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Abstract— In this paper, the initial error affection and
strategy modification in multi-population linear quadratic mean
field games (MPLQMFGs) under erroneous initial distribution
information are investigated. First, a MPLQMFG model is
developed where agents in different populations are coupled
by dynamics and cost functions. Next, by studying the evo-
lutionary of MPLQMFGs under erroneous initial distribution
information, the predicted and the actual evolutionary of mean
field states are given. Furthermore, assume that each agent
maintains observations only of its own state and control as well
as the mean field terms of its own population, and agents are
allowed to modify their strategies at an intermediate moment,
two sufficient conditions are provided, where the game will
reach the Nash equilibrium under correct information. Besides,
the affection of the initial error on the game is discussed.
Finally, simulations on the opinion evolutions of two groups
are performed to verify above conclusions.

I. INTRODUCTION

Mean field games (MFGs) are proposed independently
by Huang et al.[1]-[3]and Lasry&Lions[4]-[6] in 2007. The
model of Lasry&Lions describes a game with a large number
of homogeneous players and its mean field equilibrium,
in which each player tries to minimize the value of its
own cost function and interacts with other players through
a mean field term contained in the cost function or/and
dynamic equation. In [7], a multi-population mean field
game (MPMFG) was proposed, in which players are divided
into several populations, each population contains a large
number of homogeneous agents, and players interact through
the mean field terms of all populations. In [8]-[11], the
linear quadratic mean field games (LQMFGs) with different
settings were studied, where cost functional is quadratic in all
state variables, control variables, and the mean field terms,
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while the controlled dynamics are linear and also consist of
mean field terms.

For multi-population linear-quadratic mean field games
(MPLQMFGs), the equilibrium usually can be mathemati-
cally described as a set of equations with a forward-backward
structure with a forward dynamic equation and a backward
equation describes a player’s optimal strategy. When a unique
mean field equilibrium exists, given the initial mean field
states, the cost functions of all populations and the dynamic
equation settings, an agent can obtain the unique mean field
equilibrium by solving the system of equations describing the
equilibrium.. So at the initial moment, players can predict the
equilibrium and give their optimal strategies for the whole
time period.

MFGs have been widely applicated in many fields[13]-
[22],such as swarm robotics, industrial engineering and
crowd motion. In some scenarios, agents are required to give
their own whole period strategies at the initial moment, such
as unmanned control with a pre-set trajectory. When an agent
obtains the initial distribution, cost functions and dynamic
equations of all agents, it can calculate its optimal control
for the whole time period at the initial moment.

However, in application, there is often the problem that
there may be some errors in the initial information obtained
by agents[23][24], especially in MPMFGs, where agents
may obtain erroneous information about other populations.
A series of questions that arise from this problem are: when
an agent gives its strategy at the initial moment based on
erroneous information, what is the difference between the
equilibrium in its prediction (EP) and the equilibrium under
correct information (EC)? How will the actual mean field
states (EA) evolve? Is it possible to detect and correct errors
through partial observation of mean field terms after evolving
based on erroneous information for a period of time? How
will the game evolve if agents are given the opportunity to
modify their strategies at an intermediate moment (EM)?
Currently, there is still a lack of research on these questions
in the field of MFGs.

Based on the above questions, this paper studies MPLQM-
FGs under erroneous initial distribution information and the
strategy modification therein. We assume the cost functions
and dynamic equations of all agents are available, and each
agent maintains clean observations only of its own state and
control as well as the mean field terms of its own population.
In addition, the agent obtains the initial mean field states of
other populations that may have errors, and believes these
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initial mean field terms are correct. At the initial moment,
agents give their strategies for the whole time period based
on the above information.

In section 2, we present the MPLQMFG model where
different populations are coupled through cost functions and
dynamic equations, mathematically describe the mean field
equilibrium under complete information, and introduce the
definition of EC. In section 3, we give our assumptions and
study MPLQMFGs under erroneous initial distribution infor-
mation. In section 4, we discuss the strategy modification
when agents are allowed to modify their strategies at an
intermediate moment without observing other populations’
trajectories. In section 5, we analysis the initial error affec-
tion on EC, EP, EA and EM. At last, we conduct simulations
and verify our conclusions. The main contributions of this
paper can be summarized as follows:

• We build a mathematic model of MPLQMFGs under
erroneous initial distribution information, study and give
a mathematical description of EP, EA and EM.

• We compare EC, EP, EA and EM. Three all-agents-
known linear relationship between the initial error and
the deviations of EP from EC, the deviations of EA
from EC, the deviations of EM from EC are given.

