
Distributed Learning by Local Training ADMM

Xiaoxing Ren1, Nicola Bastianello2⋆, Karl H. Johansson2, Thomas Parisini1,3,4

Abstract— In this paper, we focus on distributed learning over
peer-to-peer networks. In particular, we address the challenge of
expensive communications (which arise when e.g. training neu-
ral networks), by proposing a novel local training algorithm, LT-
ADMM. We extend the distributed ADMM enabling the agents
to perform multiple local gradient steps per communication
round (local training). We present a preliminary convergence
analysis of the algorithm under a graph regularity assumption,
and show how the use of local training does not compromise
the accuracy of the learned model. We compare the algorithm
with the state of the art for a classification task, and in
different set-ups. The results are very promising showing a
great performance of LT-ADMM, and paving the way for future
important theoretical developments.

I. INTRODUCTION

The technological progress of the past decades has led to
the spread of devices equipped with computing and com-
munication resources in a range of applications, from power
grids to robotics, from traffic to sensor networks, to name
a few [1], [2]. These devices interconnect with each other
thus creating multi-agent systems capable of collecting and
processing data in a cooperative fashion [3]. Therefore, there
is a pressing need for novel algorithms enabling efficient
learning paradigms over multi-agent systems.

In decentralized learning we can distinguish two ap-
proaches, characterized by the topology of the agents in-
terconnections: federated learning [3], where a central node
coordinates all the other ones, and fully distributed learning,
where each agent communicates with a subset of the others.
In this paper, we focus on the latter set-up because of its
inherent resilience since a single point of failure represented
by the central node is not present in this case.

Let us first characterise our approach with respect to
the literature on distributed optimization and learning [2],
[4]. There are two main classes of distributed algorithms:
gradient-based, which includes DGD and Gradient Tracking,
and dual algorithms, which includes dual ascent and ADMM
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[4]. The algorithms of both classes are characterized by the
alternation of a communication step with a training step,
which employs the local data stored by an agent. However,
in many learning applications we encounter a fundamental
challenge: communications are expensive. Indeed, consider
the task of training a (deep) neural network – the agents need
to share the parameters of their local NN, which results in
rather sizable packets. The objective therefore is to design
decentralized learning algorithms in which agents perform
multiple training steps (or epochs) for each communication
step.

We call this paradigm local training, and in the following
we briefly review the literature on the topic. Local training
was proposed as a heuristic in the seminal federated learning
paper [5] – however, the heterogeneity of the agents’ data
may worsen the accuracy [6]. Different federated algorithms
have then been designed to employ local training without
compromising accuracy [7], [8], [9], [6], [10]. Similarly, fully
distributed algorithms with local training have been proposed
in [11], [12], [13], [14]. In particular, [12], [14] are based
on gradient tracking algorithms, [11] can be interpreted as a
dual ascent method, and [13] as a gradient tracking method
with communication rounds performed at random.

In this paper, we focus on a different algorithm from
the class of dual methods: the distributed ADMM [15]. In
particular, we provide the following contributions:

• We propose a novel algorithm based on the distributed
ADMM which allows for local training, with com-
munication rounds interspersed between multiple local
gradient steps. We denote the proposed algorithm as
LT-ADMM for Local Training ADMM.

• We analyze the convergence of LT-ADMM for strongly
convex problems, and under the assumption that the
communication graph is regular. In particular, the con-
vergence is exact (hence accuracy is not impacted),
and we characterize it in terms of the number of local
training steps performed by the agents. We remark that
the technical assumption of regularity will be relaxed in
future works.

• We compare LT-ADMM to state-of-the-art alternatives
for a classification task, and highlight its better perfor-
mance. The comparison is then extended to set-ups with
quantized communications and stochastic gradients. We
further discuss the performance of LT-ADMM for dif-
ferent parameters choices and for different topologies
(including non-regular ones).
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II. PROBLEM FORMULATION AND ALGORITHM DESIGN

A. Problem Formulation

Consider a network G = (V, E) consisting of N agents
tasked with solving the following consensus optimization
problem

min
xi∈Rn, i∈V

N∑
i=1

fi(xi) = F (X)

s.t. x1 = . . . = xN

(1)

where fi : Rn → R is the local cost function of agent
i, and X = col {x1, x2, · · · , xN} ∈ RNn. In the fol-
lowing, we denote the optimal solution to (1) by X∗ =
1N ⊗ x∗, where ⊗ denotes Kronecker product, and x∗ =
argminx∈Rn

∑N
i=1 fi(x).

