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Abstract— This paper considers a consensus optimization
problem, where all the nodes in a network, with access to the
zeroth-order information of its local objective function only, at-
tempt to cooperatively achieve a common minimizer of the sum
of their local objectives. To address this problem, we develop
ZoPro, a zeroth-order proximal algorithm, which incorporates
a zeroth-order oracle for approximating Hessian and gradient
into a recently proposed, high-performance distributed second-
order proximal algorithm. We show that the proposed ZoPro
algorithm, equipped with a dynamic stepsize, converges linearly
to a neighborhood of the optimum in expectation, provided that
each local objective function is strongly convex and smooth.
Extensive simulations demonstrate that ZoPro converges faster
than several state-of-the-art distributed zeroth-order algorithms
and outperforms a few distributed second-order algorithms in
terms of running time for reaching given accuracy.

I. INTRODUCTION
This paper considers a widely studied distributed opti-

mization problem, i.e., consensus optimization, where all
the nodes in a network aim at reaching a consensus that
minimizes the sum of their local cost functions. This problem
arises in many real-world applications such as distributed
machine learning [1] and resource allocation [2].

To date, a variety of distributed algorithms for convex
consensus optimization have been proposed, in which each
node only has access to certain information of its convex
local cost function and can only communicate with its
neighbors determined by the network topology. Most existing
distributed optimization algorithms are first-order methods,
which typically include primal (sub-)gradient methods [3]–
[7] and dual/primal-dual (sub-)gradient methods [8]–[10].
These methods essentially require the nodes compute the
(sub-)gradients of their primal or dual objectives.

The second-order methods, such as the Decentralized
Broyden-Fletcher-Goldfarb-Shanno method (D-BFGS) [11],
the Exact Second-Order Method (ESOM) [12] and the
Decentralized Quadratically Approximated ADMM (DQM)
[13], employ the objective Hessian matrices in addition to the
objective gradients, potentially leading to faster convergence
due to their more accurate approximations of some global
objectives. Recently, Wu et al. have proposed a distributed
second-order proximal algorithm called SoPro [14], which
originates from the classic Method of Multipliers [15], while
replacing the augmented Lagrangian function of the prob-
lem with its second-order approximation and introducing a
separable quadratic proximal term to decouple the problem.
SoPro achieves linear convergence under strong convexity
and smoothness, and exhibits superior practical performance.
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All of the aforementioned algorithms are required to
compute at least the first-order information (i.e., (sub-
)gradients) and even the second-order information (i.e., Hes-
sian matrices) of the problem. However, these pieces of
information could be unavailable or too time-consuming
to obtain in big data and large-scale network scenarios.
Under such circumstances, zeroth-order algorithms [16]–
[23] are effective approaches, whose updates only involve
sampled function values instead of the exact (sub-)gradients
and Hessian matrices. Various zeroth-order algorithms have
been developed so far, which utilize zeroth-order estimators
with different batch sizes to estimate the (sub-)gradients
in some distributed first-order methods, including zeroth-
order gradient tracking method [16], zeroth-order primal-dual
methods [17], [18], zeroth-order decentralized (sub-)gradient
descent [16], zeroth-order method with approximate projec-
tion [20], distributed zeroth-order projected gradient descent
[21], distributed randomized zeroth-order mirror descent
method [23], etc. To the best of our knowledge, zeroth-
order Hessian estimators have barely been considered in
distributed optimization. As distributed second-order algo-
rithms often outperform the first-order ones in both accuracy
and convergence rate, introducing zeroth-order oracles for
Hessian estimation to distributed second-order methods is a
promising direction.