• We provide two sufficient conditions for agents to
calculate their optimal strategies during re-game and
corresponding calculation methods. It is worth noting
that even if the actual mean field states of other pop-
ulations is unknown, under some conditions, an agent
can still calculate its re-game optimal strategy under
complete information.

II. MULTI-POPULATION LINEAR QUADRATIC
MEAN FIELD GAME MODEL WITH COMPLETE

INFORMATION

In this section, we introduce a MPLQMFG model where
agents in different populations are coupled by dynamics and
cost functions. We introduce the definition of EC, and give
the conclusion that EC is consistent with the mean field
equilibrium with complete information.

A. Dynamics and Cost Functions

We consider a stochastic game with M populations,
{Pm, 1 ≤ m ≤ M}, each population has Nm agents,
{Aim, 1 ≤ i ≤ Nm}, where the dynamics of the agents
are given by the following controlled stochastic differential
equations (SDEs):

dxim(t) =[Amxim(t) +Bmuim(t) + ΣM
n=1C

n
mzn(t)+

Fmūm(t)dt)]dt+DmdWim(t),

xim(0) =x0
im,

(1)

with terminal time T ∈ (0,∞) and initial conditions
xim(0) = x0

im, 1 ≤ m ≤ M, 1 ≤ i ≤ Nm. Where
(xim(t))0≤t≤T , (uim(t))0≤t≤T ∈ Rdare the state and control
input of agent Aim, zm(t), um(t) ∈ Rd are the mean field
state and mean field control of Pm, (Wim(t))0≤t≤T , 1 ≤ i ≤
Nm, 1 ≤ m ≤ M are independent d-dimensional standard

Wiener processes, Am, Bm, Cn
m, Fm, Dm are matrices on

Rd × Rd, and Bm is invertible.
The cost function of Aim is given by

Jm(uim) =
1

2
E[
∫ T

0

[∥xim(t)− sm∥2QIm
+ ∥uim(t)∥2Rm

+

ΣM
i=1∥xim(t)− (Γn

mzn(t) + ηnm)∥2Qn
m
]dt+ ∥xim(T )−

s̄m∥2Q̄Im
+ΣM

i=1∥xim(T )− (Γ̄n
mzn(T ) + η̄nm)∥2Q̄n

m
],

(2)

where we define ∥X∥2Q = XTQX,∀Q ∈ Rd×d, X ∈ Rd.
QIm, Qn

m, Rm, Q̄Im, Q̄n
m are positive definite matrices on

Rd×d.

B. the Optimal Control of Aim

Theorem 2.1 For given (zm(t))0≤t≤T , 1 ≤ m ≤
M , the optimal control of Aim adapted to its admis-
sible control set L2

Fim
(0, T ;Rd) is given by uim(t) =

−R−1
m BT

myim(t), where yim(t) = E[pim(t)|F im
t ], F im

t :=
σ(xim(0),Wim(s), 0 ≤ s ≤ t), pim(t) satisfies

dpim(t) = −{(AT
mpim(t) + (QIm +ΣM

n=1Q
n
m)xim(t)−

QImsm − ΣM
n=1Q

n
m(Γn

mzn(t) + ηnm)}dt+ qim(t)dWim(t),

pim(T ) = (Q̄Im +ΣM
n=1Q̄

n
m)xim(T )− Q̄Ims̄m − ΣM

n=1Q̄
n
m

(Γ̄n
mzn(T ) + η̄nm),

(3)

Proof of this theorem is given in Appendix.
Note that pim can be represented by pim(t) =

Pm(t)xim(t) + gim(t), where Pm(t) satisfies a non-
symmetric riccati equation

− dPm(t) = {(Pm(t)Am +AT
mPm(t) + (QIm +ΣM

n=1Q
n
m)

− Pm(t)BmR−1
m BT

mPm(t)}dt,
Pm(T ) = Q̄Im +ΣM

n=1Q̄
n
m,

(4)

and gim(t) satisfies the backward stochastic differential
equation (BSDEs)

dgim(t) = −{(AT
m − PmBmR−1

m BT
m)gim(t)− PmFmR−1

m

BT
mḡm +ΣM

n=1(PmCn
m −Qn

mΓn
m)zn(t)− PmFmR−1

m BT
mPm

zm(t)−QImsm − ΣM
n=1Q

n
mηnm}dt+ (qim − PimDm)dWim,

gim(T ) = −Q̄Ims̄m − ΣM
n=1Q̄

n
m(Γ̄n

mzn(T ) + η̄nm),
(5)

where ūm(t) = ΣNm
i=1uim(t)/Nm, ḡm(t) = ΣNm

i=1gim(t)/Nm.

