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Abstract— This paper aims to investigate the relaxed stability
condition for interval type-2 Takagi–Sugeno fuzzy systems via
membership-parameter matrix inequalities. The membership
framework of interval type-2 fuzzy sets is structured in convex
polytopes with a straightforward method. The stabilization syn-
thesis with a non-parallel distributed compensator controller in-
corporating lower and upper membership functions is achieved
in the sense of a matrix. Moreover, this paper introduces the
relaxation strategy for the orthogonal complement, effectively
reducing the number of decision variables related to the linear
matrix inequalities. In conclusion, examples are presented to
demonstrate the effectiveness and applicability of the proposed
methods.

I. INTRODUCTION

Takagi–Sugeno (T–S) fuzzy models have the flexibility and
applicability to handle the control problem of nonlinear sys-
tems [1]–[4]. Since its inception, the ability of the T–S fuzzy
model to construct complex systems from combinations of
linear systems using IF–THEN rule has garnered significant
research interest. Due to the considerable level of interest,
extensive research has been devoted to the study of fuzzy-
model-based control systems from diverse perspectives, with
a focus on deriving stabilization conditions expressed in the
form of linear matrix inequalities (LMIs).

The utilization of interval type-2 (IT2) T–S fuzzy was
subsequently proposed as a means to account for the in-
trinsic uncertainty associated with the modeling process by
introducing lower and upper membership functions (MFs).
The stabilization condition of IT2 fuzzy systems based
on MF-dependent analysis was presented in [5] with the
general quadratic Lyapunov function and parallel distributed
compensator (PDC) control scheme.

In practice, MFs may exhibit discontinuous or angular
behavior, taking the form of shapes such as parallelograms
[6] or triangles [7]. Such cases are considered undifferen-
tiable and, therefore, cannot benefit from derivative informa-
tion. Nevertheless, incorporating derivative knowledge in IT2
fuzzy sets is feasible, provided appropriate lower and upper
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MFs are chosen. To further leverage the information con-
tained in the MFs, the stabilization condition incorporating
the derivatives of MFs was considered in [8] with a non-PDC
strategy that increases the controller design flexibility.

An alternative approach was presented by [9], which
proposed relaxed stability conditions that utilize the mem-
bership shape. Recently, it was demonstrated in [10] that
the LMI condition can be established by the vertices of a
convex polytope, which in turn capture the distribution of
MFs. Utilizing a tighter convex polytope can result in less
conservative conditions, which is a natural outcome.

Motivated by the mentioned discussions, the relaxed sta-
bilization condition for IT2 fuzzy systems in terms of
membership-parameter matrix inequalities with the non-
PDC controller depending on the lower and upper MFs is
achieved. Based on the bounding constraints of MFs, the
intuitive illustration of the explicit distribution of both MFs
and their upper and lower MFs is presented in the shape of
convex polytopes. In contrast to the algorithm proposed by
[10], this approach represents a notably more straightforward
method to determine the vertices of the polytope. With the
proposed control scheme, the stability conditions using the
lower and upper membership-dependent Lyapunov function
are analyzed. Moreover, this study introduces a novel relax-
ation strategy involving the orthogonal complement, which
has the potential to decrease the number of decision variables
associated with LMIs compared to the previous relaxation
method [11].

In this paper, the following notations are used: Rn stands
for the n-dimensional real vector space; P > 0 represents
that the matrix P is a positive definite; 1n stands for the n-
dimensional column vector whose all entries are ones; 0n×m
stands for the zero matrix with n×m order; In denotes the
identity matrix with n×n order; ⊗ is the Kronecker product
symbol; He{A} denotes A+AT .

