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Abstract— In this paper we address distributed learning
problems over peer-to-peer networks. In particular, we focus on
the challenges of quantized communications, asynchrony, and
stochastic gradients that arise in this set-up. We first discuss
how to turn the presence of quantized communications into an
advantage, by resorting to a finite-time, quantized coordination
scheme. This scheme is combined with a distributed gradient
descent method to derive the proposed algorithm. Secondly, we
show how this algorithm can be adapted to allow asynchronous
operations of the agents, as well as the use of stochastic
gradients. Finally, we propose a variant of the algorithm which
employs zooming-in quantization. We analyze the convergence
of the proposed methods and compare them to state-of-the-art
alternatives.

I. INTRODUCTION

In recent years, multi-agent systems have become ubiq-
uitous in a broad range of applications, e.g. robotics, power
grids, traffic networks [1], [2]. A multi-agent system consists
of autonomous agents with communication and computation
capabilities, cooperating to accomplish a specific goal, e.g.
learning, decision-making, navigation. In this paper, we
will focus on developing algorithms to enable decentralized
learning. In decentralized learning, the agents in the system
collect and locally store data, with the goal being to col-
lectively train a model without sharing these raw data [3].
To enable this objective, the design of distributed learning
(or optimization) algorithms has been extensively studied in
the past decades [2], [4]. In particular, different classes of
algorithms have been proposed, with the main ones being
gradient methods (e.g. DGD), gradient tracking, and dual
methods (e.g. ADMM) [5]. In this paper, we will focus on
gradient-based methods.

Learning over a multi-agent system, however, presents a
number of practical challenges, with communication con-
straints being a central one. These constraints may arise
due to the reliance on communication channels with limited
bandwidth (e.g. wireless) [6], or the necessity to share high
dimensional models (e.g. neural networks) [7]. A common
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solution to reduce the communication burden is the use of
quantization, which however may result in lower accuracy
of the trained model. In this paper we address distributed
learning with quantized communication, and aim at showing
how to turn quantization from a design constraint into
an opportunity. The central idea is that agents employing
quantized communications can reach an inexact consensus
in finite time. Thus, in this paper we combine a Finite-
Time, Quantized Coordination (FTQC) scheme with gradient
descent, to design efficient learning algorithms that only
require quantized communications. In particular, the FTQC
scheme we analyze is based on the consensus ADMM [8],
differently from previous alternatives [9], [10].

Besides limited communications, in this paper we address
two additional challenges that arise in distributed learning:
asynchrony [11] and stochastic gradients [12]. Indeed, the
cooperating agents may have access to different, and limited,
hardware resources. On the one hand, different resources
result in the agents having different computation speeds,
which make asynchronous completion of local training steps
inevitable. In this paper, therefore, we follow the literature
[13], [14], [15] in designing a gradient-based learning al-
gorithm that enables asynchronous local training. On the
other hand, limited hardware resources have the consequence
that agents may find the computation of local gradients
prohibitive (e.g., due to potentially lengthy computation
times or memory constraints). For this reason, the agents
may resort to computing inexact stochastic gradients [12],
[16], by only using a subset of the available data. In the
following we design an algorithm that relies on stochastic
gradients.

The main contributions of the paper are as follows:
1) We propose an asynchronous distributed learning algo-

rithm which relies on finite-time, quantized coordina-
tion. The novel FTQC scheme we propose is based on
consensus ADMM, and the algorithm allows for the
use of stochastic gradients.

2) We further propose an alternative version of the algo-
rithm which employs zooming-in quantization, which
progressively reduces the loss of accuracy due to
quantized communications.

3) We analyze the convergence of the proposed FTQC
scheme, and of the complete algorithm, highlighting
the effect of (i) quantization, (ii) stochastic gradients,
(iii) asynchrony. We further analyze the effect of
zooming-in quantization on the convergence.

4) We conclude with numerical results comparing the
proposed FTQC scheme and algorithms against state-
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of-the-art alternatives.

II. PROBLEM FORMULATION

Given the undirected graph G = (V, E) with N agents,
our goal is to solve the distributed optimization problem

min
x∈RnN

N∑
i=1

fi(xi) s.t. x ∈ C, (1)

where x = [x>1 , . . . , x
>
N ]>, fi : Rn → R are local costs,

each privately held by one of the agents, and we define the
consensus set C = {x ∈ RnN | xi = xj ∀i, j ∈ V}. In the
following we are interested in the finite-sum local costs that
arise in learning applications, hence we assume that

fi(x) =
1

mi

mi∑
h=1

`(x; dhi ) (2)

where ` : Rn → R is a loss function (e.g. logistic) and
{dhi }mi

h=1 are the data points stored by agent i (e.g. pairs of
label and feature vector).

