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Abstract— In this paper, we introduce the novel concept
of economic ports, allowing modular and distributed optimal
operation of networked microgrids. Firstly, we design a novel
price-based controller for optimal operation of a single mi-
crogrid and show asymptotic stability. Secondly, we define
novel physical and economic interconnection ports for the
microgrid and study the dissipativity properties of these ports.
Lastly, we propose an interconnection scheme for microgrids
via the economic ports. This interconnection scheme requires
only an exchange of the local prices and allows a globally
economic optimal operation of networked microgrids at steady
state, while guaranteeing asymptotic stability of the networked
microgrids via the passivity properties of economic ports. The
methods are demonstrated through various academic examples.

I. INTRODUCTION

Future energy systems are expected to rely on many small-
scale distributed generation units (DGUs) rather than on few
large-scale generators based on fossil resources. Thus, an
optimal coordination of the DGUs while ensuring a stable
operation is crucial. In literature, many approaches propose
a passivity-based controller design for DGUs [1], [2]. These
regulators achieve an offset-free regulation of a given voltage
reference and have desirable plug-and-play properties while
guaranteeing asymptotic stability of the overall intercon-
nected system via passivity. Recently, extensions have been
proposed in order to achieve current- [3] or power-sharing [4]
within the passivity-based framework, or approximate power-
sharing considering a simultaneous voltage- and frequency
control in AC systems [5]. Although allowing plug-and-play
operation and ensuring asymptotic stability, passivity-based
methods are in general purely decentralized approaches
which cannot achieve an economically optimal operation or
steer the system to an economically optimal steady state.

Addressing this issue, [6], [7] propose distributed
passivity- and optimization-based controllers for a microgrid
in port-Hamiltonian form that is able to steer the system
to an economically optimal steady state. The intrinsic, fa-
vorable passivity properties of the port-Hamiltonian system
enables plug-and-play operation while ensuring asymptotic
stability. However, in both approaches, the whole microgrid
is modeled as a synchronous generator, which is inter-
connected with other microgrids via lossless, static lines.
These simplifications and assumptions, although allowing
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important theoretical contributions, hamper the application
to low inertia microgrids with lossy lines, which will adopt a
crucial role in future power systems. In [8], [9], optimization-
based controllers for AC and DC microgrids with droop-
controllers are proposed. Although these methods are not
based on passivity, asymptotic stability of an economically
optimal steady state together with plug-and-play capabil-
ities are shown. However, this again comes at the cost
of considering a system model with limiting assumptions
and approximations, e.g. static lines and single capacitance
dynamics as DC microgrid model or a simple oscillator as
AC microgrid node dynamics. In particular, dynamics of
the DGUs, transmission lines or nonlinear loads are not
considered.

Contributions: We propose an optimization-based control-
ler for DC microgrids that steers a microgrid to an econom-
ically optimal steady state in a distributed manner without
knowledge of the loads or transmission line parameters.
Conditions for asymptotic stability are provided. We further
leverage these results to study the interconnection of various
microgrids by introducing the novel concept of passivity-
based economic ports. These economic ports have a cyber-
physical nature, which differs from the typical physical inter-
connection ports defined with physical variables like voltages
and currents in passivity-based control. The economic port
allows interconnecting microgrids on an information level
to achieve overall economic optimality while ensuring plug-
and-play stability in a distributed manner.

The remainder of this paper is structured as follows.
In Section II, the system model for a general, converter-
based microgrid considered in this work is presented. The
distributed optimization-based controller design is presented
in Section III. In Section IV, we introduce the electric and
economic ports allowing the microgrids to interconnect on a
physical- and information-basis. In Section V, the perform-
ance of the proposed controller for a cluster of networked
microgrids is illustrated via simulations.

Notation: Lowercase letters x ∈ Rn represent vectors,
and uppercase letters X ∈ Rn×n represent matrices. The
transpose of a vector x ∈ Rn is written as x⊤. The vector
x = col{xi} and matrix X = [x] = diag{xi} are the n × 1
column vector and n × n diagonal matrix of the elements
xi, i = 1, . . . , n, respectively. Let In denote the n × n
identity matrix and 1n ∈ Rn a vector of ones. Calligraphic
letters X represent sets, and X × I denotes the cartesian
product of the two sets. For vectors xmin, xmax ∈ Rn, the
set X = [xmin, xmax] is a shorthand notation for the convex
polytope X = {x ∈ Rn |xmin ≤ x ≤ xmax}, where ≤ holds
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component-wise. A directed graph is denoted by G(B, E),
where B is the set of nodes and E ⊆ B × B the set of
edges. The cardinality for a set B is denoted by |B|. The
incidence matrix M ∈ R|B|×|E| is defined as M = (mji)
with mji = −1 if edge ej ∈ E leaves node vi ∈ B, mji = 1
if edge ej ∈ E enters node vi ∈ B, and mji = 0 otherwise.