II. PRELIMINARIES AND PROBLEM
FORMULATION

A. IT2 T–S Fuzzy Model

An IT2 T–S fuzzy model with nr rules and m premise
variables is considered. The k-th fuzzy rule is represented
below:

Rule k :IF f1(x(t)) is Fk1 and · · · and fm(x(t)) is Fkm
THEN ẋ(t) = Akx(t) +Bku(t),

where Fki is the k-th IT2 fuzzy set corresponding to the
premise variable fi(x(t)) for i = 1, ...,m and k = 1, ..., nr;
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The k-th consequent yields the system matrix Ak and input
matrix Bk which are given previously; x(t) ∈ Rnx and
u(t) ∈ Rnu denote the state and input vector, respectively.
The k-th firing strength is in interval sets as follows:

θk(x(t)) ∈
[

Πm
i=1ρ

L
Fk

i
(fi(x(t))), Πm

i=1ρ
U
Fk

i
(fi(x(t)))

]
=
[
θLk (x(t)), θUk (x(t))

]
,

where θLk (x(t)) and θUk (x(t)) are the given lower and upper
MFs for the k-th rule; ρLFk

i
(fi(x(t))) and ρUFk

i
(fi(x(t)))

stand for the grade of membership satisfying

0 ≤ ρLFk
i

(fi(x(t))) ≤ ρUFk
i

(fi(x(t))) ≤ 1,

and then

0 ≤ θLk (x(t)) ≤ θUk (x(t)) ≤ 1.

The k-th rule’s MF is represented as θk(x(t)) =
σk(x(t))θLk (x(t)) + (1 − σk(x(t)))θUk (x(t)) in which
σk(x(t)) ∈ [0, 1] is the nonlinear weight function and
satisfies

∑nr

i=1 θi(x(t)) = 1. For simplicity in writing, the
state vector notation in MFs is omitted, i.e., θk(x(t)) is
illustrated as θk.

Assumption 1: The derivative of the lower and upper MFs
exist with the following conditions:

αLk ≤θ̇Lk ≤ αUk , (1)

βLk ≤θ̇Uk ≤ βUk , (2)

where αLk , α
U
k , β

L
k and βUk are given scalar values for k =

1, ..., nr.
In practice, when the MF is discontinuous or with the

shapes of a parallelogram, a triangle, its derivative(θ̇(x(t)))
does not exist. Meanwhile, since the differentiable boundary
MFs can be defined appropriately, the derivative information
for the lower and upper MFs is admissible. Thus, assumption
1 is reasonable.

Here, the boundary conditions for the MFs are described:

0 ≤ γLk ≤ θLk ≤θk ≤ θUk ≤ γUk ≤ 1, (3)

0 ≤ ωL ≤
nr∑
i=1

θLi ≤
nr∑
i=1

θi ≤
nr∑
i=1

θUi ≤ ωU , (4)

where the extrema γLk , γ
U
k , ω

L and ωU are given as scalar
values for k = 1, ..., nr.

Let us define the following membership vectors:

θL =

 θL1
...
θLnr

 , θ =

 θ1
...
θnr

 , θU =

 θU1
...
θUnr

 .
The IT2 T–S fuzzy model described in the fuzzy rule

becomes a closed-loop form as follows:

ẋ(t) = A(θ)x(t) +B(θ)u(t), (5)

where A(θ) =
∑nr

i=1 θiAi and B(θ) =
∑nr

i=1 θiBi.

B. Non-PDC Membership Dependent Controller

Non-PDC control methods can lead to the enlargement of
feasible solutions, which leads to acceptability for nonlinear
systems with relatively inaccurate model descriptions. From
this perspective, the non-PDC IT2 fuzzy controller depending
on the lower and upper MFs is considered

u(t) = K(θL, θU )x(t), (6)

where K(θL, θU ) ∈ Rnu×nx is described as follows:

K(θL, θU )=K +KL(θL ⊗ Inx) +KU (θU ⊗ Inx)

+ (θL⊗Inu
)TKLU (θU⊗Inx

) + (θL⊗Inu
)T

×KLL(θL⊗Inx
)+(θU⊗Inu

)TKUU(θU⊗Inx
)

with the proper-dimension gain matrices K, KL, KU ,KLU ,
KLL and KUU . The proposed control method describes the
second-order polynomials for the lower and upper MFs re-
sulting in the following quadratic expression for K(θL, θU ): 1⊗ Inu