In this paper, we propose a distributed zeroth-order
proximal algorithm, referred to as ZoPro, for solving convex
consensus optimization. ZoPro replaces the exact objective
gradients and Hessian matrices in the distributed second-
order algorithm SoPro [14] with their zeroth-order estimates,
so that it significantly reduces the computational cost of
SoPro and is applicable to the scenarios where the objective
gradients and Hessian matrices are inaccessible or too costly
to compute. ZoPro also inherits the appealing convergence
performance of SoPro. It is shown to achieve a linear rate
of convergence to a neighborhood of the optimal solution
when the objective functions are strongly convex and smooth.
Finally, the numerical experiments demonstrate that ZoPro
outperforms a few state-of-the-art distributed zeroth-order
methods in convergence speed and enjoys shorter running
time than several well-noted second-order methods.

The rest of the paper is organized as follows: Section II
describes the problem formulation, Section III develops the
proposed ZoPro algorithm, Section IV provides convergence
result, Section V presents the simulation results, and Section
VI concludes the paper. Due to space limitation, we omit all
the proofs, which can be found in [24]

Notations and definitions: For any differentiable function
f : Rd → R, ∇f(x) represents its gradient at x ∈ Rd and
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if f is twice-differentiable, ∇2f(x) represents its Hessian
matrix. Od and Id represent the d × d zero matrix and
identity matrix, respectively, and 0d and 1d represent the d-
dimensional all-zero and all-one vectors, respectively. Define
Z+ and N as the sets of positive integers and non-negative in-
tegers, respectively. Also, ⊗ denotes the Kronecker product,
∥ · ∥ denotes the L2 norm and ⟨·, ·⟩ denote the inner product.
Besides, diag(A1, . . . , An) represents the block diagonal
matrix consisting of the diagonal blocks A1, . . . , An. [P ]ij
denotes the (i, j)-entry of matrix P . Given A = AT ∈ Rd×d

and x ∈ Rd, ∥x∥2A = xTAx. λmin(A) and λmax(A) rep-
resent A’s smallest and largest eigenvalues, respectively. A†

denotes A’s pseudo-inverse and A⊥ represents the orthogonal
complement of A. v ∼ N (µ,Σ) represents a Gaussian
random vector v with mean µ and covariance matrix Σ.
A function f : Rd → R is µ-strongly convex if f is
differentiable and
f(y) ≥ f(x) +∇f(x)T (y − x) +

µ

2
∥y − x∥2 ∀x, y ∈ Rd

for some µ > 0. f is L-smooth if f is differentiable and
∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd

for some L > 0. Finally, the directional derivative of f
at point x along direction d is denoted by f ′(x; d) =

limα→0
f(x+αd)−f(x)

α .

II. PROBLEM FORMULATION
We consider solving

minimize
x∈Rd

∑
i∈V

fi(x) (1)

over a network modeled as a connected and undirected graph
G = (V, E), where V = {1, 2, . . . , N} is the set of nodes and
E ⊆ {{i, j} ⊆ V × V | i ̸= j} is the set of the bidirectional
links. For each i ∈ V , we denote the set of its neighbors by
Ni = {j ∈ V | {i, j} ∈ E}. Here, fi : Rd → R is the local
cost/objective function associated with node i ∈ V and each
node i only communicates with its neighbors in Ni.

Let xi ∈ Rd be node i’s local copy of the global
optimization variable x and x be the concatenation of all
the xi’s, i.e. x = (xT

1 , . . . , x
T
N )T ∈ RNd. Let P = PT be a

weight matrix corresponding to the network G given by

[P ]ij =


∑

s∈Ni
pis, i = j,

−pij , j ∈ Ni,
0, otherwise,

∀i, j ∈ V,

where pij = pji > 0 ∀ {i, j} ∈ E .
Due to the fact that G is connected, the null space of P

is span{1N}, so that we can rewrite problem (1) as
minimize

x∈RNd
f(x) =

∑
i∈V

fi(xi)

subject to W
1
2x = 0Nd, (2)

where W = P ⊗ Id ⪰ ONd and the equality constraint
means that x1, . . . , xn are identical [14].

We impose the following assumption on problem (1).
Assumption 1: Each fi is mi-strongly convex, twice con-

tinuously differentiable and Mi-smooth, where mi, Mi > 0.
Note that Assumption 1 guarantees the uniqueness of the

optimal solution x∗ to problem (1).