The following assumptions on the cost functions and
network will hold throughout the paper.

Assumption 1: The cost function of each agent i ∈ V
is L-smooth and µ-strongly convex, with L, µ > 0. That
is, ∀x, y ∈ Rn, ∥∇fi(x) − ∇fi(y)∥ ≤ L∥x − y∥, and
⟨∇fi(x)−∇fi(y), x− y⟩ ≥ µ∥x− y∥2.

Assumption 2: G = (V, E) is a connected, undirected, and
regular graph, with all agents having the same degree d.

Assumptions 1 and 2 are generally standard, with the
exception of the requirement for a regular graph. This current
limitation is technical in nature, as the numerical results of
section IV show convergence for non-regular graphs as well.
Relaxing the regularity assumption will be the objective of
future research.

The next section will present the proposed algorithm for
distributed learning. As motivated in section I, the guiding
objective will be to design an algorithm that allows for
multiple local gradient steps per communication round.

B. Algorithm design

The starting point of our design is the distributed ADMM
of [15], which is characterized by the local updates

xi,k+1 = proxfi/ρ|Ni|

 1

ρ |Ni|
∑
j∈Ni

zij,k

 (2a)

zij,k+1 =
1

2
zij,k − 1

2
(zji,k − 2ρxj,k+1) (2b)

where ρ > 0 is a penalty parameter, and proxfi/ρ|Ni|(z) =

argmin
x∈Rn

{
fi(x) +

ρ|Ni|
2 ∥x− z∥2

}
. During the first step (2a),

the agents perform local training using their cost functions,
while during the second step (2b) they update the auxiliary
variables after communicating with their neighbors.

However, update (2a) entails the solution of an optimiza-
tion problem – which in general does not have a closed form,
especially for learning problems. The agents then need to
approximate the solution of (2a). We proposed to do so with

τ ∈ N steps of local gradient descent:

ϕ0,i
k = xi,k

ϕt+1,i
k = ϕt,i

k + t = 0, . . . , τ − 1

− γ

(
∇fi(ϕ

t,i
k ) + ρ |Ni|

(
ϕt,i
k − 1

ρ|Ni|
∑
j∈Ni

zij,k

))
xi,k+1 = ϕτ,i

k

(3)

where γ < 1/(L+ ρ|Ni|) is the local step-size.
Applying local training (3) to the distributed ADMM (2)

results in the proposed LT-ADMM Algorithm 1.

Algorithm 1 LT-ADMM.
Input: For each node i, initialize xi,0 and zij,0, j ∈ Ni. Set

the penalty ρ, the number of local training steps τ , and
the local step-size γ.

1: for k = 0, 1, . . . every agent i do
// local training

2: update xi,k+1 according to (3)
// communication

3: transmit zij,k − 2ρxi,k+1 to each neighbor j ∈ Ni,
and receive the corresponding transmissions

// auxiliary update
4: update zij,k+1 according to (2b)
5: end for

Remark 1: In this paper we approximate (2a) with τ steps
of local gradient descent. But in principle we could use
different solvers for local training, e.g. stochastic gradient
descent or accelerated gradient descent. We also remark
that the initialization ϕ0,i

k = xi,k in (3) is fundamental
to guarantee convergence. Intuitively, this choice instates a
feedback loop that controls to zero the approximation error.

III. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the pro-
posed LT-ADMM.

Theorem 1: Let Assumptions 1 and 2 hold. Let {Xk}k∈N
be the trajectory generated by LT-ADMM. Then there exists
γ̄ > 0 (cf. (16)) such that if γ < γ̄ and τ > 2

Nµ , the states
Xk converge linearly to the optimal solution X∗.

Remark 2: We remark that to achieve convergence of LT-
ADMM, we need to impose bounds on the local step-size γ
and the number of local iterations τ . This is in line with
previous distributed algorithms that employ local training
[11], [12], [13], [14].

In the next section, we sketch the proof of Theorem 1.