θL ⊗ Inu

θU ⊗ Inu

T  K KL KU

0 KLL KLU

0 0 KUU

 1⊗ Inx

θL ⊗ Inx

θU ⊗ Inx

 .
(7)

The state feedback control scheme (6) to stabilize (5)
yields the closed-loop system

ẋ(t) = (A(θ) +B(θ)K(θL, θU ))x(t). (8)

C. IT2 Fuzzy Membership Distribution

The boundary conditions of MFs in (3), (4) and the
convex-sum property(

∑nr

i=1 θi(x(t)) − 1 = 0) are exploited
for discovering the membership distribution including lower
and upper memberships. Let us define a (nr−1)-dimensional
simplex ∆nr−1

σ containing the nr-dimensional distribution
θ∗ as:

∆nr−1
σ =

{
θ∗ ∈ Rnr |

nr∑
i=1

θ∗i = σ, 0 ≤ θ∗i ≤ 1

}
, (9)

where σ is positive. Obviously, ∆nr−1
1 is a standard simplex

enclosing the membership trajectory of θ ∈ Rnr . Now, based
on the boundary constraint (3), the l-dimensional extreme
orthotope with 2nr points placed on the combination of γLi
and γUj is defined as Enr

θ for i, j ∈ {1, ..., nr}. Although the
exact extreme values for θ exist, it is virtually impossible to
calculate the extrema for θ. However, it can be concluded
that the MF is captured by the (nr − 1)-dimensional convex
polytope, which is the intersection spaces between ∆nr−1

1

and Enr

θ , and the set of vertices for the convex polytope is
defined as Snr

θ .
In the same way, when σ is ωL or ωU , two intersection

spaces between ∆nr−1
σ and Enr

θ can be described. Each set
of vertices for those convex polytopes is defined as S

n∗
r

θL

and S
n∗
r

θU
, respectively. Then the distribution of the lower

MF is included by the nr-dimensional convex polytope with
vertices in Snr

θL
where the set Snr

θL
is Sn

∗
r

θL
∪ Snr

θ . Similarly,
the convex polytope with vertices in Snr

θU
encloses the upper
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Fig. 1. Type-2 fuzzy membership distribution in the two-dimensional space.
The red rectangle stands for E2

θ . The crossing points sets are illustraited as
follows: S2

θ = {B,F}, S2
θL

= {B,C,D, F} and S2
θU

= {A,B,E, F}.

membership distribution where Snr

θU
= S

n∗
r

θU
∪Snr

θ . In Fig. 1,
the membership distributions with nr = 2 are illustrated. The
line segment between points B and F includes the distribution
for θ. The lower and upper membership trajectories are
captured by the convex polytopes with vertices in Snr

θL
and

Snr

θU
, respectively.

III. STABILITY ANALYSIS

A. Stability Analysis with Relaxation Technique

For extracting the lower and upper membership knowl-
edge, let us consider the lower and upper membership-
dependent Lyapunov function:

V (x(t)) = xT (t)P (θL, θU )x(t), (10)

where P (θL, θU ) ∈ Rnx×nx is a positive and symmetric
matrix, and defined as

P (θL, θU ) = PL(θL ⊗ Inx
) + PU (θU ⊗ Inx

),

where PL 4
=

[
PL1 · · · PLnr

]
and PU 4

=[
PU1 · · · PUnr

]
with positive and symmetric matrices

PLi and PUi for i = 1, ..., nr. For guaranteeing the stability
of (8), the derivative of the abstract energy function (10),

V̇ (x(t)) = xT (t)Ṗ (θL, θU )x(t) + xT (t)He
{
P (θL, θU )

×A(θ)+P (θL, θU )B(θ)K(θL, θU )