C. Mean Field Approximation

On the one hand, a Nash equilibrium is reached if and
only if each agent’s control is the optimal response to the
current mean field terms zm(t), 1 ≤ m ≤ M , on the
other hand, zm(t) is defined as zm(t) = ΣNm

i=1xim(t)/Nm.
When Nm → ∞, we have zm(t) = E(xm(t)), where
xm(t) is the state of a representative agent Am of pop-
ulation m. We define ym(t) = ΣNm

i=1yim(t)/Nm, X (t) =
(zT1 (t), ..., z

T
M (t))T ,Y(t) = (yT1 (t), ..., y

T
M (t))T . When a
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Nash equilibrium is reached, conditions X (t),Y(t) need to
satisfy are given by the following theorem

Theorem 2.2 The equilibrium mean field process
(zm)1≤t≤T satisfy the following equations

d

(
X
Y

)
=

{(
A+ C −(B + F)R−1BT

−Q −A

)(
X
Y

)
− Z

}
dt,

X (0) = X 0,

Y(T ) = Q̄X (T ) + ν̄.

C =

C1
1 C2

1 ... CM
1

...
...

...
...

C1
M C2

M ... CM
M

 ,A =

A1 0 ... 0
...

...
...

...
0 0 ... AM

 ,

B =

B1 0 ... 0
...

...
...

...
0 0 ... BM

 ,R =

R1 0 ... 0
...

...
...

...
0 0 ... RM

 ,

F =

F1 0 ... 0
...

...
...

...
0 0 ... FM

 ,

Q =

 Q1
1 Q2

1Γ
2
1 ... QM

1 ΓM
1

...
...

...
...

Q1
MΓ1

M Q2
MΓ2

M ... QM
M

 ,

Q̄ =

 Q̄1
1 Q̄2

1Γ̄
2
1 ... Q̄M

1 Γ̄M
1

...
...

...
...

Q̄1
M Γ̄1

M Q̄2
M Γ̄2

M ... Q̄M
M

 , Z =

(
0
ν

)
,

Qm
m = −(QIm +ΣM

n=1Q
n
m) +Qm

mΓm
m,

Q̄m
m = −(Q̄Im +ΣM

n=1Q̄
n
m) + Q̄m

mΓ̄m
m, 1 ≤ m ≤ M,

ν = −(νT1 , ..., ν
T
M )T , νm = QImsm +ΣM

n=1Q
m
mηnm,

ν̄ = −(ν̄T1 , ..., ν̄
T
M )T , ν̄m = Q̄Ims̄m +ΣM

n=1Q̄
m
mη̄nm.

(6)

We notice that Y(t) = P (t)X (t) + G(t), where P (t)
satisfies a non-symmetric riccati equation

−dP =P (A+ C) +ATP +Q− P (B + F)R−1BTPdt,

P (T ) =Q̄,
(7)

and G(t) satisfies the backward ordinary differential equa-
tions (BODEs)

dG = −(AT − P (t)(B + F)R−1BT )G − νdt,

G(T ) = ν̄.
(8)

D. Existence and Uniqueness Condition

In this section, we provide a sufficient condition for the
existence and uniqueness of the mean field equilibrium,
which is equivalent to (6) has a unique solution. With respect
to the affine form Y(t) = P (t)X (t) + G(t), (6) admits a
unique solution if and only if (7) admits a unique solution.
In accordance with Theorem 4.1 and Theorem 4.2 in [12],
we have the following proposition.

We set Q = Qp + S, Q̄ = Q̄p + S̄, where Qp, Q̄p are
positive matrices. We represent the fundamental solution to

A with ϕ(s, t), which means ϕ(s, t) is a fundamental solution
of the equation

dx = Axdt, (9)

and x(s) = ϕ(s, t)x(t).
Proposition 2.1 Let ϕ(s, t) be the fundamental solution

to A. Suppose that

(1 +
√
T∥ϕ∥T · ∥CQ− 1

2
p ∥)(1 +N(S)) < 2. (10)

Where ∥ · ∥ stands for usual Euclidean norm. Then there
exists a unique mean field equilibrium. Here,

∥ϕ∥T := sup
0≤t≤T

√
∥ϕ∗(T, t)Q̄− 1

2 ∥2 +
∫ T

t

∥ϕ∗(s, t)Q̄ 1
2 ∥2ds

N(S) = max{∥Q̄− 1
2 S̄Q̄− 1

2 ∥, ∥Q− 1
2SQ− 1

2 ∥}.