A. Rewrite LT-ADMM in a compact form

We start by rewriting LT-ADMM in a compact form.
To this end, define the matrix A = blk diag{1d} ⊗
In ∈ RMn×Nn where M =

∑
i |Ni|, and the vec-

tors ∇F (X) = col{∇f1(x1), f2(x2), ..., fN (xN )}, Φt
k =

col{ϕt,1
k , ϕt,2

k , ..., ϕt,N
k }, Z = col{zij}i,j∈E . Moreover, de-

fine P ∈ RMn×Mn as the permutation matrix that swaps zij
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with zji. We can then rewrite LT-ADMM as

Xk+1 = Xk − γ

τ−1∑
t=0

(∇F (Φt
k)+ ρATAΦt

k −ATZk) (4a)

Zk+1 =
1

2
Zk − 1

2
PZk + ρPAXk+1. (4b)

Introducing the following variables

Yk = ATZk −∇F (X̄k)− ρDXk

Ỹk = ATPZk +∇F (X̄k)− ρDXk,

where X̄k = 1N ⊗ x̄k, x̄k = 1
N 1TXk, and D = diag{dIn},

(4) can be further rewritten asXk+1

Yk+1

Ỹk+1

 =

 I γτI 0

ρL̃ ρL̃γτ + 1
2 − 1

2I
0 − 1

2I
1
2I

⊗ In

Xk

Yk

Ỹk

− hk,

(5)
where L̃ = A−D and

hk = [γ

τ−1∑
t=0

(∇F (Φt
k)−∇F (X̄k) + ρDΦt

k − ρDXk);

γρL̃

τ−1∑
t=0

(∇F (Φt
k)−∇F (X̄k) + ρDΦt

k − ρDXk)

+∇F (X̄k+1)−∇F (X̄k);−∇F (X̄k+1) +∇F (X̄k)].

We remark that (5) can be interpreted as a linear dynamic
system, with the non-linearity of the gradients as input in
hk.

With this reformulation in place, the goal now is to bound
the distance of X from the optimal solutions. Specifically, we
do this by first bounding the distance from the average, and
then bounding the distance of the average from the optimal
solution.

B. Deviation from the average

Under Assumption 2, we define the weight matrix of
G as W = 1

2 (
A+I
d+1 + I), which can be decomposed as

W =
[

1√
N
1 Q̂

] [ 1 0

0 Λ̂

] [ 1√
N
1T

Q̂T

]
[16], where

Λ̂ = diag {λi}Ni=2, 0 < λ2 ≤ . . . ≤ λN < 1, and Q̂ ∈
RN×(N−1) satisfies Q̂Q̂T = IN − 1

N 11T , Q̂T Q̂ = IN−1,
1T Q̂ = 0 and Q̂T1 = 0. Multiplying both sides of (5) by
Q̂T we obtainQ̂TXk+1

Q̂TYk+1

Q̂T Ỹk+1

 = (Θ⊗ In)

Q̂TXk

Q̂TYk

Q̂T Ỹk

− Q̂Thk (6)

where Θ =

 I γτI 0

ρdiag
{
λ̃i

}
ρdiag

{
λ̃i

}
γτI+ 1

2I − 1
2I

0 1
2I

1
2I

,

λ̃i = 2(d+ 1)(λi − 1).
Since each block of Θ is diagonal matrices, there

exists a permutation matrix P0 such that P0ΘPT
0 =

blkdiag {Di}Ni=2 , where Di =

 1 γτ 0

ρλ̃i ρλ̃iγτ + 1
2 − 1

2
0 − 1

2
1
2

 ,

diagonalize Di = Vi∆iV
−1
i . We conclude that Θ =

PT
0 V∆V−1P0 where V = blkdiag {Vi}Ni=2 and ∆ =

blkdiag {∆i}Ni=2. Multiplying both sides of (6) by V̂−1

where V̂ = PT
0 V gives

d̂k+1 = ∆d̂k − ĥk, (7)

where d̂k = V̂−1

 Q̂TXk

Q̂TYk

Q̂T Ỹk.

, ĥk = V̂−1Q̂Thk. Under the

condition that − 8
3 < λ̃iρτγ < 0, i.e., 2(d+1)(1−λ2)ρτγ <

8
3 , ∆ is a matrix with norm δ = ∥∆∥ < 1 [17]. Additionally,
when γ < min{ 1

τ ,
2(d+1)(1−λN )ρ

2τ }, the magnitude of all
elements of Vi is less than or equal to 1, it follows that

∥X̄k −Xk∥2 ≤ 9∥d̂k∥2, ∥Ȳk −Yk∥2 ≤ 9∥d̂k∥2. (8)

Define now ∥Φ̂k∥2 =
∑N

i=1

∑τ−1
t=0

∥∥∥ϕt,i
k − x̄k

∥∥∥2 =∑τ−1
t=0

∥∥Φt
k − X̄k

∥∥2. Suppose that τ > 2, using similar
analysis as [11] we obtain that when 4γ2τ(L2 + ρ2d2) <
1/4
τ−1 , both the following inequalities hold