}
x(t), (11)

should be negative.
Theorem 1: It is supposed that there exist matrices

Xij ,Yij ∈ Rnx×nx , M ∈ R3nrnx×(5nr+1)nx , K̄ ∈
Rnu×nx , K̄L, K̄U ∈ Rnu×nrnx , K̄LL, K̄LU , K̄UU ∈
Rnrnu×nrnx and symmetric matrices 0 < P̄Li , P̄

U
i ∈

Rnx×nx for i, j = 1, ..., nr such that the conditions

Xij +XT
ij > 0, Yij + Y Tij > 0, (12)

for 1 ≤ i, j ≤ nr, and the triple-parameter LMI;

He{Ψ + Φ + Ξ} < 0, (13)

at the all combinations among Snr

θL
, Snr

θ , Snr

θU
where

Ψ =


ψ11 0 ψ13 ψ14 ψ15 ψ16

0 0 0 0 0 0
0 0 ψ33 ψ34 0 0
0 0 0 ψ44 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

with ψ11 = B(θ)K̄, ψ13 = A(θ)P̄L + B(θ)K̄L, ψ14 =
A(θ)P̄U + B(θ)K̄U , ψ15 = − 1

2 P̄L , ψ16 = − 1
2 P̄U , ψ33 =

(Inr
⊗B(θ))K̄LL, ψ34 = (Inr

⊗B(θ))K̄LU , ψ44 = (Inr
⊗

B(θ))K̄UU , and

Φ =


φ11 0 0 0 φ15 φ16
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 φ55 0
0 0 0 0 0 φ66

 ,

with

φ11 = −
nr∑
i=1

nr∑
j=1

(Xijα
L
i α

U
j + Yijβ

L
i β

U
j ),

φ15 =

[ nr∑
i=1

(Xi1α
L
i +X1iα

U
i )

nr∑
i=1

(Xi2α
L
i +X2iα

U
i )

· · ·
nr∑
i=1

(Xinrα
L
i +Xnriα

U
i )

]
φ16 =

[ nr∑
i=1

(Yi1β
L
i + Y1iβ

U
i )

nr∑
i=1

(Yi2β
L
i + Y2iβ

U
i )

· · ·
nr∑
i=1

(Yinrβ
L
i + Ynriβ

U
i )

]

φ55 = −


X11 X12 · · · X1nr

X21 X22 · · · X2nr

...
...

. . .
...

Xnr1 Xnr2 · · · Xnrnr



φ66 = −


Y11 Y12 · · · Y1nr

Y21 Y22 · · · Y2nr

...
...

. . .
...

Ynr1 Ynr2 · · · Ynrnr

 ,
and

Ξ =


−(θL)T ⊗ Inx

−θT ⊗ Inx
−(θU )T ⊗ Inx

0 Inr
⊗ Inx

0
Inr
⊗ Inx

0 0
0 0 Inr ⊗ Inx

0 0 0
0 0 0

M. (14)

The matrices whose i-th entries are P̄Li , P̄
U
i , respectively,

defined as P̄L, P̄U (i.e., P̄L 4=
[
P̄L1 · · · P̄Lnr

]
, P̄U 4=[

P̄U1 · · · P̄Unr

]
) and P̄ (θL, θU ) = P̄L(θL ⊗ Inx) +

P̄U (θU ⊗ Inx). Then the IT2 T–S fuzzy system (8) is
asymptotically stable. And, the control gain K(θL, θU ) in
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(6) is obtained by the following structured gain matrices:
K = K̄(P̄ (θL, θU ))−1, KL = K̄L(Inr ⊗ P̄ (θL, θU ))−1,
KU = K̄U (Inr ⊗ P̄ (θL, θU ))−1, KLL = K̄LL(Inr ⊗
P̄ (θL, θU ))−1, KLU = K̄LU (Inr

⊗ P̄ (θL, θU ))−1, KUU =
K̄UU (Inr

⊗ P̄ (θL, θU ))−1.
Proof: Based on the replacement technique, the derivative

of Lyapunov function given in (11) is rewritten as,

V̇ (x(t)) = xTP (θL, θU )