The following assumptions will hold throughout the paper.
Assumption 1 (Network): The graph G = (V, E) is undi-

rected and connected.
Assumption 2 (Costs): The local cost fi : Rn → R is

¯
λ-

strongly convex and λ̄-smooth for each agent i ∈ V .
By Assumption 1, the graph is connected, which ensures

that problem (1) can be solved in a distributed fashion.
Moreover, Assumption 2 implies that there is a unique
solution to the problem, which we can write as

x∗ = 111N ⊗ x∗, x∗ = arg min
x∈Rn

N∑
i=1

fi(x).

We are now ready to discuss the objectives that will guide
the algorithm design in Section III:

1) Quantized communications: learning problems are
high-dimensional, as the model being trained may have
a large number of parameters n � 1 [17], [18].
However, distributed learning requires the agents to
share their local models, which may cause a large
communication overhead. The idea is to design an
algorithm that uses quantized/compressed communica-
tions [19].

2) Stochastic gradients: in order to train an accurate
model, the local costs (2) of the learning problem
are often defined over a large data-set, with mi � 1
[17], [18]. However, computing the gradients of such
costs may be excessively time consuming. Hence, we
are interested in designing an algorithm that uses less
computationally expensive gradients, called stochastic
gradients.

3) Asynchrony: synchronizing all agents in the network G
may not be feasible, especially when N � 1 [11]. The
goal is to design an algorithm that allows the agents
to perform computations asynchronously.

III. ALGORITHM DESIGN

In this section we design the proposed distributed learning
algorithm tailored to the objectives detailed in section II.
Conceptually, one could think of solving problem (1) by
applying the projected gradient method [20] characterized
by

xk+1 = projC (xk − α∇f(xk)) , k ∈ N, (3)

where ∇f(x) = [∇f1(x1)>, . . . ,∇fN (xN )>]> collects the
local gradients, and the projection onto the consensus space
is projC(x) = 1

N

∑N
i=1 xi.

Clearly, the computation of projC(x) cannot be performed
in a distributed fashion, except with specific architectures
such as federated learning [18]. The objective therefore is
to propose a distributed (and approximate) implementation
of the consensus projection. Different techniques have been
explored to this end, foremost of which is averaged consen-
sus. In particular, we can replace projC(x) with one or more
consensus steps, giving rise to Near-DGD [21]

xk+1 = W t (xk − α∇f(xk)) , k ∈ N, t ≥ 1, (4)

where W is a symmetric, doubly stochastic matrix. Alterna-
tively, the average consensus can be replaced with dynamic
average consensus, which gives rise to gradient tracking
algorithms [12].

In this paper we take a different approach by using,
similarly to [9], [10], a finite-time, quantized coordination
(FTQC) scheme to approximate projC(x). Indeed, as dis-
cussed in section II, in learning applications we may need
to use quantized communications, and the idea is to use this
fact to our advantage.

A. Finite-time, quantized coordination

The main insight guiding our design is that specific con-
sensus schemes achieve convergence in finite-time when the
communications are quantized. Employing such a scheme
therefore allows the agents to approximate projC(x) in a
finite number of iterations. The algorithm proposed in [22],
for example, is specifically tailored to achieve this goal.
However, we explore a different strategy by showing how the
consensus ADMM [8] satisfies the requirements of a FTQC
scheme.

Let {yi}i∈V be local states that need to be averaged. We
can formulate this as the distributed optimization problem

min
x∈RnN

1

2

N∑
i=1

‖xi − yi‖2 s.t. x ∈ C, (5)

to which we apply the distributed ADMM [8], yielding
Algorithm 1 1.

The following lemma shows how Algorithm 1 can in-
deed serve as a FTQC scheme. The proof is reported in
Appendix I.

Lemma 1 (Consensus ADMM as FTQC scheme): Let
{w`i}`∈N be the trajectory generated by Algorithm 1

1To be precise, Algorithm 1 is derived from [8] by setting α = 0.5, and
excluding the termination step, discussed in the following.
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Algorithm 1 Finite-time quantized coordination (FTQC)
Input: The states to be averaged {yi}i∈V , z0ij = 0 for all

i ∈ V , j ∈ Ni, penalty ρ > 0, quantizer q(·), termination
threshold θ > 0.
// initialization