∥Φ̂k∥2 ≤ (36τ + 16τ3γ2(18 + 18ρ2d2))∥d̂k∥2

+ 32τ3γ2LN(F (x̄k)− F (x∗)),
(9)

∥Φ̂k∥2 ≤ (36τ + 16τ3γ2(18 + 18ρ2d2))∥d̂k∥2

+ 16τ3γ2L2N∥x̄k − x∗∥2.
(10)

From the definition of ĥk it holds that∥∥∥ĥk

∥∥∥2 ≤ (6L2∥V̂−1∥2γ2τ(2L2 + ρ2d2)+

+ 3γ2τ(1 + 2∥L̃∥2)∥V̂−1∥2(L2 + ρ2d2))∥Φ̂k∥2

+ 27γ2(1 + 2∥L̃∥2)∥V̂−1∥2τ2ρ2d2∥d̂k∥2

+ 12L4∥V̂−1∥2γ2τ2N∥x̄k − x∗∥2,

(11)

while from (7) and using Jensen’s inequality

∥d̂k+1∥2 ≤ δ∥d̂k∥2 +
1

1− δ

∥∥∥ĥk

∥∥∥2 (12)

where recall that δ = ∥∆∥ < 1.

C. Distance from the average to x∗

Multiplying both sides of (4) by 1TAT , under Assump-
tion 2, 1TATZk = ρ1TDXk = ρ1TDX̄k for all k. Denote

ϵk =

τ−1∑
t=0

(ρ1TDΦt
k − 1TATZk) = ρd

τ−1∑
t=0

N∑
i=1

(ϕt,i
k − x̄k),

we have ϵ2k ≤ ρ2d2τN∥Φ̂k∥2. From (4a) x̄k+1−x∗ = x̄k −
x∗ − γ

N

∑τ−1
t=0

∑N
i=1 ∇fi(ϕ

t,i
k )− γ

N ϵk, which leads to

∥x̄k+1 − x∗∥2 =
γ2

N2

∥∥∥∥∥
τ−1∑
t=0

N∑
i=1

∇fi(ϕ
t,i
k ) + ϵk

∥∥∥∥∥
2

+

+ ∥x̄k − x∗∥2 − 2
γ

N
⟨x̄k − x∗,

τ−1∑
t=0

N∑
i=1

∇fi(ϕ
t,i
k ) + ϵk⟩.
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Now, any L-smooth and µ-strongly convex function g
verifies ⟨(z − y),∇g(x)⟩ ≥ g(z) − g(y) + µ

4 ∥y −
z∥2 − L∥z − x∥2, ∀x, y, z ∈ Rn [18]; more-
over, ∥ 1

N

∑
i ∇fi

(
x̄k

)
∥2 ≤ 2L(F

(
x̄k

)
− F (x∗))

[19]. Thus, using these inequalities we derive that
when 32τ3γ2L

(
2γL+ 4γ2τL2 + ρ2d2γτN + 2γ2ρ2d2τ

)
+

8γ2τ2L− 2γτ < 0,∥∥x̄k+1 − x⋆
∥∥2 ≤

(
1− µτγ

2
+

4γ

N

)∥∥x̄k − x⋆
∥∥2 +

+

(
2γL

N
+

4γ2τL2

N
+ 2ρ2d2γτ +

4γ2ρ2d2τ

N

)
·

·
(
36τ + 16τ3γ2(18 + 18ρ2d2)

)
∥d̂k∥2.

(13)

D. Main convergence result

Drawing (11), (12) and (13) together, we derive that[∥∥x̄k+1 − x⋆
∥∥2

∥d̂k+1∥2

]
=

[
a1 a2
a3 a4

][∥∥x̄k − x⋆
∥∥2

∥d̂k∥2

]
(14)

where
a1 = 1− µτγ

2
+

γ

N
(15a)

a2 = (
2γL

N
+

4γ2τL2

N
+ 2ρ2d2γτ +

4γ2ρ2d2τ

N
)·

· (36τ + 16τ3γ2(18 + 18ρ2d2))
(15b)

a3 =
12L4∥V̂−1∥2γ2τ2N

1− δ
+

+ 16τ3γ2L2N(
6L2∥V̂−1∥2γ2τ(2L2 + ρ2d2)

1− δ
+

+
3γ2τ(1 + 2∥L̃∥2)∥V̂−1∥2(L2 + ρ2d2)

1− δ
)