III. ALGORITHM DEVELOPMENT

In this section, we develop a distributed zeroth-order
algorithm for solving problem (2).

A. SoPro Algorithm

We first quickly review the second-order proximal (SoPro)
algorithm proposed in [14].

SoPro solves (2) in a primal-dual fashion as follows:

xk+1 = xk − (▽2f(xk) +D)−1(▽f(xk) + ρWxk + qk),
(3)

qk+1 = qk + ρWxk+1, (4)

with the initialization q0 = 0Nd, where xk is the global pri-
mal variable and qk = W

1
2vk is a change of variable with vk

being the dual variable associated with the constraint in (2).
The primal update (3) intends to minimize an augmented-
Lagrangian-like function constructed in the following way:
The augmented Lagrangian function of (2) with penalty
ρ
2∥W

1
2x∥2, ρ > 0 is first replaced by its second-order

approximation at xk to reduce computational cost. Then, a
separable quadratic proximal term 1

2 (x − xk)T (∇2f(xk) +
D)(x−xk) is employed as a substitute for the non-separable
term in the above approximate augmented Lagrangian func-
tion to enable fully distributed implementation, where D =
diag(D1, . . . , DN ) is a symmetric block diagonal matrix
with each Di ∈ Rd×d satisfying ∇2f(xk) + D ≻ ONd.
The dual update (4) emulates dual gradient ascent.

Observe that the updates (3) and (4) of SoPro require
calculating accurate first-order and second-order information
of the objective function f , which could be a tough challenge
when handling big data and large-scale problems. The high
computational complexity of SoPro motivates the develop-
ment of zeroth-order oracles for efficiently estimating the
gradients and Hessian in SoPro.

B. Zeroth-order Oracle

Next, we provide a zeroth-order oracle for estimating the
gradients and Hessian matrices in SoPro’s updates (3) and
(4). To do so, consider the following smoothed approxima-
tion of the objective function f :

fµ(x) ≜
1

(2π)Nd/2

∫
RNd

f(x+ µu)e−
∥u∥2

2 du, (5)

where u ∼ (0, INd) ∈ RNd is a Gaussian random vector
and µ > 0 is a parameter to control the smoothness level
[25, Section 2]. Note that the smoothed approximation fµ is
guaranteed to be differentiable. We will show more properties
of fµ in Section IV. Let g̃µ and H̃µ represent the gradient
and Hessian estimation of the above Gaussian smoothing
function fµ, which are defined according to [22] as follows:

g̃µ(x) =
1

b

b∑
j=1

f(x+ µuj)− f(x)

µ
uj . (6)

H̃µ(x) = diag
(
H̃µ,1(x1), . . . , H̃µ,N (xN )

)
, (7)
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H̃µ,i(xi)

=
1

b

b∑
j=1

fi(xi + µuj) + fi(xi − µuj)− 2fi(xi)

2µ2
uju

T
j ,

∀i = 1, . . . , N,

where b ∈ Z+ is the batch size, uj ∼ N (0, Id) ∈ Rd,
j = 1, . . . , b are Gaussian random vectors. The zeroth-order
oracle (6)–(7) for gradient and Hessian matrix estimation
only needs to sample (2b+1)N points from the local objec-
tive functions, which is much less costly than computing the
exact gradient and Hessian matrix. It can be verified that the
zeroth-order gradient estimation (6) is an unbiased estimator
for ∇fµ [19], i.e., E [g̃µ(x)] = ∇fµ(x).

C. ZoPro Algorithm

In this subsection, we incorporate the zeroth-order oracle
(6)–(7) into SoPro, yielding a zeroth-order proximal algo-
rithm, referred to as ZoPro.

