̃
pe
i )=0

∂Hp
i

∂up2i
=2Rpei u

p2
i −d

pp
i B

TOVpi(x̃
pp
i )−dpei B

TOVpi(x̃
pe
i )=0

gives

up1∗i =
1

2
(Rppi )−1

(
dppi B

TOVpi(x̃
pp
i )+dpei B

TOVpi(x̃
pe
i )
)
(9)

up2∗i =
1

2
(Rpei )−1

(
dppi B

TOVpi(x̃
pp
i )+dpei B

TOVpi(x̃
pe
i )
)
(10)

which are the optimal control strategies for pursuer i. Vpi is

the solution of the coupled HJI

0 = (x̃ppi )TQppi x̃
pp
i +(up1∗i )TRppi u

p1∗
i +(x̃pei )TQpei x̃

pe
i

+(up2∗i )TRpei u
p2∗
i

+ OV Tpi (x̃
pp
i )

(
−

N∑
k=1

aik(Axpi +Bup1∗i +Bup2∗i ) + ẋpk

)

+ OV Tpi (x̃
pe
i )

− M∑
j=1

cij(Ax
p
i +Bup1∗i +Bup2∗i ) + ẋej

 .

(11)

Similarly, the optimal control strategies for evader j are given
by

ue1∗j =
1

2
(Reej )−1

(
deej B

TOVej(x̃
ee
j )+depj B

TOVej(x̃
ep
j )
)
(12)

ue2∗j =
1

2
(Repj )−1

(
deej B

TOVej(x̃
ee
j )+depj B

TOVej(x̃
ep
j )
)
.

(13)

Theorem 1: Considering the pursuers (1) and evaders (2)
with local errors (3)–(4). Let (9)–(13) be the control strate-
gies for pursuer i and evader j where Vpi and Vej are the
values of the game for pursuer i and evader j, respectively.
Then, the MPE game (7)-(8) is in Nash equilibrium. More-
over, the values of the game for pursuer i and evader j are
given by Vpi(t0) and Vej(t0)− Vej(t∞), respectively.

IV. CONDITIONS FOR CAPTURE AND FORMATION
CONTROL IN THREE SCENARIOS

In this section, we consider the MPE game in three scenar-
ios: one-purser-one-evader, multiple-pursuer-one-evader, and
multiple-pursuer-multiple-evader.

Suppose that for i = 1, · · · , N and j = 1, · · · ,M , the
value functions Vpi and Vej have the form

Vpi = αi1(x̃ppi )TP ppi x̃ppi + αi2(x̃pei )TP pei x̃pei (14)

Vej = βj1(x̃eej )TP eej x̃eej − βj2(x̃epj )TP epj x̃epj (15)

where P ppi , P pei , P eej and P epj are positive definite matrices.
Taking OVpi into (9)–(13) and following the fact that upi =
up1i + up2i and uej = ue1j + ue2j , we thus have

upi =
(
(Rppi )−1 + (Rpei )−1

)
· (αi1dppi B

TP ppi x̃ppi +αi2d
pe
i B

TP pei x̃pei ) (16)

uej =
(
(Reej )−1 + (Repj )−1

)
· (βj1deej BTP eej x̃eej −βj2d

ep
j B

TP epj x̃epj ). (17)

Remark 2: One can note that the control strategy upi for
pursuer i reflects the two attracting forces from its neighbor-
ing teammates and evaders, which will drive it to stay close
to its teammates and meanwhile capture the target. On the
contrary, the repelling force −x̃epj in uej for evader j prevents
it from being intercepted by its neighboring pursuers. The
repelling force still holds when deej = 0 for each evader j,
that is, no group cohesion in the evader team. In [16], when
deej = 0, it becomes that uej = βj2d

ep
j (Repj )−1BTP epj x̃epj

which is the attracting forces from its neighboring pursuers.
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Without loss of generality, the R matrices in (16)–(17) are
selected as identity matrices, and the P matrices are solutions
of the Lyapunov equation

PA+ATP − PBBTP = −I. (18)

Note that the equation is solvable if all eigenvalues of A have
nonpositive real parts. The control strategies thus become, for
i = 1, · · · , N and j = 1, · · · ,M ,

upi = 2(αi1d
pp
i B

TPx̃ppi +αi2d
pe
i B

TPx̃pei ) (19)

uej = 2(βj1d
ee
j B

TPx̃eej −βj2d
ep
j B

TPx̃epj ). (20)

Now the control policies depend on the coefficients αi1, αi2,
βj1 and βj2, whose values indicate the priority of keeping
close to the teammate and staying close to or far away from
the other side agents. In the following, we will analyze how
the coefficients affect the PE games in three scenarios.