1: each agent i ∈ V picks z0ij for all j ∈ Ni
2: for ` = 1, 2, . . . do

// local update and transmission
3: if agent i is active
4: computes w`i = 1

1+ρ|Ni|

(
yi +

∑
j∈Ni

z`ij

)
5: and transmits ti→j = q

(
−z`ij + 2ρw`i

)
to each

neighbor j ∈ Ni
6: end if

// auxiliary update
7: if agent i is active and receives tj→i
8: computes z`+1

ij = 1
2

(
z`ij + tj→i

)
9: end if

// termination
10: if

∥∥z`+1
ij − z`ij

∥∥ ≤ θ for all j ∈ Ni
11: agent i terminates
12: end if
13: end for

applied to average {yi}i∈V , with a given (auxiliary) initial
condition {z0ij}i∈V, j∈Ni

, and penalty ρ > 0. Assume that
communications are quantized according to

q(x) = ∆
⌊ x
∆

⌉
, ∆ > 0 (6)

where b·e rounds to the nearest integer. Then there exist µ ∈
(0, 1) and C > 0 such that for each i ∈ V∥∥∥∥∥w`i − 1

N

∑
i∈V

yi

∥∥∥∥∥ ≤ C
µ`d(z0) +

∆

2

√
n
∑
i∈V
|Ni|

1− µ`
1− µ


with d(z0) being a function of the initial conditions. Ad-
ditionally, convergence is achieved after a finite number of
iterations; that is, for ` ≥ ¯̀ we have w`i = w`+1

i , with

¯̀≥
∣∣∣∣∣ 1

log(µ)
log

(
∆
2

√
n
∑
i∈V |Ni|

(1− µ)d(z0)

)∣∣∣∣∣ .
We can now use the finite-time convergence result of

Lemma 1 to design the termination technique in Algorithm 1.
The idea is for each agent i ∈ V to detect when the difference
z`+1
ij − z`ij is below a threshold θ, identifying that their

values have stopped changing significantly. In practice, we
can choose θ = c∆ for some c ≥ 1. Notice that the agents
do not need to know ¯̀ to apply the termination.

Remark 1 (Speed and accuracy trade-off): Lemma 1
shows how the smaller the quantization level ∆ is, the
smaller the consensus error. On the other hand, smaller
values of ∆ imply that a larger number of iterations is
required to reach convergence, thus presenting a trade-off
between speed and accuracy.

Remark 2 (Why choose ADMM?): Why choose consen-
sus ADMM as an FTQC scheme, as opposed to the average
consensus of Near-DGD, or the FTQC [22]? The answer is
that ADMM has been proved to be robust to many different
challenges, ranging from asynchrony and packet losses [8],
to quantization and other additive errors [23]. Alternative
schemes instead lack such theoretical robustness guarantees.

Remark 3 (Extensions of Algorithm 1): Besides allowing
for asynchronous activations and packet losses (cf. Re-
mark 2), we can further modify Algorithm 1 to allow the
agents to use different quantizers. Indeed, Lemma 1 would
apply equally, but replacing ∆ with the maximum of the
local quantization level ∆i.

B. Algorithm

The proposed Algorithm 2 is based on the projected
gradient descent (3), where the projection is approximated
with the finite-time, quantized coordination scheme discussed
in section III-A above.

In particular, the agents apply a local gradient step in steps
2-3. They then apply Algorithm 1 on the result of steps 2-3
(yk), and update their local states xk with the result. Notice
that the algorithm allows for asynchronous operations: steps
2-3 are performed only by active agents, while inactive ones
do not update their yi,k’s. Additionally, the agents may use
stochastic gradients ∇̂fi instead of the full gradients.

Algorithm 2 Proposed algorithm
Input: For each agent i ∈ V initialize xi,0; choose the step-

size α < 2/λ̄.
1: for k = 0, 1, . . . each agent i do

// local update
2: if agent i active
3: apply the local (possibly inexact) gradient step

yi,k = xi,k − α∇̂fi(xi,k)

4: else yi,k = yi,k−1
5: end if

// coordination
6: apply finite-time, quantized coordination

xk+1 = Algorithm 1(yk)

with yk = [y>1,k, . . . , y
>
N,k]>

7: end for

C. Zooming-in quantization

By the discussion in Remark 1, the quantization level ∆
mediates the trade-off between the speed of convergence
of Algorithm 1 and its consensus error. The idea then
is to exploit this trade-off to improve the performance of
Algorithm 2 by changing ∆ over time.

By Remark 3 we know that the agents can have unco-
ordinated quantizers, i.e. qi(x) = ∆i bx/∆ie. Each agent
then is allowed to modify its quantizer whenever necessary.
Algorithm 3 reports a prototype of how this can be imple-
mented. Specifically, each agent checks periodically if its
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local solution xi,k has stopped improving, and selects r∆i,
r ∈ (0, 1), if this is the case.