II. SYSTEM MODEL

In this paper, we consider a set of microgrids k ∈
M = {1, . . . , nmg}, each comprising a set Bk of nk =
|Bk| electrical buses or nodes connected via a set Ek of
mk = |Ek| electrical lines. Defining an arbitrary line cur-
rent direction over the microgrid power lines, we describe
the network topology of each microgrid with the directed
graph Gk(Bk, Ek), where Bk is the set of nodes and Ek

of edges. We consider nodes i ∈ BL,k ⊆ Bk having only
a nonlinear load, and nodes i ∈ BDGU,k ⊆ Bk having
additionally a DGU, with BL,k∪BDGU,k = Bk. The microgrid
index k (always displayed as superscript) is omitted for
simplicity until further notice, since the same microgrid
structure holds for all k ∈ M (microgrids may have different
sizes, topologies and parameters). A detailed deviation of
the mathematical model of each microgrid component is
derived in the extended version of this work [10] or in [11].
For reasons of space, we only present the overall microgrid
model in the following.

A. Microgrid Model

A microgrid is composed of n = |B| electrical buses with
d = |BDGU| ≥ 1 DGUs, interconnected by m = |E| power
lines according to the graph G(B, E) with incidence matrix
M ∈ Rn×m. With respect to the d DGUs, recall that there
is one grid-forming DGU which stabilizes the grid voltages
and d− 1 grid-following DGUs that inject power according
to an economic objective function, which will be specified
in Section III. The microgrid model reads

Cfv̇ = Ifif − iL(v)−Miπ (1a)

i̇f = αI⊤f v + βif + γe (1b)

ė = Ivv + Ip[I
⊤
f v]if +

[
vref
pref

]
(1c)

Lπ i̇π = −Rπiπ +MT v, (1d)

where α = [αi], β = [βi] and γ = [γi] contain the control
parameters, Cf = [Cf,i], Rf = [Rf,i], Lf = [Lf,i], iL = [iL,i],
Rπ = [Rπ,j ] and Lπ = [Lπ,j ] are the filter, load and line
parameters, and v = col{vi} ∈ Rn, if = col{if,i} ∈ Rd,
e = col{ei} ∈ Rd and iπ = col{iπ,j} are the stacked states
of the DGUs i ∈ B and power lines j ∈ E . The voltage
and power references vref ∈ R>0 and pref ∈ Rd−1 are inputs,
where d defines the number of inputs of the microgrid. The
matrix If ∈ Rn×d is a permutation matrix assigning the filter
currents of d DGUs to the correct n ≥ d nodes. The matrices
Iv = diag{1, 0, . . . , 0} ∈ Rd×d and Ip = diag{0, 1, . . . , 1} ∈
Rd×d are diagonal matrices such that the correct error signals
are induced for the integrator states [10]. The output y of
the system is defined as the filter current of the grid-forming

DGU, which is set as the first filter current without loss of
generality, i.e. y = if,1.

In the next section, a price-based controller is designed in
order to determine pref such that an optimal steady state is
achieved.

III. PRICE-BASED CONTROLLER DESIGN

We aim to design a controller which (i) steers the mi-
crogrid (1) to an (unknown) economically optimal operation
point where the grid-forming DGU does not inject power,
and (ii) has distributed nature and does not require any
knowledge of loads or line parameters.

A. Controller design: Optimality model

Inspired by the Linear-Convex Optimal Steady-State Con-
trol [12], we introduce an optimality model, which describes
an optimal steady state where property (i) is fulfilled:

min
pref

d−1∑
i=1

fi(pref,i) (2a)

s.t.
d−1∑
i=1

pref,i = pL. (2b)

The function fi : R → R represents the cost of the
power infeed of the respective grid-following DGUs, which
is assumed to be convex and quadratic in the paper at hand,
i.e. f(pref,i) = qip

2
ref,i+ripref,i+si with qi, ri, si ∈ R, qi > 0.