We first replace ∇f(xk) and ∇2f(xk) in (3) and (4) with
g̃µ(x

k) and H̃µ(x
k), which gives

xk+1 = xk − (H̃µ(x
k) +D)−1(g̃µ(x

k) + ρWxk + qk),
(8)

qk+1 = qk + ρWxk+1, (9)

where, similar to SoPro, D = diag(D1, . . . , DN ) ∈ RNd×Nd

is a symmetric block diagonal matrix such that H̃µ(x) +

D ≻ ONd ∀x ∈ RNd, or equivalently, H̃µ,i(xi) + Di ≻
0d ∀x ∈ Rd ∀i = 1, . . . , N . The starting point q0 is set
to q0 ∈ S⊥, where S =

{
x ∈ RNd|x1 = · · · = xN

}
and

S⊥ =
{
x ∈ RNd|x1 + · · ·+ xN = 0d

}
, so that qk ∈ S⊥

∀k ≥ 0 due to (9). For simplicity, we set q0 = 0Nd.
Since g̃µ(x

k) and H̃µ(x
k) are only estimated values of

∇f(xk) and ∇2f(xk), (8) and (9) may not converge to
the exact optimum like SoPro. To overcome this issue, we
introduce a backtracking line search strategy with a dynamic
stepsize to bound the sequence

{
xk

}
. We set the search

direction to dk = −(H̃µ(x
k)+D)−1(g̃µ(x

k)+ρWxk+qk),
and then modify (8) to

xk+1 = xk +Akdk. (10)

Here, Ak = diag(αk
1 , α

k
2 , . . . , α

k
N ) ⊗ Id ∈ RNd×Nd and

αk
i , i ∈ V is the local stepsize of node i determined by

the Armijo condition [26, Eq. (1)], i.e. fi(x
k
i + αk

i d
k
i ) ≤

f(xk
i ) + cαk

i f
′
i(x

k
i ; d

k
i ), where c > 0 is the stepsize control

parameter, f ′
i(x

k
i ; d

k
i ) is the directional derivative of fi at xk

i

along node i’s local search direction dki and dki is the i-th
d-dimensional block of dk. In light of the Armijo condition,
it is always possible to find a sufficiently small stepsize
αk
i > 0 that satisfies the condition. In practice, by choosing

an appropriate parameter c, the backtracking line search
may require several iterations. Nevertheless, this approach
ensures that our algorithm remains competitive in numerical
experiments as is shown in Section V.

The primal update (10) and the dual update (9) with
initialization q0 = 0Nd constitute a zeroth-order proximal
algorithm, referred to as ZoPro, whose distributed imple-
mentation is described in Algorithm 1.

Algorithm 1 Zeroth-Order Proximal Algorithm (ZoPro)

1: Initialization:
All the nodes agree on the batch size b ∈ Z+, the
smoothness parameter µ > 0, the penalty parameter
ρ > 0, and the stepsize control parameter c ∈ (0, 1).
Generate b random vectors uj ∼ N (0, Id) ∀j = 1, . . . , b.

2: Each node i ∈ V chooses Di such that H̃µ,i(x) +Di ≻
Od ∀x ∈ Rd and sets the initial stepsize α0

i = 1.
3: Every pair of neighboring nodes {i, j} ∈ E set pij = pji

to some positive value.
4: Each node i ∈ V sets x0

i ∈ Rd arbitrarily and q0i = 0d.
Then, it sends x0

i to every neighbor j ∈ Ni.
5: Upon receiving x0

j ∀j ∈ Ni, each node i ∈ V sets y0i =∑
j∈Ni

pij(x
0
i − x0

j ).
6: for k ≥ 0 do
7: Each node i ∈ V computes Hessian estimate H̃µ,i(x

k
i )

= b−1
∑b

j=1
fi(x

k
i +µuj)+fi(x

k
i −µuj)−2fi(x

k
i )

2µ2 uju
T
j .

8: Each node i ∈ V computes gradient estimate
g̃µ,i(x

k
i ) =

1
b

∑b
j=1

fi(x
k
i +µuj)−fi(x

k
i )

µ uj .
9: Each node i ∈ V computes the search direction dki =

−(H̃µ,i(x
k
i ) +Di)

−1(g̃µ,i(x
k
i ) + ρyki + qki ).