An alternative algorithm with zooming-in quantization was
proposed in [24]. However, in [24] the agents reduce their
quantization in a synchronized fashion via voting, while
in Algorithm 3 the agents can set their quantization levels
independently.

Algorithm 3 Proposed algorithm (zooming-in quantization)
Input: For each agent i ∈ V initialize xi,0; choose the step-

size α. Choose the local quantization level ∆i, and let
r ∈ (0, 1) and T ≥ 1.

1: for k = 0, 1, . . . each agent i do
// local update

2: if agent i active
3: apply the local (possibly inexact) gradient step

yi,k = xi,k − α∇̂fi(xi,k)

4: else yi,k = yi,k−1
5: end if

// coordination
6: xk+1 = Algorithm 1(yk), with local quantization

levels ∆i

// zooming-in quantization
7: if agent i activated T times & ‖xi,k+1 − xi,k‖ ≤ ∆i

8: ∆i ← r∆i

9: end if
10: end for

IV. CONVERGENCE ANALYSIS

In this section we analyze the convergence of Algorithms 2
and 3 when the agents operate asynchronously and apply
stochastic gradients. Before presenting our analysis we make
the following assumption.

Assumption 3 (Set-up): Each agent i ∈ V activates at
iteration k to perform a local gradient step with probability
pi ∈ (0, 1]. In particular, active agents use a (possibly
inexact) gradient ∇̂fi, for which there exists τ ≥ 0 such
that

E
[∥∥∥∇̂fi(x)−∇fi(x)

∥∥∥] ≤ τ.
Under this assumption, we derive the following conver-

gence result, proved in Appendix II.
Proposition 1 (Convergence of Algorithm 2): Let

{xk}k∈N be the trajectory generated by Algorithm 2.
Let Assumptions 1, 2, and 3 hold. Then for all k > 0 it
holds that

E [‖xk − x∗‖] ≤
√

maxi pi
mini pi

(
χk ‖x0 − x∗‖

+
(
γ + ατ

√
N
) 1− χk

1− χ

)
where χ =

√
1− (1− ζ2) mini pi ∈ (0, 1) with ζ =

max{|1 − α
¯
λ|, |1 − αλ̄|}, and γ = O (∆) (as characterized

in Lemma 1).

As a consequence of Proposition 1, we see that

lim
k→∞

E [‖xk − x∗‖] ≤
√

maxi pi
mini pi

γ + ατ
√
N

1− χ
which highlights how the different challenges of quantiza-
tion, stochastic gradients, and asynchrony impact the asymp-
totic error.

We can similarly characterize the asymptotic error when
we employ the zooming-in quantization of Algorithm 3. The
proof is reported in Appendix III.

Corollary 1 (Convergence of Algorithm 3): Let {xk}k∈N
be the trajectory generated by Algorithm 3. Let Assump-
tions 1, 2, and 3 hold. Then it holds that

lim
k→∞

E [‖xk − x∗‖] ≤
√

maxi pi
mini pi

ατ
√
N

1− χ .

Clearly, using zooming-in quantization implies that quan-
tization will not impact the asymptotic error, and only the
effects of asynchrony and stochastic gradients are present.

V. NUMERICAL RESULTS

In this section we evaluate the performance of the pro-
posed algorithms on a classification task, and compare it with
algorithms from the literature. We consider problem (1) with
local costs

fi(x) =

mi∑
h=1

log
(
1 + exp(−bhi ahi x)

)
+
ε

2
‖x‖2 (7)

defined by the local dataset {dhi = (ahi , b
h
i ) ∈ R1×n ×

{−1, 1}}mi

h=1. In our experiments we have N = 10 agents
with mi = 150 data-points each, and the problem size is n =
10. The regularization weight is set to ε = 0.075. Moreover,
unless otherwise stated we use the symmetric quantizer (6).
Finally, the data for the problem are randomly generated
using the make classification utility of sklearn
[25], and all algorithms are implemented in tvopt [26].

A. Performance of Finite-Time, Quantized Coordination
schemes

We start by comparing the performance of the proposed
Finite-Time, Quantized Coordination scheme Algorithm 1
with the scheme proposed in [22] and employed in [9], [10].
In Table I we compare the two FTQC schemes in terms
of consensus error and number of iterations, for different
quantization levels. The algorithms are applied to average
randomly generated vectors in R10, the size of x in (7).
We can see that Algorithm 1 consistently outperforms [22]
in terms of consensus error, since it reaches a smaller
neighborhood of the consensus, and in terms of the number
of iterations it requires.