The variable pL comprises the sum of the power consumed by
all loads and the losses of the microgrid. Thus, (2b) ensures
power balance. The KKT conditions [13] for (2) are

0 = ∇fi(pref) + λ ∀i ∈ {1, . . . , d− 1} (3a)

0 =

d−1∑
i=1

pref,i − pL, (3b)

where λ ∈ R is the Lagrange multiplier for the constraint
(2b), and using a primal-dual gradient method [14] with
positive tuning parameters τi and κ, we get

ṗref,i = −τi(∇fi(pref,i)− λ) ∀i ∈ {1, . . . , d− 1} (4a)

λ̇ = κ(pL −
d−1∑
i=1

pref,i). (4b)

The multiplier λ can be interpreted as the electrical power
price; if the load pL is greater than the power supplied by the
grid-following DGUs, the price in (4b) increases and vice-
versa. Equation (4a) means that the grid-following DGUs
inject power such that their marginal costs equal the power
price. This is the best solution for rational decision-makers,
since feeding in more power would lead to less economic
benefit per kW.

With controller (4), property (i) is fulfilled, since at steady
state, every grid-following DGU produces at marginal cost
and the grid-forming DGUs inject no power. However, prop-
erty (ii) requires more attention. Even if (4a) can be com-
puted by every grid-following DGU in distributed manner,
the price-forming (4b) uses the load pL and the sum of the
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power injection pref,i of the grid-following DGUs, both being
system-wide knowledge. To circumvent that, we present the
following proposition.

Proposition 1: Let vref ∈ R>0. Let all the load in mi-
crogrid (1), including the loads and transmission losses, be
denoted by pL. Then, at steady state, we have y = 0 iff

d−1∑
i=1

pref,i = pL. (5)

Proof: See our extended version [10], page 4, column 1.

Applying Proposition 1 to (4), we can use the grid-forming
DGU current y = if,1 for the price-forming mechanism, since
it is a measure for the unmet power demand in the microgrid,
i.e.

ṗref,i = −τi(∇fi(pref)− λ) ∀i ∈ {1, . . . , d− 1} (6a)

λ̇ = −κy. (6b)

This way, the price-forming mechanism does not need
system-wide knowledge; the price is formed solely by the
grid-forming DGU and forwarded to the grid-following
DGUs within the microgrid (it may be also forwarded
in a distributed manner). Thus, the DGU responsible for
stabilizing the grid (grid-forming) is the price-making entity,
and the grid-following DGUs are the price-taking agents.

For the sake of simplicity, we represent the
closed-loop system defining the state variable
x = col{v, if, e, iπ, pref, λ} ∈ Rncl with ncl = n + 3d + m
the number of states. Let x̄ be an equilibrium point of the
closed-loop system for a constant vref. In shifted coordinates
x̃ = x− x̄, the nonlinear closed-loop system reads

˙̃x = A(x̃, x̄, P )x̃ (7)

with

A(x̃, x̄, P ) = (8)
−C−1

f Y + P [v̄]−1[v]−1 C−1
f If 0 −C−1

f M 0 0
αI⊤f β γ 0 0 0

−Iv − Ip[if] −Ip[v̄] 0 0 Ip 0
L−1
π M 0 0 −L−1

π Rπ 0 0
0 0 0 0 −Q −τ
0 −κ 0 0 0 0

 ,

(9)

where v = v̄ + ṽ, if = īf + ĩf, Q = [τiqi], τ = col{τi},
Y = [yi] and P = [pi].

Definition 1: The feasible subspace of the state space
X ⊂ Rncl for safe operation is defined as

X = V × I × R2d+m, (10)

where V = [vmin, vmax] ⊂ Rn and I = [if,min, if,max] ⊂
Rd are polytopic sets describing maximum and minimum
feasible node voltages and filter currents. In addition, define
X̃ analogously for error variables and P = [pmin, pmax].

The stability proof of the closed-loop system is included
in the extended version [10], page 5, column 1, and left
out from this paper due to space constraints. In the next

section, the interconnection ports for considering networked
microgrids are defined, and the dissipativity properties are
studied.

IV. INTERCONNECTION OF MICROGRIDS WITH
PRICE-BASED CONTROLLERS

The following definitions lay the foundation for analysing
the stability and optimality of a set of networked mi-
crogrids (1), each controlled with (6). First, we define novel
physical and economic interconnection ports and study their
dissipativity properties. Then, we propose an interconnection
scheme for the microgrids k ∈ M such that the networked
microgrids are asymptotically stable and operate at a globally
economically optimal steady state.

Since an interconnection of multiple microgrids is con-
sidered, the microgrid index k ∈ M is not further omitted.