10: Each node i ∈ V determines the stepsize αk
i such that

fi(x
k
i + αk

i d
k
i ) ≤ f(xk

i ) + cαk
i f

′
i(x

k
i ; d

k
i ).

11: Each node i ∈ V updates xk+1
i = xk

i + αk
i d

k
i and

sends xk+1
i to every neighbor j ∈ Ni.

12: Upon receiving xk+1
j ∀j ∈ Ni, each node i ∈ V

updates yk+1
i =

∑
j∈Ni

pij(x
k+1
i −xk+1

j ) and qk+1
i =

qki + ρyk+1
i .

13: end for

In Algorithm 1, each node i maintains a local primal
variable xk

i ∈ Rd and a local dual variable qki ∈ Rd, which
are the i-th d-dimensional block of xk and qk. Also, we
let it maintain an auxiliary variable yki ∈ Rd such that
yk =

(
(yk1 )

T , . . . , (ykN )T
)T

= Wxk for better presentation.
The existing zeroth-order distributed optimization methods

such as distributed zeroth-order gradient tracking method
[16], distributed zeroth-order primal-dual method [17], [18],
distributed zeroth-order projected gradient descent [21] and
distributed randomized zeroth-order mirror descent method
[23] all use zeroth-order information to approximate the
objective gradients only. In contrast, ZoPro includes zeroth-
order estimates for both gradients and Hessian matrices. This
may accelerate the convergence as ZoPro adopts potentially
more accurate approximations of the global objective than
other zeroth-order methods.

IV. CONVERGENCE ANALYSIS
This section provides the convergence analysis of ZoPro.
First, we analyze some properties of fi and f ′

i .
Proposition 1: Let fi : Rd → R be a L-smooth func-

tion and let
{
xk
i

}
be the sequence generated by xk+1

i =
xk
i + αk

i d
k
i , where αk

i is the stepsize determined by the
backtracking line search and dki is the corresponding search
direction. Denote the directional derivative of fi as f ′

i . Then
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one of the following statements is true:
(i) fi(xk

i ) → −∞ as k → ∞.
(ii) The sequence

{
∥dki ∥

}
diverges.

(iii) For every infinite subsequence J ⊆ N for which{
dki : k ∈ J

}
is bounded, we have

lim
k∈J,k→∞

f ′
i(x

k
i ; d

k
i ) = 0.

From Proposition 1, we have limk→∞ f ′
i(x

k
i ; d

k
i ) = 0 for

fi, i ∈ V , which indicates that either the gradient ∇fi(x
k
i )

and the search direction dki are orthogonal as k → ∞ or
∇fi(x

k
i ) equals 0 as k → ∞, and both results can terminate

the backtracking line search. From [27, Theorem 3.2], back-
tracking line search method guarantees convergence of the
generated sequence

{
xk

}
. By continuous mapping theorem,{

∇f(xk)
}

is convergent, and thus
{
∥∇f(xk)∥

}
is bounded.

For simplicity, we denote the upper bound as K.
Assumption 1 implies f is strongly convex for some m ∈

(0,mini mi] and smooth for some M ≥ maxi Mi. [19, Eq.
(9)] derives a bound of the difference between ∇fµ and g̃µ.

E
[
∥g̃µ(x)−∇fµ(x)∥2

]
≤

2Nd
(
µ2M2Nd+K2

)
b

≜ G2
1.