E. Equilibrium under Correct Information

When Aim gives its strategy (uim(t))0≤t≤T at t = 0
according to the correct information, and conditions in
Proposition 2.1 are satisfied, we call the respective mean
field equilibrium as the equilibrium under correct information
(EC). Under this setting, agents can calculate the unique
mean field equilibrium described in (6) and their respective
optimal controls at time t = 0, hence EC is consistent with
the mean field equilibrium with complete information.

III. MULTI-POPULATION LINEAR QUADRATIC
MEAN FIELD GAMES UNDER ERRONEOUS

INITIAL DISTRIBUTION INFORMATION

In this section, we consider the situation where agents
in Pn obtain erroneous initial mean field states of other
populations, where each agent gives its strategy for t ∈
[0, T ] based on the erroneous information, and then evolves
according to this control.

Based on the above discussion, we can know that each
agent gives its control corresponding to an equilibrium of its
predictions. Therefore, we consider the equilibrium in Pn’s
prediction(EPn) and the actual evolution(EA).

A. Assumptions

• The correct zm(0), xim(0), dynamics of {Ajn, 1 ≤ j ≤
Nn, 1 ≤ n ≤ M} and {Jn(u), 1 ≤ n ≤ M} are
accessible for Aim, 1 ≤ Nm, 1 ≤ m ≤ M .

• znm(0) = zn(0)+En
m is the initial mean field state of Pn

as observed by Aim, 1 ≤ i ≤ Nm, n ̸= m, 1 ≤ n ≤ M
with error En

m ∈ Rd.
• At t = 0, Aim gives its strategy (uim(t))0≤t≤T and

evolves according to this strategy during 0 ≤ t ≤ T .

We define (znm(t))0≤t≤T , 1 ≤ n ≤ M as the mean field
trajectory of Pn predicted by Aim.
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B. the Strategy of Aim

Theorem 3.1 For given (znm(t))0≤t≤T , (ūm(t))0≤t≤T ,
1 ≤ m ≤ M , the control of Aim adapted to L2

Fim
0

(0, T ;Rd)

is given by uim = −R−1
m BT

myim, where yim(t) =
E[pim(t)|F im

0 ], and pim(t) satisfies

dpim(t) = −{(AT
mpim(t) + (QIm +ΣM

n=1Q
n
m)xim(t)−

QImsm − ΣM
n=1Q

n
m(Γn

mznm(t) + ηnm)}dt+ qim(t)dWim(t),

pim(T ) = (Q̄Im +ΣM
n=1Q̄

n
m)xim(T )− Q̄Ims̄m − ΣM

n=1Q̄
n
m

(Γ̄n
mznm(T ) + η̄nm),

(11)

Proof of this theorem is similar to Theorem 2.1.
Theorem 3.2 For given (znm(t))0≤t≤T , (ūm(t))0≤t≤T ,

1 ≤ m ≤ M , the optimal trajectory of Aim in the prediction
of Aim is given by

dxim(t) = {Amxim(t)−BmR−1
m BT

myim(t) + ΣM
n=1C

n
m

znm(t)− FmR−1
m BT

mym(t)}dt+DmdWim(t),

xim(0) = x0
im,

dpim(t) = −{(AT
mpim(t) + (QIm +ΣM

n=1Q
n
m)xim(t)−

QImsm − ΣM
n=1Q

n
m(Γn

mznm(t) + ηnm)}dt+ qim(t)dWim,

pim(T ) = (Q̄Im +ΣM
n=1Q̄

n
m)xim(T )− Q̄Ims̄m−

ΣM
n=1Q̄

n
m(Γ̄n

mznm(T ) + η̄nm),
(12)

where ym(t) = −(BT
m)−1Rmūm(t).

C. Mean Field Approximation

When Nm → ∞, 1 ≤ m ≤ M , by taking expectations on
un
m(t) and xn

m(t), and requiring zmn (t) = E(xn
m(t)), ūm

n (t) =
E(un

m(t)), 1 ≤ m ≤ M , where xn
m(t), un

m(t) are the state
and control of a representative agent Am of Pm in the
prediction of agents in Pn, respectively. We have

Theorem 3.3 The equilibrium mean field states
(zmn )1≤t≤T and mean field control (ūm

n )1≤t≤T in EPn satisfy
the following equations

d

(
Xn

Yn

)
=

{(
A+ C −(B + F)R−1BT

−Q −A

)(
Xn

Yn

)
− Z

}
dt,

Xn(0) = X 0
n ,

Yn(T ) = Q̄Xn(T ) + ν̄,
(13)

where ymn (t) = −(BT
m)−1Rmūm

n (t), Xn(t) =
(z1n(t)

T , ..., zMn (t)T )T ,Yn(t) = (y1n(t)
T , ...yMn (t)T )T .