A. Microgrid ports: Definition and dissipativity

The following electric port defines an interface for inter-
connecting microgrids via electric lines.

Definition 2 (electric ports): Let ikelec,i be an external cur-
rent injected at a node i ∈ B and vki the voltage at that node
for microgrid k ∈ M. The input-output pair (ikelec,i, v

k
i ) is

called an electric port1 for that microgrid.
The electric port is interfaced with system (7) through

the vectors bkelec = col{ti, 03d+m} and ckelec = bk⊤elec, where
ti ∈ Rn has a 1 at the i-th element and zero elsewhere, since
an external current drawn to a node i ∈ B acts on the voltage
dynamics (1a) of node i ∈ B. Note that a microgrid may
contain an arbitrary number z ∈ R of electric ports, yielding
matrices Bk

elec = [bkelec,1, . . . , b
k
elec,z] and Ck

elec = Bk⊤
elec.

The following economic port defines an interface for
interconnecting microgrids economically.

Definition 3 (economic ports): Let λk
ext ∈ R denote an

external electric power price and λk
loc ∈ R the local price

for a certain microgrid. The input-output pair (λk
ext, λ

k
loc) is

called the economic port for microgrid k ∈ M.
When the economic port (λk

ext, λ
k
loc) is connected, we

replace the price used for the grid-following DGUs in (6a)
with the input λk

ext, yielding

ṗkref,i = −τki (∇fk
i (p

k
ref)− λk

ext) (11a)

λ̇k
loc = −κkikf,1. (11b)

The local price λk
loc (output of economic port) is still determ-

ined by the current of the grid-forming DGU, but is no longer
used directly in the local microgrid. Splitting the price in a
microgrid into local and external prices allows, using a spe-
cial interconnection structure for economic ports as proposed
in Section IV-B, the local price λk

loc to contribute towards
a (global) external price. The external price then already
implicitly contains a coordination between microgrids, and is
used by the grid-following DGUs in order to achieve global
optimal dispatch. Note that only a single economic port per

1Note that electric ports have been used in the literature for intercon-
necting DGUs and lines [1] within a microgrid. Definition 2 can hence be
understood as leveraging these ports between microgrids.
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microgrid is allowed in this work, since we have a single
local price per microgrid.

The economic port thus interfaces with the system (7)
through the vectors bkecon = col{0n+2d+m, τ, 0} and ckecon =
col{0n+3d+m−1, 1}. System (7) with electric and economic
ports reads then

˙̃xk = Ak
λ(x̃

k, x̄k, P k)x̃k +Bk
eleci

k
elec + bkeconλ

k
ext (12a)

ỹkelec = Ck
elecx̃

k = vkelec (12b)

ỹkecon = ckeconx̃
k = λk

loc. (12c)

The matrix Ak
λ(·) is the same as A(·) in (7) except that (11a)

replaces (6a), where the input λk
ext is used instead of the state

from (11b). Vector ikelec = col{ikelec,z} is the input for all
electric ports z.

We are now interested in the dissipativity properties of
the interconnection ports, in order to analyse microgrids
interconnected via physical-electric or information-economic
ports. First, we analyse the dissipativity properties of the
electric port; thereafter, the properties of the economic port.

Proposition 2: Let a microgrid self-close its economic
port with λk

ext = ykecon = λk
loc, i.e. without interconnecting

economically with other microgrids. System (12) is then
equilibrium independent passive (EIP) w.r.t. the electric port
(vkelec, i

k
elec) if a there exists a symmetric S ∈ Rncl×ncl solving

S > 0 (13a)[
Ak

λ(·)⊤S + SAk
λ(·) SBk

elec − Ck⊤
elec

Bk⊤
elecS − Ck

elec 0

]
≤ 0 (13b)

for all x̄k ∈ X , x̃k ∈ X̃ and P k ∈ P , with X , X̃ and P
defined as in Definition 1.

Proof: See our extended version [10], page 6, column 1.

Proposition 2 ensures stability of a scenario where differ-
ent microgrids are interconnected via electric ports. Since an
economic port is not considered, the electric power prices in
the microgrids are independent, yielding optimal operation
in each microgrid but suboptimal operation of the networked
microgrids as is shown in Section V.

In order to interconnect the microgrids via the economic
port and achieve an economic cooperation, we study the
dissipativity properties of both port types simultaneously.