Turning exclusively to Algorithm 1, we know that it is
characterized by two parameters, the penalty ρ and the
quantizer q(·). In the following we provide results to guide
the tuning of these parameters. First of all, Figure 1 reports
the consensus error and number of iterations for different
values of the penalty and quantization levels. Interestingly,
both metrics are minimized for a value of ρ ≈ 0.3. Moreover,
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TABLE I
CONSENSUS ERROR AND ITERATION NUMBER FOR DIFFERENT

QUANTIZATION LEVELS.

∆
[22] Algorithm 1

Cons. err. Num. iter. Cons. err. Num. iter.
10−8 5.31× 10−8 115 2.85× 10−8 105
10−7 5.13× 10−7 106 2.88× 10−7 95
10−6 5.32× 10−6 96 2.89× 10−6 86
10−5 5.30× 10−5 86 2.86× 10−5 80
10−4 5.31× 10−4 75 2.89× 10−4 66
10−3 5.27× 10−3 67 2.87× 10−3 57
10−2 5.36× 10−2 55 2.91× 10−2 48
10−1 5.18× 10−1 49 2.87× 10−1 43
1 5.17 38 2.89 29
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Penalty ρ

Fig. 1. Consensus error and iteration number for Algorithm 1 with different
penalties and quantization levels.

as predicted by Remark 1, the smaller the quantization level
is, the smaller the consensus error is, to the detriment of the
number of iterations needed to converge.

Finally, Table II reports the performance of the consensus
scheme with different quantizers besides the symmetric (6),
namely: floor q(x) = ∆bx/∆c, ceil q(x) = ∆dx/∆e,
sparisfier, which sets to zero all components of x with
absolute value below θ = 0.1. We notice that the floor

TABLE II
PERFORMANCE OF ALGORITHM 1 WITH DIFFERENT QUANTIZERS.

Quantizer Cons. err. Num. iter.
Symmetric 3.37× 10−3 52

Floor 8.70× 10−3 52
Ceil 8.69× 10−3 52

Sparsifier 3.79× 10−3 50

(employed in [22], [9], [10]) and ceiling quantizers attain a
more than double the consensus error of the symmetric one.
The sparsifier instead achieves similar performance. Future
work will explore the use of the sparsifier from a theoretical
perspective.

B. Comparison of gradient descent schemes

The previous section evaluated the performance of the
Finite-Time, Quantized Coordination scheme Algorithm 1
which is used as a building block of Algorithm 2. In this

section we discuss the performance of Algorithm 2 itself,
and compare it with alternative methods.

We start by comparing Algorithm 2 to FTQC-DGD [10],
Near-DGD [21], and the distributed gradient tracking (DGT)
method [12]. The latter two do not employ a finite-time coor-
dination scheme, but they are modified to use multiple rounds
of communications to match the budget of FTQC-DGD and
Algorithm 2. Figure 2 reports the error trajectories of all
methods. We can see that Algorithm 2 achieves a smaller

0 25 50 75 100 125 150 175 200

Iteration

10−3

10−2

10−1

100

101

102

E
rr

or

DGT

Near-DGD

FTC-DGD

FTC-DGD (ADMM)

Fig. 2. Comparison of different distributed optimization methods with
quantized communications.

asymptotic error than Near-DGD and FTQC-DGD, owing
to the improved coordination performance of Algorithm 1
(cf. section V-A). Moreover, DGT appears to diverge, which
is known to happen with some gradient tracking schemes
perturbed by (quantization) noise [27].

Table III further compares Near-DGD, FTQC-DGD and
Algorithm 2 for different quantization levels. The proposed

TABLE III
COMPARISON OF NEAR-DGD [21], FTQC-DGD [10], AND

ALGORITHM 2 FOR DIFFERENT QUANTIZATION LEVELS.

∆ Near-DGD [21] FTQC-DGD [10] Algorithm 2
10−10 3.75× 10−8 4.76× 10−8 2.13× 10−8

10−8 3.00× 10−7 7.35× 10−7 1.04× 10−7

10−6 3.29× 10−5 2.84× 10−5 7.79× 10−6

10−4 3.46× 10−3 2.49× 10−2 1.12× 10−3

10−2 1.88× 10−1 2.56× 10−1 7.86× 10−2

1 24.02 20.15 3.46

Algorithm 2 outperforms both alternatives, again owing to
the improved coordination precision.

C. Variations of Algorithm 2

In this section we discuss the performance of Algorithm 2
in challenging scenarios, and compare it to that of Algo-
rithm 3.

As discussed in section II, in learning problems the use
of full gradients may be prohibitive, and the agents need
to resort to stochastic gradients. In Figure 3 we report the
asymptotic error achieved by Algorithm 2 when stochastic
gradients computed on different batch sizes B are used.
Clearly, the larger the batch size, the better the performance.
However, due to the use of quantization, even with B = mi
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Fig. 3. Asymptotic error of Algorithm 2 when the agents employ stochastic
gradients of different batch sizes.

the algorithm can only reach a neighborhood of the optimal
solution.