A. PE Game for One-pursuer-one-evader Problem

When the evaders increase their distance with respect to
each other to separate the pursuers, each pursuer must select
a single evader as its target. Suppose that pursuer i has
selected evader i as the target using the target selection
algorithm (see [16] for example). In such a case, the local
error for pursuer i with respect to the evader is defined as
x̃pei = xei − x

p
i . Similarly, x̃epi = −x̃pei . Following the steps

in Section III, the control strategies for pursuer i and evader
i are, respectively,

upi =αi2B
TPx̃pei , u

e
i =−βi2BTPx̃epi = βi2B

TPx̃pei . (21)

Theorem 2: Consider the multiagent system with N pur-
suers and N evaders with dynamics (1) and (2), respectively,
and with the control policies (21). Assume that pursuer i
selects evader i as its target. Then, if αi2 ≥ 1

2 +βi2, we have
limt→∞ x̃pei = 0 exponentially for any initial conditions.

Proof. See Theorem 2 of [26].

B. MPE Game for Multiple-pursuer-one-evader Problem

When there are multiple pursuers and one evader, the
pursuers may want to intercept the target evader or to achieve
the surrounding formation control, and the evader aims to
maximize the distance from all the pursuers. In this case, we
have dpei = 1, Reej = 0, deej = 0 and depj = N for the unique
evader j = 1. For simplicity, we denote βj2 = β. Thus,

ue1 = −βNBTPx̃ep1 . (22)

Theorem 3: Consider the multiagent system with N pur-
suers and one evader with dynamics (1) and (2), respectively,
and with control policies (19) and (22), respectively. Then,
if αi2 ≥ (2βN2 + 1)/4 for all i = 1, · · · , N , and

(i) if ∆xpei1 = 0 for all i, we have limt→∞ x̃pei = 0
exponentially for any initial conditions;

(ii) if ∃i such that ∆xpei1 6= 0 but
∑N
i=1 ∆xpei1 = 0, and

αi1d
pp
i = 0 for all i, we have limt→∞ x̃pei = 0

exponentially for any initial conditions;
(iii) if

∑N
i=1 ∆xpei1 6= 0, the equilibrium of the closed system

is globally exponentially input-to-state stable (ISS) with
input ∆xpe.

Proof. This theorem presents sufficient conditions for cap-
ture. We thus analyze the result from the viewpoint of the
pursuers. Let x̂pi = xpi − ∆xpei1 . It follows from (3) that
x̃pei = xe1 − x̂

p
i , whose dynamics satisfies

˙̃xpei =A(xe1 − x̂
p
i )− βNBB

TPx̃ep1 −Bu
p
i

− 2B(αi1d
pp
i B

TPx̃ppi + αi2B
TPx̃pei )

=(A− 2αi2BB
TP )x̃pei + βNBBTP

N∑
i=1

x̃pei

− 2αi1d
pp
i BB

TPx̃ppi − βNBB
TP

N∑
i=1

∆xpei1 . (23)

On the one hand, from the definition of x̃ppi in (3), we
have

x̃ppi =

N∑
k=1

aik(xpk−x
e
1−∆xpek1−x

p
i +xe1+∆xpei1 +∆xpek1−∆xpei1 )

=

N∑
k=1

aik(xpei − x
pe
k ) +

N∑
k=1

aik(∆xpek1 −∆xpei1 ). (24)

Denote x̃pp = col(x̃pp1 , · · · , x̃
pp
N ). Then, it follows that

x̃pp = (Lp ⊗ In)x̃pe − (Lp ⊗ In)∆xpe. (25)

Define the Lyapunov function candidate for the closed-
loop system x̃pe as V = (x̃pe)T(IN ⊗ P )x̃pe. Its derivative
along the trajectory of (23) gives