Theorem 1: System (12) is input-feedforward and output-
feedback equilibrium independent passive w.r.t. the electric
(vkelec, i

k
elec) and economic ports (λk

ext, λ
k
loc) if there exists a

symmetric S ∈ Rncl×ncl , and indices νk ∈ R, ρk ∈ R such
that

S > 0 (14a)X(x̃k, x̄k, ρk) SBk
elec − Ck⊤

elec Sbkecon − ck⊤econ
Bk⊤

elecS − Ck
elec 0 0

bk⊤econS − ckecon 0 νk

 ≤ 0 (14b)

holds for all x̄k ∈ X̄ , x̃k ∈ X̃ and P k ∈ P , where
X(x̃k, x̄k, ρk) = Ak

λ(·)⊤S + SAk
λ(·) + ρkck⊤econc

k
econ.

Proof: See our extended version [10], page 6, column 1.

In this subsection, the interconnection ports have been
defined and their passivity properties studied. Next, an in-
terconnection scheme for the electric and economic ports of
networked microgrids ensuring global economic optimality
and asymptotic stability is proposed.

B. Networked microgrid operation

We now consider a set M of microgrids interconnected
electrically and economically, using the port properties es-
tablished in Theorem 1. To this end, we first characterize a
globally optimal steady state for economically interconnected
microgrids.

Proposition 3: If the external electric power price λk
ext ∈

R is equal for all microgrids, i.e.

λk
ext = λ̄, ∀k ∈ M (15)

with constant λ̄ ∈ R>0, we have global optimal dispatch and
all DGUs inject power at marginal cost at any steady state.

Proof: See our extended version [10].
To achieve λk

ext = λ̄ ∀k as in Proposition 3, we propose
a consensus-based algorithm with which the microgrids per-
form a distributed dynamic averaging of the local price λk

loc
(output of the economic port). The output of the distributed
dynamic averaging is used as the external price λk

ext (input
of the economic port). Then, at steady state, the external
prices λk

ext of all nmg microgrids taking part in the distributed
dynamic averaging are equal, i.e. λk

ext = 1
nmg

∑nmg

k=1 λ
k
loc,

and Proposition 3 is fulfilled. There exist many dynamic
consensus algorithms, see [15] for a survey. In this work,
a dynamic consensus algorithm that enjoys an excess of
passivity is needed to compensate the lack of passivity of the
economic port (characterized in Theorem 1 via νk and ρk).
We therefore use the proportional dynamic consensus [15]

ẇ = −(µInmg + L)w − Lλloc (16a)
λext = w + λloc, (16b)

where L ∈ Rnmg×nmg is the Laplacian matrix of an arbit-
rary but connected topology describing the communication
between the microgrids via economic ports, µ ∈ R>0 a
tuning parameter and w ∈ Rnmg auxiliary states. Note that
the input λloc = col{λk

loc} and output λext = col{λk
ext} of

consensus algorithm (16) correspond to the economic port
as described. All local prices thus contribute to the global,
external price. This consensus protocol is chosen because it
exhibits an excess of input and output passivity (it is input-
to-state stable [16, Theorem 3] and has feedthrough, both
related to an excess of passivity [17]). If (16) is designed such
that its excess of passivity is greater than the lack of passivity
of the economic ports obtained in Theorem 1, the feedback
interconnection is asymptotically stable [18, Theorem 6.2].
Note that a formal proof using the methodology described
above is omitted due to space constraints.

V. SIMULATION RESULTS

In this section, the proposed methods are illustrated on
different scenarios with networked microgrids. First, we
study the operation of networked microgrids interconnected
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Fig. 1. Microgrids with grid-forming DGUs (turquoise), grid-following
DGUs (red), and nonlinear load (black) nodes, interconnected through the
electric ports with electric lines (purple) and economic ports (green)

TABLE I
TOTAL MICROGRID LOAD

0 s− 20 s 20 s− 40 s 40 s− 60 s

Microgrid 1 16 kW 20.4 kW 9.5 kW
Microgrid 2 8 kW 8kW 11kW

Sum 24 kW 28.4 kW 20.5 kW

solely through the electric ports. Thereafter, we show that
global optimality is obtained for the networked microgrids
with an interconnection as proposed in Section IV-B for the
economic ports.