Another one of the challenges discussed in section II is the
asynchronous operation of the agents. In Figure 4 we report
the performance of Algorithm 2 in this scenario, when agents
activate to perform a gradient descent step with probability
p ∈ (0, 1]. As predicted by the theory [28], the smaller p is

0 200 400 600 800 1000
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10−1

100

101

102

E
rr

or

p = 0.1

p = 0.5

p = 1

Fig. 4. Error trajectory of Algorithm 2 with different agent activation
probabilities.

the fewer updates are performed, and hence the slower the
convergence is.

We conclude this section by comparing the performance
of Algorithm 2 with the variation Algorithm 3 that employs
zooming-in quantization (T = 25, r = 0.1). In particular,
Figure 5 depicts the error trajectory of the latter against
the error trajectory of the former with different quantization
levels. The x-axis marks the cumulative number of commu-
nication rounds. We can thus deduce that using zooming-in
quantization can achieve very good performance (in terms of
asymptotic error) with a smaller number of communication
rounds.

VI. CONCLUSIONS

In this paper we addressed distributed learning problems
over peer-to-peer networks, with a particular focus on the
challenges of quantized communications, asynchrony, and
stochastic gradients that arise in this set-up. We first dis-
cussed how to turn the presence of quantized communi-
cations into an advantage, by resorting to a finite-time,

0 2500 5000 7500 10000 12500 15000 17500 20000
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Fig. 5. Comparison of Algorithm 2 (fixed quantization level) with
Algorithm 3 (zooming-in quantization).

quantized coordination scheme. This scheme is combined
with a distributed gradient descent method to derive the
proposed algorithm. Secondly, we showed how this algorithm
can be adapted to allow asynchronous operations of the
agents, as well as the use of stochastic gradients. Finally,
we proposed a variant of the algorithm which employs
zooming-in quantization. We analyzed the convergence of
the proposed methods and compared them to state-of-the-
art alternatives. The performance of the proposed methods
compares very favorably with the alternatives from the
literature.

APPENDIX I
PROOF OF LEMMA 1

We start by observing that Algorithm 1 consists of an
affine update in z = [zij ]i∈V, j∈Ni ; in particular, for appro-
priate matrices and vectors we can write z`+1 = Tz`+u+
e`, w` = Hz`. The vector e` represents the noise caused by
quantization, that is e`ij = q(−z`ji + 2ρw`j)− (−z`ji + 2ρw`j).
Since Algorithm 1 is an affine operator (plus additive noise)
then it is µ-metric subregular for a given µ ∈ (0, 1) [29].
Therefore the assumptions of [23, Theorem 3] are verified,
and we have

d(z`) ≤ µ`d(z0) +

`−1∑
h=0

µ`−h−1
∥∥eh∥∥ (8)∥∥∥∥∥w` − 1

N

∑
i∈V

yi ⊗ 111N

∥∥∥∥∥ ≤ Cd(z`), (9)

where d(z) measures the distance of z from the set of fixed
points {z̄ | z̄ = T z̄ + u}.

Now, since e` represents the quantization noise, we can
upper bound its norm as follows:∥∥e`∥∥2 =

∑
i∈V

∑
j∈Ni

∥∥q(−z`ji + 2ρw`j)− (−z`ji + 2ρw`j)
∥∥2

≤
∑
i∈V

∑
j∈Ni

n(∆/2)2 = n(∆/2)2
∑
i∈V
|Ni|
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where the inequality holds because the quantization commits
an error of at most ∆/2. Using this bound and combining
(8) with (9) then yields the first thesis.

The goal now is to show that Algorithm 1 achieves finite-
time convergence. By (8), we know that lim`→∞ d(z`) =
1

1−µ
∆
2

√
n
∑
i∈V |Ni|. Then to bound the time of conver-

gence we impose that the first term on the right-hand side
of (8) be smaller than lim`→∞ d(z`). By rearranging, taking
the logarithm and the absolute value, the thesis follows. �

APPENDIX II
PROOF OF PROPOSITION 1

Algorithm 2 was derived in section III as an inexact
version of the projected gradient method, where Algorithm 1
replaces the projection onto the consensus set. Additionally,
by Assumption 3, the agents apply inexact gradients during
local computations. Accounting for both these sources of
errors, we can characterize Algorithm 2 as

xk+1 = projC (xk − α∇fk(xk)) + eqk + egk, (10)

where eqk is the error due to Algorithm 1 (cf. Lemma 1), and
egk is the error due to inexact gradients:

epk = Algorithm 1(yk)− projC(yk)

egk = projC(xk − α∇̂fk(xk))− projC(xk − α∇fk(xk)).