{
− ˙̄P (θL, θU ) + He

{
A(θ)

× P̄ (θL, θU ) +B(θ)K̄(θL, θU )

}}
P (θL, θU )x

= xTP (θL, θU )ηTHe{Ψ}ηP (θL, θU )x, (15)

where P̄ (θL, θU ) = P−1(θL, θU ), K̄(θL, θU ) = K(θL, θU )

P̄ (θL, θU ), ˙̄P (θL, θU ) = −P̄ (θL, θU )Ṗ (θL, θU )P̄ (θL, θU )
and the outer matrix η is denoted as [Inx

|θT ⊗ Inx
|(θL)T ⊗

Inx
|(θU )T⊗Inx

|(θ̇L)T⊗Inx
|(θ̇U )T⊗Inx

]T . By the property
of kronecker products, it holds that

B(θ)(θL ⊗ Inu
)T K̄LL = (θL ⊗ Inx

)T (Inr
⊗B(θ))K̄LL,

this switching method was applied to K̄LU , K̄UU in the same
manner and yields ψ33, ψ34 and ψ44.

Nonetheless, He{Ψ} < 0 at every vertex of Snr

θ can imply
that the derivative of Lyapunov functions is negative, the
LMI is not solvable due to its zero diagonal terms. Using
relaxed conditions by membership constraints, the feasible
stabilization condition can be achieved in the shape of the
LMI with triple parameters. The orthogonal complements
yield that ηTHe{Ξ}η = 0 with slack matrix M described in
(14). Furthermore, Ξ has triple-membership parameters θL, θ
and θU .

From the relations in (1) and (2), the relaxed condition
is facilitated by introducing the slack matrices Xij , Yij ∈
Rnx×nx such that (12) for 1 ≤ i, j ≤ nr. Then it is satisfied
with the following description:{

−(θ̇Li − αLi )(θ̇Lj − αUj )(Xij +XT
ij) > 0,

−(θ̇Ui − βLi )(θ̇Uj − βUj )(Yij + Y Tij ) > 0.
(16)

for 1 ≤ i, j ≤ nr. Here, the relaxed relations (16) leads that
ηTHe{Φ}η > 0.

Thus, we have

V̇ (x(t)) < xTP (θL, θU )ηTHe{Ψ + Φ + Π}ηP (θL, θU )x,

and the relaxed stabilization condition is derived in the triple-
membership-parameter matrix inequalities (13).

While the upper and lower MFs can be obtained in
advance, computing the control gain matrices depending
P̄ (θL, θU ) requires times to solve LMIs. One strategy for
circumventing the need to perform online updates of the
control gain involves selecting (10) as a general quadratic
Lyapunov function.

Corollary 1: It is supposed that there exist matrices M ∈
R3nrnx×(3nr+1)nx , K̄ ∈ Rnu×nx , K̄L, K̄U ∈ Rnu×nrnx ,
K̄LL, K̄LU , K̄UU ∈ Rnrnu×nrnx and symmetric matrices
0 < P̄ ∈ Rnx×nx such that the conditions

He{Ψ̃ + Ξ̃} < 0, (17)

at the all combinations among Snr

θL
, Snr

θ , Snr

θU
where

Ψ̃ =


ψ̃11 0 ψ̃13 ψ̃14

0 0 0 0

0 0 ψ̃33 ψ̃34

0 0 0 ψ̃44

 ,
with ψ̃11 =B(θ)K̄+A(θ)P̄ , ψ̃13 =B(θ)K̄L, ψ̃14 =B(θ)K̄U ,
ψ̃33 = (Inr ⊗B(θ))K̄LL, ψ̃34 = (Inr