A. Proposed scenario

We consider a meshed DC microgrid with 8 nodes and 9
lines interconnected via electric lines (purple) to a second
meshed DC microgrid with 4 nodes and 4 lines shown in
Figure 1, which was adapted from the scenario in [9]. In
Microgrid 1, Node 4 (turquoise) is equipped with a grid-
forming DGU, which stabilizes the grid dynamics and acts
here as price-forming entity. Nodes 2, 3 and 4 (red) have
a grid-following DGU, which are the price-taking feeders.
The cost of the power injection is set to f1

1 (p1) = 1.2p21,
f1
2 (p2) = 1.3p22 and f1

3 (p3) = 1.4p23. All other nodes (black)
consist only of nonlinear loads. In Microgrid 2, the grid-
forming DGU is located at Node 3. Grid-following DGUs
are located at Node 1 and 4, while Nodes 2 consists only of
a nonlinear load. The cost of the power injection is set for the
DGUs in microgrid 2 to f2

1 (p1) = 1.4p21 and f2
4 (p4) = 1.5p24.

Load steps occur at time t1 = 20 s and t2 = 40 s. The
total load of the microgrids after the load steps is shown in
Table I. At t1 = 20 s, we have only an increase of the load in
Microgrid 1 and hence an increase in the sum of the loads
in both microgrids. At t2 = 40 s, the load in Microgrid 1
decreases but increases in Microgrid 2, such that the sum
of the loads decreases. The reference voltage vref is set to
1000V. Typical parameter values for the lines and DGU
parameters are taken from [19].

In the next section, two microgrids interconnected through

0 10 20 30 40 50 60

4000

6000

8000

Fig. 2. DGU injected power in both microgrids

electric ports are considered in order to highlight the plug-
and-play stability of microgrids stated in Proposition 2.

B. Networked microgrids through electric ports

In this section, the microgrids interconnected via the
electric lines (purple) as shown in Figure 1 are considered.
For both microgrids, Proposition 2 is verified for the subset
of the state space defined via vmin = 950V, vmax = 1050V
for all nodes and if,min = −15A, if,max = 15A for all filter
currents.

The power injection of the grid-following DGUs and the
price in both microgrids are shown in Figures 2 and 3,
respectively. When the load step at t1 = 20 s occurs, the
DGUs in Microgrid 1 increase their power injection, while
the DGUs in Microgrid 2 decrease their power injection, even
if the sum of the loads increased (see Table I). At t2 = 40 s,
the power injection in Microgrid 1 decreases and increases
in Microgrid 2, following the trend of their own load (see
Table I).

Similar dynamics are also shown by the price in Figure 3.
In particular, the price dynamics in both microgrids depend
on the local microgrid load changes rather than on the sum of
the loads across all microgrids. The microgrids are thus not
cooperating, since the economic ports are not considered.
As can be observed, the prices in both microgrids are not
equal at any steady-state, which entails suboptimal economic
dispatch. Furthermore, the steady-state prices cannot be
directly influenced, since it results from the grid-forming
controllers in each microgrid, which may not have identical
parameters.

In order to influence the prices in each microgrid and
obtain global economic optimal dispatch, an interconnection
via the economic ports as described in Section IV-B is
employed in the next subsection.

C. Economically interconnected microgrids

In this subsection, the networked microgrids are equipped
with the economic ports and the dynamic averaging as in
Section IV-B. Theorem 1 is verified for the same subset of
the state space as in Section V-B.

The power injection of the grid-forming DGUs and the
price in both microgrids are shown in Figures 4 and 5,
respectively. When a load step occurs, the prices in both
microgrids vary. However, after a transient period, the prices
in both microgrids are equal. This is due to the consensus
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Fig. 3. Local price λloc of both microgrids
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Fig. 4. DGU inj. power in both microgrids interconnected economically

algorithm (16) interconnecting the microgrids via the eco-
nomic port, which achieves a price consensus at steady
state. The power injections of the grid-following DGUs in
Figure 4 adjusts automatically according to the price in the
microgrids. Note that the DGUs of Microgrid 2 inject less
power than the DGUs in Microgrid 1, since they have greater
injected power costs (see Section V-A). DGUs with the same
cost function (e.g. f1

3 and f2
4 ) inject the same amount of

power in steady state despite being in different microgrids
with different loads. Since at steady state a price consensus
of both microgrids is achieved, we have optimal dispatch
at steady state according to Proposition 3. Note that optimal
dispatch is achieved solely by an exchange of the local prices
in a distributed manner via the economic ports.

VI. CONCLUSION

In this paper, we introduced novel electric and economic
interconnection ports, whose passivity properties provide
valuable insights for achieving modular stability guaran-
tees. With the economic interconnection scheme proposed,
globally optimal dispatch is achieved via the distributed
communication of local prices. Future work includes the
consideration of constraints in the price-based controllers
and the extension of the proposed methodology for AC
microgrids.
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