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Abstract— This study delves into the leader-following consen-
sus problem in linear multi-agent systems that are structured
on weight-balanced digraphs. The primary aim is to formulate
a distributed, implementable optimal controller capable of
achieving both leader consensus and simultaneous optimization
of the linear quadratic cost function. To attain this objective, we
introduce a decentralized computation approach and advocate
for a distributed information strategy. Initially, the computation
of the global Riccati equation is disassembled into the compu-
tation of local Riccati equations. Following that, we propose
an information fusion algorithm utilizing the dynamic average
consensus approach to unravel the optimal controller, enabling
its implementation in a distributed fashion. Additionally, we
offer numerical simulation examples to demonstrate the efficacy
of our proposed approach.

I. INTRODUCTION

Consensus control in multi-agent systems (MASs) has
garnered significant interest in the past few decades. The
objective of consensus control is to attain agreement on
specific parameters by relying solely on local information.
Research in this field has made substantial progress, includ-
ing advancements in average consensus [1], leader-following
consensus [2]–[4], and others.

Expanding on this prior research, some studies aim to
design controllers that can simultaneously minimize an ob-
jective function and achieve consensus, a concept referred to
as optimal consensus. In the context of optimal consensus,
the cost function commonly adopts a linear quadratic (LQ)
metric.However, effectively managing the coupling between
communication and control can pose challenges in MASs.
Numerous studies have been conducted to address the opti-
mal consensus problem. For example, Wang et al. proposed
a distributed optimization-based algorithm [5] to solve the
finite horizon linear quadratic (LQ) synchronization problem
in MASs. This work was further enhanced by introducing
an accelerated algorithm in [6]. Additionally, a distributed
model predictive control algorithm was developed in [7]. It
is important to note that these algorithms primarily target
finite horizon MASs, despite the possibility of reformulating
such problems as distributed optimization algorithms.
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Another perspective on the optimal consensus problem,
framed as a graphical game, has been explored. Fuzzy adap-
tive dynamic programming was used to address this problem
[8], and a novel mixed iteration algorithm was designed
[3].Furthermore, a data-driven controller was devised to
address the optimal leader-following control problem from a
game-theoretic perspective [9]. The synchronization problem
of MASs was approached from a graphical game perspective
using reinforcement learning in [10]. Indeed, it is essential
to recognize that these problems are formulated within a
graphical game framework, where the objective of the agents
is to attain consensus by minimizing their individual local
cost functions. This approach typically results in a Nash
equilibrium rather than achieving global optimization.

The distributed optimal control problem of MASs with
an infinite-horizon global objective function has been ex-
tensively studied in the literature [11]–[13]. Nevertheless,
the cost functions in these literatures are often complex,
which can obscure their practical significance. For instance,
the optimization in [11] encompasses complex topological
data in cost function, and it is essential to have a coupling
coefficient of significant magnitude to guarantee the positive
definiteness of the weight matrix.

The approach proposed in this paper builds upon previous
work [4]. However, it introduces a more radical decoupling
method, making it suitable for a broader range of scenarios.
In [4], an algorithm minimizing a user-friendly objective
function is proposed, but the weighting tuning process re-
quires the local weighting matrices to be the same. As a
result, if one agent changes its weighting matrices, the other
agents must also change their weighting matrices to the
same values, limiting the flexibility of the weighting design.
Additionally, the algorithm in [4] can only be utilized for
MASs on an undirected graph, rendering it unsuitable for
other scenarios.

Taking inspiration from the aforementioned observations,
this research article presents a decentralized computation
and distributed information fusion methodology to tackle
the global optimal leader-following consensus problem in an
infinite-time horizon. The key contributions of this study can
be summarized as follows:

1) The proposed objective function and optimal controller
offer a user-friendly solution for achieving leader-
following consensus control. The objective function
is both simple and standard, facilitating the tuning of
weighting matrices to attain desired performance in
multi-agent systems (MASs). In comparison to previ-
ous works such as [11]–[13], the proposed objective
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function is notably more straightforward.
2) This paper introduces a sophisticated decomposition

computation method that breaks down the computation
of the global Riccati equation into individual agents’
local Riccati equations. Importantly, this is achieved
without necessitating any global information. This ap-
proach represents a more radical departure from the
method proposed in [4], where the weighting matrices
are global. Consequently, the method presented in this
paper provides greater flexibility in weighting matrix
design.