We notice that Yn(t) = P (t)Xn(t) + G(t), where P (t)
satisfies the non-symmetric riccati equation (7) and G(t)
satisfies the BODEs (8). For an agent Ajn, by solving the two
known equations, it can get (Xn(t))0≤t≤T and (yn(t))0≤t≤T

, and solve (12) to calculate its optimal control ujn(t).
Since the unique existence condition for the equilibrium

given in section 2 is solely depends on the coefficients of the
mean field game model and is not related to Xn(0), if the
condition in Proposition 2.1 is satisfied, there exists a unique
EPn(n = 1, 2, ...,M ).

D. Actual Trajectories

Agents in Pn calculate their optimal control based
on EPn, so that the mean field control (ūn(t))0≤t≤T

in EPn is consistent with the actual mean field control
(ūA

n (t))0≤t≤T . Then the actual mean field trajectories
(zAn (t))0≤t≤T , 1 ≤ n ≤ M satisfy

dzAn (t) ={Anz
A
n (t)−BnR

−1
n BT

n y
A
n (t) + ΣM

k=1C
k
nz

A
k (t)

− FnR
−1
n BT

n y
A
n (t)}dt,

zAn (0) =zAn (0),
(14)

where yAn (t) = −(BT
n )

−1Rnū
A
n (t) = ynn(t). That is, agents

in Pn evolve according to their optimal controls based on
EPn. When zAk (t), k ̸= n are different from those in EPn,
zAn (t) will be different from znn(t).

IV. STRATEGY MODIFICATION

In this section, we allow each agent in Pn to obtain its
actual mean field trajectory (zAn (t))0≤t≤t0 and its own state
at time t0, and modify their control for t ∈ [t0, T ]. We call
this actual equilibrium with strategy modification as EM.

A. Information obtained by Pn at t0

In this subsection, we discuss what information can be ob-
tained by Pn from the analysis of (zAn (t))0≤t≤t0 . According
to (14), we have

ΣM
k=1C

k
nz

A
k (t) =

dzAn (t)

dt
−Anz

A
n (t)+(Bn+Fn)R

−1
n BT

n y
A
n (t),

where yAn (t) = ynn(t) is known by Pn, t ∈ [0, t0].
So (ΣM

k=1C
k
nz

A
k (t)))0≤t≤t0 and (zAn (t))0≤t≤t0 can be ob-

tained by Pn at t0.

B. Strategy Modification when Re-Game at t0

Let’s assume that all agents look back at the mean field
trajectory of their own population at time t0 and decide their
control for t ∈ [t0, T ], and all agents know this rule.

Obviously, when the actual mean field states XA(t0) =
(zA1 (t0), z

A
2 (t0), ..., z

A
M (t0)) are available for all agents at

time t0, agents can compute their actual optimal controls,
modify their strategies and generate a new equilibrium.
According to section 2, The new equilibrium is given by
the following equations

d

(
XA

YA

)
=

{(
A+ C −(B + F)R−1BT

−Q −A

)(
XA

YA

)
− Z

}
dt,

XA(t0) = XA(t0),

YA(T ) = Q̄XA(T ) + ν̄,
(15)

where YA(t) = P (t)XA(t) + G(t), P (t) satisfies the non-
symmetric riccati equation (7) and G(t) satisfies (8).
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C. Sufficient Conditions for EM

When the existence and uniqueness condition in Proposi-
tion 2.1 is satisfied, We give two sufficient conditions for
agents to compute their optimal controls and inform the
above equilibrium.

Theorem 4.1 When M = 2 and C2
1 , C

1
2 is invertible, the

actual re-game mean field trajectories are consistent with that
in the equilibrium described in (15), and all agents take their
optimal controls.
Proof:

For Pn, Cm
n zAm(t0) + Cn

nz
A
n (t0) and zAn (t0) is available,

where n = 1, 2. Since Cm
n is invertible, zAm(t0) can be

calculated by Pn. So the actual mean field states XA(t0) is
available for Pn, and the actual re-game mean field trajecto-
ries are consistent with that in the equilibrium described in
(15), which means agents can compute the actual equilibrium
and their optimal controls.□

Theorem 4.2 When A+C−(B+F)R−1BTP (t) = v(t)I ,
where I is an identity matrix and v(t) is a scalar function,
the actual re-game mean field trajectories are consistent with
that in the equilibrium described in (15), and all agents take
their optimal controls.
Proof:

Set Cn = (C1T
n , ..., CMT

n )T , 1 ≤ n ≤ M , then according
to (15) and YA(t) = P (t)XA(t) + G(t), we have

dCT
nXA(t) = CT

n (A+ C − (B + F)R−1BTP (t))XA(t)

− CT
n (B + F)R−1BTP (t)G(t)dt,

CT
nXA(t0) = CT

nXA(t0).