⊗B(θ))K̄LU , ψ̃44 =
(Inr
⊗B(θ))K̄UU , and

Ξ̃ =


−(θL)T ⊗ Inx

−θT ⊗ Inx
−(θU )T ⊗ Inx

0 Inr ⊗ Inx 0
Inr ⊗ Inx 0 0

0 0 Inr
⊗ Inx

M. (18)

Then the IT2 T–S fuzzy system (8) is asymptotically
stable. Furthermore, the control gain K(θL, θU ) in (6) is
obtained with the following structured gain matrices: K =
K̄P̄−1, KL = K̄L(Inr

⊗ P̄ )−1, KU = K̄U (Inr
⊗ P̄ )−1,

KLL = K̄LL(Inr
⊗ P̄ )−1, KLU = K̄LU (Inr

⊗ P̄ )−1,
KUU = K̄UU (Inr ⊗ P̄ )−1.

Proof : Instead of the membership-dependent Lyapunov
function in (10), the general quadratic Lyapunov function
V (x(t)) = xT (t)Px(t) is considered where a symmetric
matrix 0 < P ∈ Rnx×nx . When P̄ = P−1, the proof is
proceeded in the same way of the theorem 1.

Remark 1: The conventional relaxed technique [12] em-
ploying orthogonal complementation necessitates a larger
slack matrix for more outer variables (in theorem 1, the
outer variable is η). However, it can not be asserted that
all slack variables corresponding to the orthogonal matrix
are necessary. The orthogonal complements are rewritten as
follows:

Ξ̄1 =

[
Inx

θL ⊗ Inx

]T [ −(θL)T ⊗ Inx

Inr ⊗ Inx

]
M1

Ξ̄2 =

[
Inx

θ ⊗ Inx

]T [ −θT ⊗ Inx

Inr ⊗ Inx

]
M2

Ξ̄3 =

[
Inx

θU ⊗ Inx

]T [ −(θU )T ⊗ Inx

Inr
⊗ Inx

]
M3

where Ξ̄i=0 for i=1, 2, 3 with slack matrices M1,M2,M3 ∈
Rnrnx×(nr+1)nx . In the light of this perspective, while
exploiting knowledge of the orthogonality, the relaxed con-
dition can be described as Ξ̄ = 0 where

Ξ̄ =

[
−(θL)T ⊗ Inx

Inr
⊗ Inx

]
M1 +

[
−θT ⊗ Inx

Inr
⊗ Inx

]
M2

+

[
−(θU )T ⊗ Inx

Inr ⊗ Inx

]
M3. (19)

Thus another candidate for relaxing orthogonal complement
(19), which can reduce the number of decision variables, can
be deemed on behalf of (14) and (18) with proper matrix
manipulations.
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Fig. 2. Stability region of the fuzzy system with different system parameters
a and b.

TABLE I
THE NUMBER OF DECISION VARIABLES

Method [8] Thm1 Thm1?

# variables 140 734 302

IV. SIMULATION

The simulation ran on a laptop with 2.4GHz Intel Core i5-
1135G7 and 8GB of RAM. For solving LMI in MATLAB
2020b, CVX is used with the option ”precision best” to
obtain more strict solutions.

Example 1: In [5], [8], the numerical IT2 T–S fuzzy system
under three rules is described as follows:

Rule k :IF x1(t) is Fk1 ,
THEN ẋ(t) = Akx(t) +Bku(t), k = 1, 2, 3

A1 =

[
2.78 −5.63
0.01 0.33

]
, B1 =

[
2
−1

]
,

A2 =

[
0.2 −3.22

0.35 0.12

]
, B2 =

[
8
0

]
,

A3 =

[
−a −6.63

0.45 0.15

]
, B3 =

[
−b+ 6
−1

]
,

where x(t) = [x1(t) x2(t)]T, x1(t) ∈ [−10, 10] and a, b
are the constant parameters of a nonlinear plant to explore
a stability region. The lower and upper MFs are given as
follows: θL1 = 0.95 − 0.925/(1 + exp(−x1(t) − 4.5)/8),
θU1 = 0.95−0.925/(1+exp(−x1(t)−3.5)/8), θL3 = 0.025+
0.925/(1+exp(−x1(t)+4.5)/8), θU3 = 0.025+0.925/(1+
exp(−x1(t) + 3.5)/8), and θL2 = 1 − (θU1 + θU3 ), θU2 =
1− (θL1 + θL3 ).