(15c)

a4 = δ +
12L4∥V̂−1∥2γ2τ2N

1− δ
+

+ 3γ2τ(
2L2∥V̂−1∥2(2L2 + ρ2d2)

1− δ
+

+
(1 + 2∥L̃∥2)∥V̂−1∥2(L2 + ρ2d2)

1− δ
)·

· (36τ + 16τ3γ2(18 + 18ρ2d2))

(15d)

Denoting Ξ =

[
a1 a2
a3 a4

]
, we know that when the spectral

radius of Ξ verifies sr(Ξ) < 1, then Xk generated by LT-
ADMM converges to the optimal solution X∗ linearly. Note
that sr(Ξ) ≤ ∥Ξ∥1 = max{a1+a3, a2+a4}. Thus, imposing
∥Ξ∥1 < 1 together with the previous conditions on γ, we can
derive the following set of conditions that guarantee linear
convergence:

32τ3γ2L
(
2L+ 4γτL2 + ρ2d2τN + 2γρ2d2τ

)
+8γτ2L < 2τ,

(16a)
γ <

4

3(d+ 1)(1− λ2)ρτ
, (µτ)/2− 1/N > 0, (16b)

4γ2τ(L2+ρ2d2) <
1/4

τ − 1
, γ < min{1

τ
,
2(d+ 1)(1− λN )ρ

2τ
}

(16c)

a1 + a3 < 1, a2 + a4 < 1. (16d)

These conditions are satisfied by choosing τ > 2
Nµ and a

sufficiently small γ, and linear convergence with rate sr(Ξ)
follows. □

IV. NUMERICAL RESULTS

In this section we present numerical results comparing the
proposed LT-ADMM with state-of-the-art alternative meth-
ods, and evaluate its performance. We apply the algorithms
on a classification task, characterized by the local costs

fi(x) =

mi∑
h=1

log
(
1 + exp(−bhi a

h
i x)

)
+

ϵ

2
∥x∥2 (17)

with ahi ∈ Rn and bhi ∈ {−1, 1}, and regularization weight
ϵ = 0.075. We use a ring network with N = 10, and assign
mi = 150 randomly generated data points to each agent. All
simulations are implemented in tvopt [20].

A. Comparison

We start by comparing LT-ADMM with other distributed
optimization methods that allow for local training, namely
LED [11], LU-GT [12], K-GT [14], and RandCom [13]. We
chose τ = 5 for all algorithms, and hand-tuned their step-
sizes to get optimal performance.

In Figure 1 we plot the error trajectories {∥Xk −X∗∥}k∈N
of the different algorithms, with the x-axis marking the
communication rounds. As we can see, LT-ADMM achieves

0 200 400 600 800 1000

Communication round

10−7

10−5

10−3

10−1

101

103

E
rr

or

LED

LU-GT

K-GT

RandCom

LT-ADMM

Fig. 1. Comparison of distributed optimization algorithms with local
training.

better speed of convergence than all other methods. This is
further illustrated by Table I, where we report the empirical
convergence rates.

TABLE I
EMPIRICAL CONVERGENCE RATES OF THE COMPARED ALGORITHMS.

Algorithm [ref.] Convergence rate
LED [11] 0.9757
LU-GT [12] 0.9949
K-GT [14] 0.9629
RandCom [13] 0.9595
LT-ADMM [this work] 0.950852
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B. LT-ADMM performance

In this section we explore the performance of LT-ADMM
for different choices of its parameters, and over networks
with different topologies.

The parameters that characterize LT-ADMM are the
penalty ρ, the number of local epochs τ , and the local step-
size γ. First of all, we remark that during local training, the
agents apply τ steps of gradient descent to the regularized
cost (cf. (3))

f̃i(x) := fi(x) +
ρ|Ni|
2

∥∥∥∥∥∥x−
∑
j∈Ni

zij,k/(ρ|Ni|)

∥∥∥∥∥∥
2

.

By Assumption 1, this implies that f̃i(x) is (µ + ρ|Ni|)-
strongly convex and (L+ρ|Ni|)-smooth. Therefore, for each
ρ > 0 choosing the step-size γ = 2/(µ + L + 2ρ|Ni|) we
optimize the convergence rate of the local training gradient
descent [19, Theorem 2.1.15]. The remaining two parameters
can be freely tuned, and Table II reports how their values
affects the (empirical) convergence rate. Let us focus first on

TABLE II
EMPIRICAL CONVERGENCE RATES OF LT-ADMM FOR DIFFERENT

CHOICES OF PARAMETERS. “N.C.” INDICATES THAT THE ALGORITHM

DID NOT CONVERGE.