Since A+C−(B+F)R−1BTP (t) = v(t)I , it can be rewrite
as

dCT
nXA(t) =v(t)CT

nXA(t)− CT
n (B + F)R−1BTPGdt,

CT
nXA(t0) =CT

nXA(t0).

As CT
nXA(t0) = ΣM

k=1C
k
nz

A
n (t0) is available to Pn,

(ΣM
k=1C

k
nz

A
n (t))t0≤t≤T can be solved from above equations.

Set CIn = (I1n, ..., I
M
n )T , 1 ≤ n ≤ M , whereImn =

δnmId×d, then we have

dCT
InXA(t) = v(t)CT

InXA(t)− CT
In(B + F)R−1BTPGdt,

CT
InXA(t0) = CT

InXA(t0).

As CT
InXA(t0) = zAn (t0) is available to Pn, (zAn (t))t0≤t≤T

can be solved from above equations, and (yAn (t))t0≤t≤T

can be solved from (14), where (Pn(t))t0≤t≤T can be
solved from (4), (ḡn(t))t0≤t≤T can be solved from yAn (t) =
Pn(t)z

A
n (t) + ḡn(t).

Then for agent Ajn, according to Theorem 3.2, its optimal
control and trajectory predicted at time t0 satisfy

dxjn(t) = {Anxjn(t)−BnR
−1
n BT

n yjn(t) + ΣM
k=1C

k
n

zAk (t)− FnR
−1
n BT

n y
A
n (t)}dt+DndWjn(t),

xjn(t0) = xjn(t0),
dpjn(t) = −{(AT

npjn(t) + (QIn +ΣM
k=1Q

k
n)xjn(t)−

QInsn − ΣM
k=1Q

k
n(Γ

k
nz

A
k (t) + ηkn)}dt+ qjn(t)dWjn,

pjn(T ) = (Q̄In +ΣM
k=1Q̄

k
n)xin(T )− Q̄Ins̄n−

ΣM
k=1Q̄

k
n(Γ̄

k
nz

k
n(T ) + η̄kn).

Since (zAn (t))t0≤t≤T , (Σ
M
k=1C

k
nz

A
n (t))t0≤t≤T , xjn(t0) are

available for Ajn, (ujn(t))t0≤t≤T can be solved from above
equations, which means each agent can calculate its optimal
control under the equilibrium in (15), so this equilibrium is
the actual equilibrium.

Above all, the actual re-game mean field trajectories are
consistent with that in the equilibrium described in (15), and
all agents take their optimal controls.□

V. INITIAL ERROR AFFECTIONS

In this section, we discuss the initial error affection on
EPn, EA, EM and the affection of re-game time t0. We set
Pn’s initial error as En = Xn(0)−X 0.

A. The Deviations of EPn from EC

According to (6) and (13), for the deviation of the
equilibrium in the prediction of Pn(EPn) and that under
correct information(EC), XE

n (t) = Xn(t) − X (t),YE
n (t) =

Yn(t)− Y(t), YE
n (t) = P (t)XE

n (t), we have

dXE
n (t) = (A+ C − (B + F)R−1BTP (t))XE

n (t)dt,

XE
n (0) = En.

(16)

We set H(t) = A+C− (B+F)R−1BTP (t), then a basis
solution matrix Φ(t) of (16) can be solved according to H(t).
Since (H(t))0≤t≤T can be calculated without knowing the
information of initial states, we have the following theorem

Theorem 5.1 (XE
n (t))0≤t≤T has a linear relationship with

En, and this linear relationship can be computed by all agents
without knowing En, which is

XE
n (t) = Φ(t)Φ(0)−1En. (17)

B. The Deviations of EA from EC

Consider the deviation ūE
n (t) = ūA

n (t) − uC
n (t), where

(uC
n (t))0≤t≤T is the mean field control of Pn in EC.

Let UE
n (t) = (ū1E

n (t)T , ..., ūME
n (t)T )T , where ūmE

n (t) =
ūm
n (t)− uC

m(t) and ūE
n (t) = ūnE

n (t), then we have

UE
n (t) = −R−1BTP (t)Φ(t)Φ(0)−1En. (18)

Let ∆XA(t) = (∆zA1 (t)
T , ...,∆zAM (t)T )T , ∆zAn (t) =

zAn (t)− zCn (t), we have

d∆XA =(A+ C)∆XA − (B + F)B0(t)Edt
∆XA =0

where E = (ET
1 , ..., ET

M )T , CIn = (I1n, ..., I
M
n )T , Imn =

δnmId×d,

B0(t) =

M1(t) ... 0
...