For comparison purposes, the stabilization conditions
based on the corollary 1 with algorithm 2 (q = 7) proposed
in [8] is shown. The proposed theorem is described as Thm1.
And, as discussed in remark 1, the structured relaxation
method using the orthogonal complement (19) is depicted for
comparison as Thm1?. For the abovementioned methods, the
number of decision variables ”# variables” is given in Table
I. It is noteworthy that [8], which studied polynomially ho-
mogeneous matrices, did not consider relaxation techniques,
resulting in smaller # variables.

The stability region of the fuzzy system with different
values of a and b is shown in Fig. 2. The feasible solution

0 1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

4

Fig. 3. State and Input histories of the fuzzy system.

regions for the method in [8] are illustrated as ◦. The
feasible solution regions by Thm1 and Thm1? are denoted
as ?∪ ◦. The results verifying the stability region show that
the proposed method can drastically enlarge stability regions.
Significantly, the stability region of Thm1? is equivalent to
that of Thm1, despite a reduction of nearly half in its deci-
sion variables. This observation underscores the remarkable
efficacy of the relaxation strategy proposed in remark 1.

The points set S3∗

θL , S
3
θ and S3∗

θU are defined as

S3∗

θL = {(0.6657, 0.1795, 0.1548)(0.1548, 0.1649, 0.6259)

(0.1548, 0.2785, 0.5124)(0.5124, 0.2785, 0.1548)

(0.6259, 0.1649, 0.1548)},
S3
θ = {(0.1548, 0.1795, 0.6657)(0.1548, 0.2785, 0.5667)

(0.1694, 0.1649, 0.6657)(0.5667, 0.2785, 0.1548)

(0.6657, 0.1649, 0.1694)(0.6657, 0.1795, 0.1548)},
S3∗

θU = {((0.1548, 0.2338, 0.6657)(0.1548, 0.2785, 0.6210)

(0.2237, 0.1649, 0.6657)(0.6210, 0.2785, 0.1548)

(0.6657, 0.1649, 0.2237)(0.6657, 0.2338, 0.1548))}.

It is notable that S3
θL = S3∗

θL ∪ S
3
θ and S3

θU = S3∗

θU ∪ S
3
θ .

Fig. 3 shows the trajectories for the signal of states and
input using Cor1 with the system parameter a = 16 and
b = 24. The control gains are given as follows:

K =
[
−0.7877 0.3531

]
,

KL =
[
−32.9 11.3 −32.7 −3.8 −32.9 11.3

]
e-03,

KU =
[
−37.3 12.6 −30.6 0.2 −37.3 12.6

]
e-03,

KLL =

 13.7 24.6 −1.8 3.9 0.7 2.2
4.3 6.8 10.1 8.3 4.3 6.8
0.7 2.2 −1.8 3.9 13.7 24.6

 e-03,

KLU =

 4.4 12.2 2.2 6.4 4.4 12.2
2.2 6.3 1.1 3.3 2.2 6.3
4.4 12.2 2.2 6.4 4.4 12.2

 e-03,

KUU =

 14.1 27.9 −1.0 5.7 0.9 4.3
3.7 7.9 10.1 9.0 3.7 7.9
0.9 4.3 −1.0 5.7 14.1 27.9

 e-03.