(11)

Besides, the difference between ∇fµ and ∇f is also bounded
in [25, Eq. (28)] as follows:

∥∇fµ(x)−∇f(x)∥2 ≤ µ2

4
M2(Nd+ 3)3 ≜ G2

2. (12)

Moreover, let fµ,i be the smoothed approximation of func-

tion fi, i.e. fµ,i(xi) = 1
(2π)d/2

∫
Rd f(x + µui)e

− ∥ui∥
2

2 dui,
where, similarly, ui ∼ (0, Id) ∈ Rd, i = 1, . . . , N is
Gaussian random vectors. According to [25, Section 2],
the smoothing function fµ,i can preserve all characteristics
of fi. For example, fµ,i is guaranteed to be mi-strongly
convex and Mi-smooth if fi is mi-strongly convex and Mi-
smooth. fµ,i is twice continuously differentiable if fi is
twice continuously differentiable. Assumption 1 also implies
miId ⪯ ∇2fi(x) ⪯ MiId, i = 1, . . . , N ∀x ∈ Rd. Let
Λm = diag(m1,m2, . . . ,mN ) ⊗ Id ≻ ONd and ΛM =
diag(M1,M2, . . . ,MN ) ⊗ Id ≻ ONd. Besides, in order to
provide a bound of the stepsize in backtracking line search,
we define the smallest stepsize in the whole process as α, i.e.
α = mini,k α

k
i > 0 for i = 1, . . . , N and k = 0, 1, . . . . We

have α ∈ (0, 1] since α0
i = 1. Let R = α−1(ΛM+Λm

2 +D) ∈
RNd×Nd and Q = diag(ρR, INd). For simplicity, define
Hk = H̃µ(x

k) +D.
Similar to [22, Eq. (3.1)], we impose another assumption

to bound the difference between H̃µ,i(xi) and ∇2fi(xi).
Assumption 2: The estimated Hessian H̃µ,i(xi) satisfies

θH̃µ,i(xi) ⪯ ∇2fi(xi) ⪯ (2− θ)H̃µ,i(xi),

for i = 1, . . . , N and some θ ∈ (0, 1].
Parameter θ measures how accurate H̃µ,i(xi) approxi-

mates ∇2fi(xi). Specifically, H̃µ,i(xi) reduces to the exact
Hessian ∇2fi(xi) when θ = 1. The way of constructing
zeroth-order estimate for Hessian (7) may satisfy Assumption
2 with proper parameter values such as sufficiently large
b, small µ and evenly distributed uj , as is stated in [22].

Practically, we tend to select a small batch size b, which
is much smaller than dimension d, to reduce computational
complexity.

From Assumption 1 and 2, we have
1

2− θ
Λm ⪯ 1

2− θ
∇2f(x) ⪯ H̃µ(x) ⪯

1

θ
∇2f(x) ⪯ 1

θ
ΛM .

(13)
Let Λ̄ = α−1

(
1
θΛM − ΛM+Λm

2

)
. The convergence analysis

relies on the following condition

D ≻ΛM

2η
+ ρ(W + INd) +

(
2

θ
− 3

2

)
ΛM − 3

2
Λm

+

(
1

θ
ΛM − ΛM + Λm

2

)2

, (14)

for any η > 1. With (14), it is guaranteed that H̃µ(x)+D ≻
ONd ∀x ∈ RNd since H̃µ(x) ⪰ 1

2−θΛm.
For better presentation, let zk = ((xk)T , (vk)T )T and

z∗ = ((x∗)T , (v∗)T )T . Also, let λW > 0 be the smallest
nonzero eigenvalue of W . The main convergence result of
ZoPro is provided below.

Theorem 1: Suppose Assumptions 1 and 2 hold. Assume
(14) holds for some η > 1. Then, for any β > α−1 and
γ > 2m(η−1)+η+β

η−1 , zk converges linearly to a neighborhood
of z∗ in expectation, i.e. there exists δ ∈ (0, 1) such that for
each k ≥ 0,

E
[∥∥zk+1 − z∗

∥∥2
Q

]
≤ (1− δ)E

[∥∥zk − z∗
∥∥2
Q

]
+G, (15)

lim sup
k→∞

E
[∥∥zk − z∗

∥∥2
Q

]
≤ G

δ
. (16)

In particular, given any c1, c2 > 0, G = ρ(η + 1−η
γ )G2

2 +

2(G2
1 +G2

2) +
2δ(1+c1)(G1+G2)

2

λW
and

δ = sup
c1,c2>0

min

{
ρλWκβ,η

2α−2(1 + c1)
∥∥ 1
θΛM +D

∥∥2 ,

1

(1 + 1/c1)(1 + c2)
,

δc
λmax(B/ρ)

}
, (17)

in which B =
(1+1/c1)(1+1/c2)Λ

2
M

λW
+ ρR, δc = (2m− γ)(1−

η)− η− β and κβ,η = λmin(R− ΛM

2η − Λ̄2

β − 2Λ̄− ρ(INd +
W )) > 0.