3) The paper puts forward an information fusion al-
gorithm to disentangle the optimal controller. This
algorithm guarantees that the errors resulting from
decoupling converge to zero within a finite time-
frame. In contrast to the algorithm outlined in [4], the
proposed algorithm utilizes second-order dynamics to
circumvent synchronization issues between communi-
cation and the dynamic evolution of consensus states.
Furthermore, it is capable of achieving consensus on
strongly connected weight-balanced digraphs.

Notation: The set R represents real numbers.The notation
Rn represents a collection of real vectors, while Rn×n

denotes a collection of real matrices. IN signifies an identity
matrix with dimension N . The symbol 0 can refer to either
a scalar zero or a matrix with all zero elements, depending
on the context and appropriate dimensions. The symbol
⊗ denotes the Kronecker product. For a matrix or vector
denoted by M , MT denotes its transpose, and M−1 signifies
matrix inverse. The pseudo-inverse of M is indicated as M†.
When we state X>0 (X<0), it implies that X is either a
positive-definite or a negative-definite matrix. The notations
‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ are used to represent the 1-norm, 2-
norm, and ∞-norm operators, respectively. For a symmetric
matrix X in Rm×m with elements xij , vecs(X) is defined
as [x11, 2x12, . . . , 2x1m, x22, 2x23, . . . , 2xm−1,m, xm,m]

T in
R 1

2m(m+1), and vecs−1 is its corresponding inverse function.
For a vector v = [v1, v2, · · · , vN ]

T in RN , the notation vm:n,
where 1 ≤ m < n ≤ N and m,n ∈ N, represents the
subvector [vm, vm+1, · · · , vn]

T in Rn−m+1.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Basic Graph Theory

This section provides an overview of fundamental con-
cepts in graph theory. We represent a weighted graph G
consisting of N nodes as G = {N , E}, where N is defined as
the vertex set N , {i}N1 , with each i ∈ N corresponding to
a node. The edge set of the graph is denoted as E ⊆ N ×N .
We define the adjacency matrix E = {aij}, where aii = 0
and aij 6= 0 if there exists an edge between nodes i and
j. The neighborhood set of node i is represented as Ni =
{j ∈ N : (j, i) ∈ E , i 6= j}. To construct the graph Laplacian
matrix, we define L = D−E, where D = diag{di} is known
as the in-degree matrix, and di represents the in-degree of
node i calculated as di =

∑
j∈Ni

aij .

B. Problem Formulation

Consider a collective of N follower agents distributed
across a communication network represented by the graph G,
where their dynamics are defined by the following equations
[13]:

ẋi(t) = Axi(t) +Bui(t). (1)

Here, xi(t) ∈ Rn represents the state of agent i, ui (t) ∈
Rm1 is the control input to be designed for agent i, where
i ∈ N . The system and input matrices are denoted as A ∈
Rn×n and B ∈ Rn×m1 , respectively. The dynamics of the
linear agent are described as follows:

ẋ0(t) = Ax0(t). (2)

The primary objective of each follower agent is to track the
state of a leader. The discrepancy between each agent and its
neighboring agents, known as the neighbor error, is defined
as follows (as seen in [10]):

δi :=
∑
j∈Ni

aij (xi − xj) + gi (xi − x0) , ∀i ∈ N . (3)

In this context, gi denotes the pinning gain associated with
agent (i). The condition gi 6= 0 signifies that agent (i) has
the ability to acquire state information from the leader. The
neighbor error δi ∈ Rn. By considering equation (3), the
complete neighbor error vector is expressed as follows:

δ = (LG ⊗ In) ξ. (4)

Here, x =
[
xT1 , x

T
2 , . . . x

T
N

]T
, δ =

[
δT1 , δ

T
2 , . . . , δ

T
N

]T ∈
RnN , x0 = 1N ⊗ x0 ∈ RnN , and ξ = (x− x0)
represents the synchronization error. Additionally, G =
diag{g1, g2, . . . , gN}, LG = L + G. The overall neighbor
error dynamics is then given by:

δ̇(t) = (IN ⊗A)δ(t) + [LG ⊗B]u(t), (5)

where u(t) =
[
uT1 (t), uT2 (t), . . . , uTN (t)

]T
.