Example 2: Through the inverted pendulum of [5],
the proposed method is validated. The state equation
of the pendulum is described as follows with the
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TABLE II
MFS OF AN INVERTED PENDULUM SYSTEM

ρLF1
1
(f1(x(t))) = ρLF2

1
(f1(x(t))) =

−f1(x(t))+fmax
1

fmax
1 −fmin

1

ρUF3
1
(f1(x(t))) = ρUF4

1
(f1(x(t))) =

f1(x(t))−fmin
1

fmax
1 −fmin

1

with x2(t) = 0,mp = 3kg and Mc = 8kg

ρUF1
1
(f1(x(t))) = ρUF2

1
(f1(x(t))) =

−f1(x(t))+fmax
1

fmax
1 −fmin

1

ρLF3
1
(f1(x(t))) = ρLF4

1
(f1(x(t))) =

f1(x(t))−fmin
1

fmax
1 −fmin

1

with x2(t) = 5,mp = 3kg and Mc = 8kg

ρLF1
2
(f2(x(t))) = ρLF3

2
(f2(x(t))) =

−f2(x(t))+fmax
2

fmax
2 −fmin

2

ρUF2
2
(f2(x(t))) = ρUF4

2
(f2(x(t))) =

f2(x(t))−fmin
2

fmax
2 −fmin

2

with mp = 3kg and Mc = 12kg

ρUF1
2
(f2(x(t))) = ρUF3

2
(f2(x(t))) =

−f2(x(t))+fmax
2

fmax
2 −fmin

2

ρLF2
2
(f2(x(t))) = ρLF4

2
(f2(x(t))) =

f2(x(t))−fmin
2

fmax
2 −fmin

2

with mp = 2kg and Mc = 8kg

state vector x(t) = [x1(t) x2(t)]T : ẋ1(t) = x2(t),
ẋ2(t) =

gsin(x1(t))−amplx2(t)
2sin(2x1(t))/2−acos(x1(t))u(t)

4l/3−ampl(cos(x1(t)))2
,

where x1(t) ∈ [−5π/12, 5π/12] is the angular displacement
(rad) of the pendulum, x2(t) ∈ [−5, 5] is the angular velocity
(rad/s) of the pendulum, the control input u(t) is the force
applied to the cart (N), g = 9.8 m/s2 is the acceleration due
to gravity, the masses of the pendulum are mp ∈ [2kg, 3kg].
The masses of the cart were Mc ∈ [8kg, 12kg]. The length
of the pendulum is l = 0.5 m, and a = 1

mp+Mc
.

An IT2 T–S fuzzy system (5) with four rules can describe
the inverted pendulum system with the uncertain modeling
parameters mp and Mc.

Rule k :IF f1(x(t)) is Fk1 and f2(x(t)) is Fk2
THEN ẋ(t) = Akx(t) +Bku(t), k = 1, 2, 3, 4

A1 = A2 =

[
0 1

fmin1 0

]
, B1 = B3 =

[
0

fmin2

]
,

A3 = A4 =

[
0 1

fmax1 0

]
, B2 = B4 =

[
0

fmax2

]
,

where x(t) = [x1(t) x2(t)]T, fmin1 = 10.0078, fmax1 =
18.4800, fmin2 = −0.1765, and fmax2 = −0.0261. The
MFs of the inverted pendulum for the proposed system are
listed in Table II, where f1(x(t)) and f2(x(t)) are denoted
as g−amplx2(t)

2cos(x1(t))sin(x1(t))
4l/3−amplcos2(x1(t))x1(t)

and −acos(x1(t))
4l/3−amplcos2(x1(t))

, re-
spectively.

Fig. 4 illustrates the phase portraits subject to the different
initial states in the operating domain with corollary 1. The
red represents the case where mp = 2 kg and Mc = 8
kg, and the blue represents the case where mp = 3 kg and
Mc = 12 kg.

V. CONCLUSIONS

This paper presents a study of stabilization synthesis
using a non-PDC MF-dependent controller for IT2 T–S
fuzzy systems. The stability conditions were derived using
membership-dependent matrix inequalities and valuable re-
laxation techniques. The proposed approaches exhibited less

Fig. 4. Phase portraits of the states in the operating domain.

conservatism and applicability, as demonstrated by examples.
In the future, the presented idea can be studied with the
polynomially homogenous MFs to obtain the generalized
stability conditions in the sense of a quadratic matrix form.
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