Subsequently, we discuss the influence of the objective
function and the network topology on the convergence rate
of ZoPro. From (15), note that δ mainly depends on M , m
and λW . To see this, let fi ∀ i ∈ V be identically strongly
convex with parameter m and smooth with parameter M
such that 0 < m < M . Let W = INd − A ⊗ Id, where
A = AT is a doubly stochastic matrix. It can be shown that
larger m, smaller M and larger λW (which suggests denser
connectivity of G) lead to larger δ and a faster convergence
speed of ZoPro.

Also, we discuss the factors that affect the ultimate opti-
mality error, i.e., the expected distance between zk and z∗ as
k → ∞. From (16), this expected distance mainly depends
on µ, b and M . It can be shown that smaller µ (accurate
smoothed approximation), larger b (enough sample points
for zeroth-order oracle) and smaller M (well-conditioned
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Fig. 1: Convergence performance of ZoPro, ZOPD and ZOGT

objective function) contribute to a smaller expected error.
However, we need to control b within a moderate range to
avoid high computational cost in constructing Hessian and
gradient estimates.

V. NUMERICAL EXPERIMENTS

This section illustrates the practical convergence perfor-
mance of ZoPro and its comparisons with related algorithms.

In the numerical experiment, we consider the
following logistic regression problem with L2

regularization: All the nodes need to coopera-
tively minimize the objective function f(x) =∑

i∈V
(

λ
2N ∥xi∥2 +

∑qi
l=1 log

(
1 + exp(−vilu

T
ilxi)

))
, where

xi ∈ Rd, λ is a regularized parameter, N is the number
of nodes, qi is the sample number assigned to node i, uij ,
j = 1, . . . , qi is the data and vij ∈ {−1,+1}, j = 1, . . . , qi
is the corresponding label. Here, we set qi = 5 ∀i ∈ V .

A. Comparison with Zeroth-order Methods

We compare the convergence performance of ZoPro with
some other existing zeroth-order optimization methods, in-
cluding zeroth-order gradient-tracking method (ZOGT) [16]
and zeroth-order primal-dual method (ZOPD) [17].

We set d = 20. In order to test how the problem
and network characteristics influence the convergence per-
formance, we consider three parameters, i.e., the network
size N , the average node degree da =

∑
i∈V |Ni|/N

and the convexity parameter λ. Accordingly, we run three
groups of experiments, each of which fixes two of these
parameters and varies the other. We express each experi-
ment as a triplet (N, da, λ), and set the three experiment
groups to (G1) (N, 20, 1), N = 30, 40, 50, 70, 100, 150, (G2)
(50, da, 1), da = 10, 15, 20, 25, 30, 40 and (G3) (50, 20, λ),
λ = 0.1, 0.5, 1, 1.5, 2, 2.5. For each value of (N, da, λ), we
generate 10 random scenarios and plot their average in our
figures. In each scenario, the undirected network is randomly
generated with the given N and da.