Assumption 1: (1) The pair (A,B) is controllable.
(2) The interaction topology of a network consisting of

(n) agents is denoted by G(V, E), which represents
a strongly connected weight-balanced digraph. It is
important to note that there is at least one non-zero
pinning gain gi in this configuration.

Remark 1: Based on Assumption 1, we can conclude that
LG is nonsingular [14]. This means that ξ = (LG⊗In)δ, and
therefore, lim

t→∞
‖xi (t)−x0 (t) ‖2 = 0 iff lim

t→∞
‖δi‖2 = 0, for

∀i = 1, 2, . . . , N.
Assumption 2: (see in [4]) Each agent i is aware of the

network size N , and there exists an upper bound for the
network size, denoted as N̄ .

Assumption 3: (see in [4]) Agent i has the capability to
retrieve the respective row from the Laplacian matrix LG,
specifically, agent i knows LGi.

Remark 2: The reasonableness of Assumption 2 is sup-
ported by the availability of numerous distributed techniques
that can quickly estimate the network size (see [15] and
related references). Similarly, Assumption 3 is justifiable as
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each agent in the network is uniquely labeled, the transmitted
information to neighbors is appropriately labeled.

Assumption 4: (see in [16]) The time derivative of the
neighbor error for each agent remains within certain bounds,
denoted as ‖δ̇i‖2 ≤ γi.

This paper aims to address a global linear quadratic
regulator problem of the dynamics (5), which makes δ → 0.
Then from the analysis of Remark 1, ξ → 0, too, which
solves the optimal leader-following consensus problem.

Consider the global cost function as follow:

J =

∫ ∞
0

U (δ(τ), u(τ)) dτ, (6)

where J is the cost to minimize, and U is the one-step cost
defined as

U(δ(t), u(t)) =
1

2

(
δT (t)Qδ(t) + uT (t)Ru(t)

)
, (7)

where Q = QT ≥ 0 ∈ RnN×nN , R = RT > 0 ∈ RmN×mN

to be designed, and the following assumption is hold.
Assumption 5: The pair (A,

√
Q) is observable.

The global LQ control problem is formulated as:
Problem 1:

min
u
J = min

u

∫ ∞
0

U (δ(τ), u(τ)) dτ, s.t., (5). (8)

The problem focused by this paper can be described as
follow:

Problem 2: Design the control inputs ui of each agent
which can be computed and implemented in a distributed
way and minimize the objective function (6), subject to the
neighbour error dynamics (5).

The problem formulation in the paper is completed.

III. CONTROLLER DESIGN

In this section, the global linear quadratic objective func-
tion is minimized and the corresponding distributed optimal
controller is provided. The results shows that the proposed
controller can minimized the objective function (6) and
makes all the follower agents achieve consensus on the leader
agent.

Before providing the controller design, the weighting
matrices in the global objective function are defined first.
The weighting matrix of the neighbour error is defined as

Q = diag{Q1, Q2, . . . , QN}, (9)

where Qi ≥ 0, (A,
√
Qi) is observable for i =

1, 2, . . . , N . Therefore, (IN ⊗ A,Q) is observable. The
weighting matrix of the control input is defined as

R = (LG ⊗ Im)
T
R̄ (LG ⊗ Im) , (10)

where R̄ = diag{R1, R2, . . . , RN}, Ri > 0 for i =
1, 2, . . . N , and R > 0 is guaranteed by the nonsingularity
of L+G.

A. Decentralized Computation

Since the weighting matrices in the global objective
function is defined, the optimal controller of each agent is
designed in this subsection.

It is known that solving the LQ problem needs to solving
the following continuous-time algebraic Riccati equation
(CARE):

PÂ+ ÂTP +Q− PB̂R−1BTP = 0, (11)

where Â = IN ⊗A, B̂ = LG ⊗B.
Then, the controller is

u∗ = −R−1B̂TPδ. (12)

However, solving the above equation (11) and implement-
ing the control law (12) in a distributed way is challenging.
The design idea is decomposing the equation (11) and
distributing the computation to each agents. Then, using
the distributed information fusion method to construct the
global optimal control law. The following proposition gives
the decomposition method.