Moreover, Assumption 3 allows the agents to activate asyn-
chronously, each with its probability pi ∈ (0, 1]. This means
that the i-th coordinate of xk is updated with probability pi.

Finally, we notice that by the choice α < 2/λ̄, the
projected gradient method (without errors and asynchrony)
is ζ = max{|1 − α

¯
λ|, |1 − αλ̄|}-contractive [20]. This

implies that Algorithm 2 can be interpreted as a projected
gradient method with bounded additive noise and random
coordinate updates. Thus it verifies the assumptions of [28,
Proposition 1], which implies

E [‖xk − x∗‖] ≤
√

maxi pi
mini pi

(
χk ‖x0 − x∗‖

+

k∑
h=0

χk−h ‖eph + egh‖
)
.

Now, by Assumption 3 we know that E [‖egk‖] ≤
τ
√
N , and by Lemma 1 we can bound ‖epk‖ ≤√
NC∆

2

√
n
∑
i∈V |Ni| 1

1−µ = O(∆), and the thesis follows.
�

APPENDIX III
PROOF OF COROLLARY 1

Following the same derivation as Appendix II yields

E [‖xk − x∗‖] ≤
√

maxi pi
mini pi

(
χk ‖x0 − x∗‖

+

k∑
h=0

χk−h ‖eph‖+ ‖egh‖
)
.

By Assumption 3 we know that E [‖egk‖] ≤ τ
√
N . On the

other hand, by the use of zooming-in quantization, and by
Lemma 1, we have

‖epk‖ ≤
√
NC

∆k

2

√
n
∑
i∈V
|Ni|

1

1− µ

with ∆k = maxi∆i,k being the largest quantization level
among all agents at time k. We know that ∆k is mono-
tonically non-increasing, and that in particular it decreases
at finite intervals, when all agents have stopped seeing
an improvement in their local solution xi,k (cf. lines 7-
8 in Algorithm 3). Thus limk→∞ ‖epk‖ = 0, and by [30,
Lemma 3.1(a)] limk→∞

∑k
h=0 χ

k−h ‖eph‖ = 0 since χ ∈
(0, 1), and the thesis follows. �
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[2] A. Nedić and J. Liu, “Distributed Optimization for Control,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1,
pp. 77–103, May 2018.

[3] S. A. Alghunaim and K. Yuan, “A unified and refined convergence
analysis for non-convex decentralized learning,” IEEE Transactions
on Signal Processing, vol. 70, pp. 3264–3279, 2022.

[4] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang,
Z. Lin, and K. H. Johansson, “A survey of distributed optimization,”
Annual Reviews in Control, vol. 47, pp. 278–305, 2019.

[5] G. Notarstefano, I. Notarnicola, and A. Camisa, “Distributed Optimiza-
tion for Smart Cyber-Physical Networks,” Foundations and Trends®
in Systems and Control, vol. 7, no. 3, pp. 253–383, 2019.

[6] L. Qian, P. Yang, M. Xiao, O. A. Dobre, M. D. Renzo, J. Li, Z. Han,
Q. Yi, and J. Zhao, “Distributed Learning for Wireless Communi-
cations: Methods, Applications and Challenges,” IEEE Journal of
Selected Topics in Signal Processing, vol. 16, no. 3, pp. 326–342,
Apr. 2022.

[7] P. Richtarik, I. Sokolov, E. Gasanov, I. Fatkhullin, Z. Li, and E. Gor-
bunov, “3PC: Three Point Compressors for Communication-Efficient
Distributed Training and a Better Theory for Lazy Aggregation,” in
Proceedings of the 39th International Conference on Machine Learn-
ing, ser. Proceedings of Machine Learning Research, K. Chaudhuri,
S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds., vol.
162. PMLR, Jul. 2022, pp. 18 596–18 648.

[8] N. Bastianello, R. Carli, L. Schenato, and M. Todescato, “Asyn-
chronous Distributed Optimization Over Lossy Networks via Relaxed
ADMM: Stability and Linear Convergence,” IEEE Transactions on
Automatic Control, vol. 66, no. 6, pp. 2620–2635, Jun. 2021.

[9] A. I. Rikos, W. Jiang, T. Charalambous, and K. H. Johansson,
“Distributed optimization with gradient descent and quantized commu-
nication,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 5900–5906, 2023.