V̇ =

N∑
i=1

[
(x̃pei )T(ATP + PA− 4αi2PBB

TP )x̃pei

+2βN(x̃pei )TPBBTP

N∑
i=1

x̃pei −4αi1d
pp
i (x̃pei )TPBBTPx̃ppi

− 2βN(x̃pei )TPBBTP

N∑
i=1

∆xpei1

]
. (26)

Denote α2 = min{αi2} for i = 1, · · · , N . By (18), it follows
that

V̇ ≤ −(4α2 − 1− 2βN2)(x̃pe)T(IN ⊗ PBBTP )x̃pe

+ (x̃pe)Tdiag{4αi1dppi PBB
TP}(Lp ⊗ In)∆xpe

− 2βN(x̃pe)T(1N1TN ⊗ PBBTP )∆xpe −(x̃pe)Tx̃pe

(27)

where the last inequality holds because Lp and PBBTP are
positive semi-definite.

Note that if αi2 ≥ (2βN2+1)/4 for all i = 1, · · · , N , the
first two terms of (27) are negative, then whether or not V
decreases to zero depends on the last two terms. It is obvious
that V̇ ≤ −(x̃pe)Tx̃pe under the conditions in (i) and (ii),
which finally results in limt→∞ x̃pei = 0. If

∑N
i=1 ∆xpei 6= 0,

the last term in (27) is nonzero. Then, we have

V̇ ≤ −
(

1− κ1
2
λ2max

(
diag{4αi1dppi PBB

TP}(Lp ⊗ In)
)

−κ2λ2max(1N1TN ⊗ PBBTP )
)
‖x̃pe‖2+(

1

2κ1
+

1

κ2
)‖∆xpe‖2
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where λmax(·) denotes the maximum eigenvalue of a
symmetric matrix. Choose κ1 and κ2 small enough such
that 1 − κ1

2 λ
2
max

(
diag{4αi1dppi PBBTP}(Lp ⊗ In)

)
−

κ2λ
2
max(1N1TN ⊗ PBBTP ) > 0. By the ISS Lyapunov

theorem (Theorem 1 of [24] and Lemma 3.2 of [25]), the
equilibrium of (23) is globally exponentially ISS. �

Remark 3: The result (i) in Theorem 3 indicates that
pursuers can achieve intercept if they put more effort than the
evader. The condition αi1d

pp
i = 0 implies that the pursuers

are not influenced by their neighbors but to intercept the
evader. The condition

∑N
i=1 ∆xpei1 = 0 implies a symmetric

formation, under which the sum of repelling forces of the
pursuers to the evader is zero. The two conditions thus
contribute to interception. In (iii), the asymmetric formation
leads to asymmetric forces from the pursuers’ neighbor,
and the forces do not align with the attractive force from
the evader, which thus leads to a bounded formation error.
Moreover, the greater the asymmetry, the larger the error.

C. MPE for Multiple-pursuer-multiple-evader Problem

In the multiple-pursuer-multiple-evader case, each pursuer
desires to intercept its target individually or cooperatively
with its neighbors. On the contrary, the evaders will try
their best to prevent themselves from being intercepted, and
simultaneously achieve a desired formation.

We assume that the numbers of pursuers and evaders are
the same, i.e. M = N . If there are more pursuers, the
problem can be decoupled into several multiple-pursuer-one-
evader cases, and the results follow Theorem 3. If there are
more evaders, some of them would be able to escape not
unexpectedly. In this section, each pursuer aims to capture
the target, and it is trivial to form a formation, we thus
assume that ∆xpeij = 0 for i = 1, · · · , N and j denotes the
target evader. For simplicity, we also assume that pursuer i
selects evader i as its target.

Theorem 4: Consider the multiagent system with N pur-
suers and N evaders with dynamics (1) and (2), respectively,
and with control policies (19) and (20), respectively. Then,
for any βj1 ≥ 1

4min{deej }λmin(Le)
for each evader j, there

exists a α∗2(βj2), such that if αi2 ≥ α∗2(βj2), and
(i) if ∆xeejl = 0 for any evaders j and l, we have

limt→∞ x̃pei = 0 exponentially for any initial condi-
tions;

(ii) if ∃j, l such that ∆xeejl 6= 0 but αi1d
pp
i = 0 for all i =

1, · · · , N , we have limt→∞ x̃pei = 0 and limt→∞ x̃eej =
0 exponentially for any initial conditions;

(iii) if ∃j, l such that ∆xeejl 6= 0 and ∃i such that αi1d
pp
i 6=

0, the equilibrium of the closed system is globally
exponentially ISS with input ∆xee1 .