τ = 1 5 10 50 100
ρ = 10−3 0.9942 0.9858 0.9855 0.9895 0.9901
ρ = 10−2 0.9915 0.9770 0.9825 0.9875 0.9880
ρ = 10−1 0.9883 0.9599 0.9286 0.9318 0.9317
ρ = 1 0.9832 0.9662 0.9634 0.9157 0.9157
ρ = 5 n.c. 0.9875 0.9900 0.9781 0.9782

the choice of the number of local training steps τ . Intuitively,
one may think that the larger τ is, the faster the convergence,
as the local proximal computation is approximated to a better
degree. However, this does not seem to be the case; indeed,
the convergence rates along the first and second row do not
decrease monotonically. A similar behavior can be observed
reading along the columns in Table II, which indicate that
there is an optimal value for ρ. Finally, we observe that for
some (ρ, τ) combinations ((5, 1) in the table) the algorithm
diverges,in accordance with Theorem 1 which limits the
parameters for which convergence is verified.

The previous results were derived for a ring graph, which
satisfies Assumption 2 by being regular. We conclude this
section by evaluating the performance of LT-ADMM for
different topologies. In Figure 2 we report the error tra-
jectory for different networks, and in Table III we report
the empirical convergence rate. We remark that LT-ADMM
convergence also on non-regular graph topologies, which
will be a worthwhile future direction of research. Moreover,
we notice that the graph being more connected does not
automatically translate in a smaller convergence rate; this
aspect will also be explored in future research.

C. Additional comparisons

In this section, we turn back to comparing LT-ADMM
with the state-of-the-art alternatives, in different challenging

0 200 400 600 800 1000

Communication round

10−7

10−5

10−3

10−1

101

103

E
rr

or

Ring

Random (geometric)

Complete

Star

Fig. 2. Performance of LT-ADMM applied to different network topologies.

TABLE III
EMPIRICAL CONVERGENCE RATES OF LT-ADMM WITH DIFFERENT

NETWORK TOPOLOGIES.

Topology Convergence rate
Ring 0.950890
Random (geometric) 0.960377
Complete 0.952770
Star 0.953407

scenarios.
In decentralized learning, communications are often ex-

pensive due to the size of the locally trained models being
exchanged between agents [21]. For this reason, quantization
or compression is often applied in practice to reduce the
packet size, and it is important to evaluate performance in
such scenarios. To this end, we run a comparison of the
algorithms over a network where agents quantize communi-
cations with q(x) = ∆

⌊
x
∆

⌉
, where ⌊·⌉ rounds to the nearest

integer and ∆ = 10−4. In Figure 3 we report the error
trajectory for the different algorithms. Owing to the imperfect
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Fig. 3. Comparison over a network with quantized communications.

communications, the algorithms can at best reach a neigh-
borhood of the optimal solution, as expected from the theory
[22]. LT-ADMM, alongside LED and RandCom exhibit this
behavior. On the other hand, the gradient tracking-based LU-
GT and K-GT seem to diverge in the presence of quantized
communications; this is a known issue for some gradient
tracking schemes [23].
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Another challenging feature of learning problems is that
the local costs are often defined on large data-sets [3],
with mi ≫ 1 in (17). Therefore, the computation of full
local gradients may be too expensive, and agents need to
resort to computing stochastic gradients, which use a random
subset of the local data-set. In Figure 4 we report the error
trajectory when the agents use stochastic gradients computed
on a batch of B = mi/5 data points. We can see that all
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Fig. 4. Comparison using stochastic gradients with a batch of B = mi/5
data points.

algorithms excluding LU-GT converge to a neighborhood of
the optimal solution, while LU-GT seems to suffer from the
same sensitivity to perturbations exhibited in the presence of
quantization.

V. CONCLUSIONS

In this paper we have proposed a novel algorithm for
distributed learning, LT-ADMM. The algorithm is designed
with the goal of allowing multiple local training steps per
each communication round. This is especially important in
many learning applications where communications are ex-
pensive. We have analyzed the convergence of the algorithm
under graph regularity assumption, and shown how the use
of local training does not impact the learned model accuracy.
We have further compared LT-ADMM to the state of the art
in different challenging scenarios, and for different graph
topologies (including non-regular ones). These results show
the promising performance of LT-ADMM, and point the
way for future theoretical developements, starting with the
relaxation of graph regularity.
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