[10] N. Bastianello, A. I. Rikos, and K. H. Johansson, “Online Distributed
Learning with Quantized Finite-Time Coordination,” in 2023 62nd
IEEE Conference on Decision and Control (CDC). Singapore,
Singapore: IEEE, Dec. 2023, pp. 5026–5032.

[11] B. M. Assran, A. Aytekin, H. R. Feyzmahdavian, M. Johansson, and
M. G. Rabbat, “Advances in Asynchronous Parallel and Distributed
Optimization,” Proceedings of the IEEE, vol. 108, no. 11, pp. 2013–
2031, Nov. 2020.

[12] R. Xin, S. Kar, and U. A. Khan, “Decentralized Stochastic Optimiza-
tion and Machine Learning: A Unified Variance-Reduction Framework
for Robust Performance and Fast Convergence,” IEEE Signal Process-
ing Magazine, vol. 37, no. 3, pp. 102–113, May 2020.

[13] X. Zhao and A. H. Sayed, “Asynchronous Adaptation and Learning
Over Networks—Part I: Modeling and Stability Analysis,” IEEE
Transactions on Signal Processing, vol. 63, no. 4, pp. 811–826, Feb.
2015.

6087



[14] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Convergence of Asyn-
chronous Distributed Gradient Methods Over Stochastic Networks,”
IEEE Transactions on Automatic Control, vol. 63, no. 2, pp. 434–448,
Feb. 2018.

[15] Y. Tian, Y. Sun, and G. Scutari, “Achieving Linear Convergence in Dis-
tributed Asynchronous Multiagent Optimization,” IEEE Transactions
on Automatic Control, vol. 65, no. 12, pp. 5264–5279, Dec. 2020.

[16] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “A
Primal-Dual SGD Algorithm for Distributed Nonconvex Optimiza-
tion,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 5, pp. 812–
833, May 2022.

[17] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning:
Challenges, Methods, and Future Directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, May 2020.

[18] T. Gafni, N. Shlezinger, K. Cohen, Y. C. Eldar, and H. V. Poor,
“Federated Learning: A signal processing perspective,” IEEE Signal
Processing Magazine, vol. 39, no. 3, pp. 14–41, May 2022.

[19] Z. Zhao, Y. Mao, Y. Liu, L. Song, Y. Ouyang, X. Chen, and W. Ding,
“Towards efficient communications in federated learning: A contempo-
rary survey,” Journal of the Franklin Institute, p. S0016003222009346,
Jan. 2023.

[20] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Exact Worst-Case
Convergence Rates of the Proximal Gradient Method for Composite
Convex Minimization,” Journal of Optimization Theory and Applica-
tions, vol. 178, no. 2, pp. 455–476, Aug. 2018.

[21] A. S. Berahas, R. Bollapragada, N. S. Keskar, and E. Wei, “Balancing
Communication and Computation in Distributed Optimization,” IEEE
Transactions on Automatic Control, vol. 64, no. 8, pp. 3141–3155,
Aug. 2019.

[22] A. I. Rikos, C. N. Hadjicostis, and K. H. Johansson, “Non-oscillating
quantized average consensus over dynamic directed topologies,” Au-

tomatica, vol. 146, 2022.
[23] N. Bastianello, D. Deplano, M. Franceschelli, and K. H. Johansson,

“Robust Online Learning over Networks,” IEEE Transactions on
Automatic Control, 2024.

[24] A. I. Rikos, W. Jiang, T. Charalambous, and K. H. Johansson,
“Distributed Optimization via Gradient Descent with Event-Triggered
Zooming Over Quantized Communication,” in 2023 62nd IEEE Con-
ference on Decision and Control (CDC), 2023, pp. 6321–6327.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[26] N. Bastianello, “tvopt: A Python Framework for Time-Varying Opti-
mization,” in 2021 60th IEEE Conference on Decision and Control
(CDC), 2021, pp. 227–232.

[27] M. Bin, I. Notarnicola, and T. Parisini, “Stability, Linear Convergence,
and Robustness of the Wang-Elia Algorithm for Distributed Consensus
Optimization,” in 2022 IEEE 61st Conference on Decision and Control
(CDC). Cancun, Mexico: IEEE, Dec. 2022, pp. 1610–1615.

[28] N. Bastianello, L. Madden, R. Carli, and E. Dall’Anese, “A Stochastic
Operator Framework for Optimization and Learning With Sub-Weibull
Errors,” IEEE Transactions on Automatic Control, 2024.

[29] A. Themelis and P. Patrinos, “SuperMann: A Superlinearly Convergent
Algorithm for Finding Fixed Points of Nonexpansive Operators,” IEEE
Transactions on Automatic Control, vol. 64, no. 12, pp. 4875–4890,
Dec. 2019.
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