Proof. See Theorem 4 of [26] for reference.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, both simulation and experimental results
are presented to verify our control strategies. Players are
double-integrator systems described by (1) and (2) with

A =

[
02×2 I2
02×2 02×2

]
and B =

[
02×2
I2

]
.
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Fig. 1: PE game for one-pursuer-one-evader problem.
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Fig. 2: Capture occurs under the conditions in (i) of Theo-
rem 3.

Fig. 1 shows capture results that verify the control law
(21) designed for the one-pursuer-one-evader PE game. In the
control law (21), for i = 1, 2, 3, we set αi2 = 3 and βi2 = 1,
which obviously satisfies the condition αi2 ≥ 1

2 + βi2.
For the case that multiple pursuers try to capture one

evader, the pursuers and evader use control strategies
(19) and (22), respectively. In this example, we assume
that there are four pursuers, therefore, N = 4. To satisfy
the sufficient condition αi2 ≥ (2βN2 + 1)/4 for target
capture in Theorem 2, we choose αi2 = 9 and β = 1.
We firstly consider the case that ∆xpei1 = 0. The value
of αi1 is chosen randomly. Fig. 2 shows that capture
occurs, which verifies the result (i) in Theorem 3. Next,
we assume that the pursuers try to achieve surrounding
control of the evader, rather than capture it. Let the desired
state displacement between the pursuers and the evader

be
[
∆xpe11 ∆xpe21 ∆xpe31 ∆xpe41

]
=

0 −2 2 0
2 0 0 −2

02×4

 .
Let αi1 = 0 for i = 1, 2, 3, 4. It is obvious that the
above settings satisfy the condition in (ii) of Theorem 3.
The trajectories of players and the formation errors are
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Fig. 3: Trajectories and formation errors for the result (ii) of
Theorem 3.
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Fig. 4: Trajectories and formation errors for the result (iii)
of Theorem 3.

6422



1 2

4 3

1 2

34

evader
pursuer

-4 -2 0 2 4
-4

-2

0

2

4

evader 1
evader 2
evader 3
evader 4
pursuer 1
pursuer 2
pursuer 3
pursuer 4

Fig. 5: (Left) Communication topology for the PE game
with multiple pursuers and multiple evaders. (Right) Capture
occurs under the conditions in (i) of Theorem 4.
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Fig. 6: Trajectories of players, formation errors of evaders,
and x and y distances between each pair of pursuer and
evader under the conditions (iii) of Theorem 4.

presented in Fig. 3, which shows that the formation
error finally converges to zero. Now we modify
the desired state displacement between the pursuers
and the evader as

[
∆xpe11 ∆xpe21 ∆xpe31 ∆xpe41

]
= 0 −1.9 2 0

2.01 0 0 −1.94
02×4

 which does not satisfy∑4
i=1 ∆xpei1 6= 0. The simulation results in Fig. 4 show the

bounded formation error.
Finally, we consider the PE game for multiple pursuers

and multiple evaders, who cooperate with their teammates to
achieve their objectives. Suppose that there are four pursuers
and four evaders. The communication topology is shown in
Fig. 5. We thus have dee = 2 and λmin(Le) = 1. A value
of βj1 = 1, j = 1, 2, 3, 4, is used to satisfy the condition
βj1 ≥ 1

4min{deej }λmin(Le)
of Theorem 4. The values of other

parameters are set as βj2 = 6, αi1 = 1 and αi2 = 10 for
i = 1, 2, 3, 4. Firstly, let ∆xeejl = 0. Fig. 5 shows that capture
occurs. Further, let the desired formation among evaders

be
[
∆xee12 ∆xee23 ∆xee34 ∆xee41

]
=

2 0 −2 0
0 2 0 −2

02×4

 .
Fig. 6 displays the simulation result, where the distances
between each pair of pursuer and evader and formation errors
of evaders are bounded. If we further set αi1 = 0, it will
cause capture and zero formation errors.
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