...
...

0 ... MM (t)

 ,

Mn(t) = CT
InR−1BTP (t)Φ(t)Φ(0)−1.

The above equation corresponds a homogeneous linear equa-
tion

d∆XA =(A+ C)∆XAdt.
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Define Φ1(t) as a basis solution of this equation, then Φ1(t)
can be solved according to H1(t) = A+C. Using the method
of variation of parameters, we have the following theorem

Theorem 5.2 (∆XA(t))0≤t≤T has a linear relationship
with E , and this linear relationship can be computed by all
agents without knowing E , which is

∆XA(t) = M(t)E ,

M(t) = −Φ1(t)

∫ t

0

Φ−1
1 (s)(B + F)B0(s)ds.

(19)

C. The Deviations of EM from EC

Represent the mean field trajectories under EM as
XM (t) = (zT1 (t), ..., z

T
M (t))T , the deviation of EM from

EC as ∆XM = (∆zT1 (t), ...,∆zTM (t)). According to (15),

d∆XM (t) = (A+ C − (B + F)R−1BTP (t))∆XM (t)dt,

∆XM (0) = M(t0)E .

Then according to theorem 5.1 and theorem 5.2, we have the
following conclusion

Theorem 5.3 (∆XM (t))t0≤t≤T has a linear relationship
with E , and this linear relationship can be computed by all
agents without knowing E , which is

∆XM (t) = Φ(t)Φ(t0)
−1M(t0)E . (20)

D. The Affection of Re-Game Time t0 on EM

Consider the situation where t0 → 0. Applying the con-
tinuity of P (t),Φ1(t) and Φ(t), we have limt0→0 M(t0) =
0. Then applying the conclusion of theorem 5.3 and the
boundedness of Φ1(t) over interval t ∈ [0, T ], we have

lim
t0→0

∆XM (t) = 0, lim
t0→0

EM = EC.

VI. SIMULATIONS

A. Model Formulations

We set M = 2, N1 = N2 = 100, two populations P1

get z11(0), z
2
1(0), P2 get z12(0), z

2
2(0) and coefficients of the

model at t = 0, where z11(0), z
2
2(0) are correct initial mean

field states , while z21(0), z
1
2(0) are wrong mean field states

of P1 and P2, respectively.
We consider the scenario of opinion evolution[21], [22].

Let’s assume that a community consists of two sub-
communities P1 and P2. Each agent Aim, 1 ≤ i ≤ Nm, 1 ≤
m ≤ M has a two-dimensional state, which represents
satisfaction with event 1 and event 2, respectively, and
its evolution is influenced by the average opinion of the
whole community. Let xim(t) = (x1

im(t), x2
im(t))T , we use

x2
im(t)/(x1

im(t)+x2
im(t)) to represent Aim’s opinion inclina-

tion on the 2nd event. Agents in different sub-communities
have different ideal opinions s1, s2 and initial mean field
states z1(0), z2(0). The initial distribution of Pm is a normal
distribution with zm(0) as the expectation and 0.001I2×2 as
the covariance matrix.

Fig. 1. Opinion evolution under correct information.

Fig. 2. Opinion evolution in population 1’s prediction.

The dynamics and cost functions of Aim is given by (1)
and (2), where

Cn
m = 0.5I2×2, Am = −I2×2, Bm = Fm = 0.5I2×2,

Dm = 0.01
√
0.1I2×2, Rm = I2×2,

QIm = I2×2 = Q̄Im, Qn
m = I2×2 = Q̄n

m,

Γn
m = I2×2 = Γ̄n

m, ηnm = 0 = η̄nm, z1(0) = (0.1, 0.7)T ,

z2(0) = (0.7, 0.1)T , s1 = (1, 0)T , s2 = (0, 1)T .

At t = 0, agents in sub-community Pm get the correct
mean field state zm(0) of their own sub-community and
the erroneous mean field state znm(0) of the other sub-
community, and give their strategies (uim(t))0≤t≤T , 1 ≤ i ≤
Nm for t ∈ [0, T ].

B. EC, EPn, EA, EM Situations

Let z21(0) = (0.4, 0.4)T , z12(0) = (0.4, 0.4)T . We simulate
opinion evolutions in EC, EP1, EP2, EA, EM. The evolu-
tionary of satisfaction on two events and opinion inclination
are shown in Fig.1, Fig.2, Fig.3, Fig.4, Fig.5, respectively.
The color ranges from blue to yellow, corresponding to the
time from 0 to T .