The algorithm parameters of ZoPro are selected mod-
erately. We let the smoothness parameter µ = 0.05, the
batch size b = 50 and the stepsize control parameter c =
0.1. We terminate the algorithms when the average error
of all the nodes

∑
i∈V ∥xk

i − x∗∥2/N drops below 10−4

and remains there for 100 more iterations. Therefore, we
define the number of iterations needed for convergence as
min

{
k :

∑
i∈V ∥xk+t

i − x∗∥2/N ≤ 10−4, 0 ≤ t ≤ 100
}

.
Figure 1 plots the number of iterations needed for con-

vergence of ZoPro, ZOPD and ZOGT with (N, da, λ) given
by (G1), (G2) and (G3), respectively. Observe that smaller
and denser networks as well as larger convexity parameters
essentially lead to faster convergence for ZoPro, ZOGT
and ZOPD. Compared to ZOGT and ZOPD, our proposed
ZoPro requires the fewest iterations to reach the convergence
criterion in most of the cases.

B. Comparison with Second-order Methods

To illustrate the computational efficiency of ZoPro, we
make a comparison of ZoPro and the well-noted second-
order methods ESOM [12], DQM [13] and SoPro [14] in
terms of running time. Here, we consider the same problem
form as before, and set (N, da, λ, d) to be (30, 10, 1, 20) and
(100, 20, 1, 30) to simulate a medium-scale problem and a
large-scale problem.

Fig. 2: Convergence performance of ZoPro, ESOM, DQM
and SoPro for the medium-scale problem

In Figure 2 for the medium-scale problem, ZoPro con-
sistently takes shorter running time for reaching the same
accuracy than ESOM and DQM. Compared to SoPro which
ZoPro originates from, ZoPro requires less time to reach the
accuracy 10−4. However, when the accuracy is enhanced to
10−6, SoPro is a better option. In Figure 3 for the large-scale
problem, the advantage of ZoPro against all the other three
second-order methods becomes more prominent and ZoPro
takes the shortest time in achieving any accuracy above 10−6.
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Fig. 3: Convergence performance of ZoPro, ESOM, DQM
and SoPro for the large-scale problem

VI. CONCLUSION

We develop a zeroth-order proximal algorithm (ZoPro)
for solving consensus optimization problems over undirected
networks. ZoPro approximates exact gradients and Hessian
matrices in a powerful second-order method SoPro using a
zeroth-order oracle, which significantly reduces the compu-
tational complexity, particularly in solving large-scale prob-
lems. ZoPro inherits some appealing features of SoPro, in-
cluding full decentralization and fast convergence. We show
that ZoPro achieves linear convergence to a neighborhood
of the optimum in expectation when the problem is strongly
convex and smooth. We also demonstrate the fast conver-
gence and computational efficiency of ZoPro by comparing
it with several state-of-the-art distributed zeroth-order and
second-order algorithms through extensive simulations.
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[2] A. Beck, A. Nedić, A. Ozdaglar, and M. Teboulle, “An O(1/k) gradient
method for network resource allocation problems,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 1, pp. 64–73, 2014.

[3] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: an exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[4] W. Shi, Q. Ling, G. Wu, and W. Yin, “A proximal gradient algorithm
for decentralized composite optimization,” IEEE Transactions on
Signal Processing, vol. 63, no. 22, pp. 6013–6023, 2015.

[5] J. Lu and C. Tang, “Zero-gradient-sum algorithms for distributed
convex optimization: The continuous-time case,” IEEE Transactions
on Automatic Control, vol. 57, no. 9, pp. 2348–2354, 2012.

[6] C. Xi and U. Khan, “DEXTRA: a fast algorithm for optimization over
directed graphs,” IEEE Transactions on Automatic Control, vol. 62, no.
10, pp. 4980–4993, 2017.

[7] C. Xi, R. Xin, and U. Khan, “ADD-OPT: accelerated distributed
directed optimization,” IEEE Transactions on Automatic Control, vol.
63, no. 5, pp. 1329–1339, 2018

[8] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent primal
dual algorithm and application to distributed asynchronous optimiza-
tion,” IEEE Transactions on Automatic Control, vol. 61, no. 10, pp.
2947–2957, 2016.

[9] A. Makhdoumi and A. Ozdaglar, “Convergence rate of distributed
ADMM over networks,” IEEE Transactions on Automatic Control,
vol. 62, no. 10, pp. 5082–5095, 2017.
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