It can be seen that the wrong initial mean field states of
the other population leads to a significant difference among
EC, EP1, EP2, EA and EM. We compare the average opinion
inclinations under these situations in Fig.6.

C. Deviations

We set z21(0) − z2(0) = k(−0.1, 0.1)T , z12(0) − z1(0) =
k(0.1,−0.1)T , then XE

1 (0) = k(0, 0,−0.1, 0.1)T ,XE
2 (0) =

k(0.1,−0.1, 0, 0)T . We compare the deviations XE
1 (t) with

different k in Fig.7. The deviations between EC and EA,
the deviations between EC and EM with different k are
compared in Fig.8. It can be shown that the deviations have
a linear relationship with k, which verifies the conclusions
mentioned in Section 5.
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Fig. 3. Opinion evolution in population 2’s prediction.

Fig. 4. Actual opinion evolution.

Fig. 5. Actual opinion evolution when re-game at t0 = 0.045.
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Fig. 6. Average opinion inclinations in different situations.

The deviations between EC and EM with different t0 and
the average opinion inclinations with and without re-game
are shown in Fig.9. It can be seen that agents change their
strategies at t0, and the average opinion inclinations have an
obvious deviation from that without re-game. The deviations
have a linear relationship with k, and tend to disappear as
t0 decreases, which verifies the conclusions mentioned in
Section 5.
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Fig. 7. From left to right, above figures show the deviations between the
average opinion of population 1 under EP1 and that under EC, the deviations
between the average opinion of population 2 under EP1 and that under EC.
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Fig. 8. From left to right, above figures show the deviations between EA
and EC, EM and EC.
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Fig. 9. From left to right, above figures show the opinion evolution with
re-game at t0 = 0.045 and the deviations between EM an EC with different
k.

D. Results

In this section, we simulate a two-population MFG under
the influence of erroneous initial mean field states informa-
tion in the opinion evolution scenario. First, we simulate the
opinion evolution under erroneous initial mean field states
information.Then we compare EP1, EP2, EC, EM and EM,
and verify the linear relationship between deviations and
initial error mentioned in section 5. Finally, we simulate the
opinion evolution with re-game at t0 = 0.045, compare it to
that without re-game, and compare the deviations between
EM and EC with different t0, observing a clear difference
between the two situations and the affection of re-game time.

VII. CONCLUSIONS

We discuss the initial error affection and strategy modi-
fication in MPLQMFGs under erroneous initial distribution
information are investigated. Our work presents a method of
inferring unknown information using known partial informa-
tion and use it to find optimal controls in MPLQMFGs. In
future work, we will consider more general mean field games
and more situations of erroneous parameters, as well as
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situations where different populations modify their strategies
at different moment and for many times.

APPENDIX

Proof of Theorem 2.1: Consider a perturbation of the
optimal control uim(t) = ûim(t) + θũim(t), then we have
xim(t) = x̂im(t) + θx̃im(t). x̃im(t) satisfies

dx̃im(t) = [Amx̃im(t) +Bmũim(t)]dt

x̃im(0) = 0
(21)

According to Euler condition, the optimal control ûim(t)
satisfies

0 =
dJ(ûim(t) + θũim(t))

dθ
|θ=0

= E{
∫ T

0

[x̃T
im(t)QIm(x̂im(t)− sm) + ũT

im(t)Rmûim(t)+

ΣM
n=1x̃

T
im(t)Qn

m(x̂im(t)− (Γn
mzn(t) + ηnm))]dt+ x̃T

im(T )

Q̄Im(x̂im(T )− s̄m) + ΣM
n=1x̃

T
im(T )Q̄n

m(x̂im(T )−
(Γ̄n

mzn(T ) + η̄nm))}

Then

d(pTim(t)x̃im(t)) = d(pTim(t))x̃im(t) + pTim(t)d(x̃im(t))

= −[x̃T
im(t)QIm(xim(t)− sm)− ũT

im(t)BT
mpim(t)+

ΣM
n=1x̃

T
im(t)Qn

m(xim(t)− (Γn
mzn(t) + ηnm))]dt

When θ = 0, x̂im(t) = xim(t), ûim(t) = uim(t). By
integrating on [0, T ] and taking expectation on both sides
of the above equation

E[
∫ T

0

ũT
im(t)BT

mE[pim(t)|F im
t ] + ũT

im(t)Rmuim(t)dt] = 0.

Due to the arbitrariness of ũT
im(t), we get uim(t) =

−R−1
m BT

mE[pim(t)|F im
t ]. □
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