Proposition 1: If Assumption 1 holds, the following con-
troller solves the global LQ control problem (Problem 1),
with weighting matrices defined as (9) and (10).

u∗i =

(∑N
j=1 aiju

∗
j −Kiδi

)
(∑N

j=1 aij + gi

) ,∀i ∈ N , (13)

where Ki = R−1
i BTPi and Pi = PT

i > 0 is the solution of
the following local CARE:

PiA+ATPi +Qi − PiBR
−1
i BTPi = 0. (14)

Proof: It is known that solving the controller 12 solves
Problem 1 with P is the unique positive definite solution of
the global ARE (11). Therefore, if (12) and (13) is proven
to be equivalent, the proof can be completed.

First, it is proved that the solution of (11) has the following
form:

P = diag{P1, P2, . . . , PN}, (15)

where Pi is the solution of (14), i = 1, 2, . . . , N . Since
(A,
√
Qi) is observable and Assumption 1 holds, one has

that each ARE (14) has a unique positive definite solution
Pi for ∀i = 1, 2, . . . , N .

Substitute (9) and (10) into (11), and consider

B̂R−1B̂ = (LG ⊗B)(LG ⊗ Im)−1R̄−1

× (LG ⊗ Im)−T (LG ⊗B)T

= (IN ⊗B)R̄−1(IN ⊗B)T ,

(16)

it can be obatained that

PÂ+ ÂTP +Q−P (IN ⊗B)R̄−1(IN ⊗B)TP = 0. (17)

In (17), Â, Q, IN ⊗B and R̄−1 are all diagonal, substitute
(15) into (17) and consider (14), one can obtained equation
(17) also holds. Since the solution of (17) is unique, which
means diag{P1, P2, . . . , PN} is the unique solution of (17),
i.e., the unique solution of (11).
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Then, substitute (10) and (15) into (12), it follows that

u∗ = − (LG ⊗ Im)
−1
R̄(IN ⊗B)TPδ. (18)

Left multiply (LG ⊗ Im) to both side, and let u∗ =[
(u∗1)T (u∗2)T . . . (u∗N )T

]T
, one has

(LG ⊗ Im)


u∗1
u∗2
...
u∗N

 = −


R−1

1 BTP1δ1
R−1

2 BTP2δ2
...

R−1
N BTPNδN

 . (19)

That means N∑
j=1

aij + gi

u∗i −
N∑
j=1

aiju
∗
j = −Kiδi,∀i = 1, 2, . . . , N,

(20)
which is equivalent to (13).

Remark 3: The controller and the associated global ob-
jective function proposed in this work offer greater adapt-
ability compared to those in [3]. In the previous approach,
it was necessary for the local weighting matrices to be syn-
chronized to the same value, restricting each agent’s ability
to independently adjust its weighting matrices. In contrast,
our method allows users in this paper to make local choices,
such as selecting larger Qi for quicker convergence or larger
Ri to minimize control energy consumption, providing them
with greater flexibility and control over the system.

Remark 4: To compute the optimal controller (13) for
each agent (i), it requires access to the optimal input in-
formation from its neighboring agents, and this will make
the controller can not implement directly. In the subsequent
subsection, a dynamic average consensus-based information
fusion algorithm is formulated to decouple the controller.

B. Information Fusion

An information fusion algorithm based on dynamic av-
erage consensus algorithms in [1], [16], [17] is proposed
to make the optimal controller (13) can be implemented
distributedly. The result demonstrates that the error between
decoupled controller and (13) of agent i converges within
finite time.

Remark 5: Algorithm 1 is implemented in a distributed
way, because the neighbour indices LGi, the local optimal
control gain Ki = R−1

i BTPi, the neighbour error δi =∑
j∈Ni

aij (xi − xj)+gi (xi − x0), and the consensus gains
αi, βi are information that can be get locally. ûi(t) is the
decoupled u∗i (t) in (13). The forthcoming proposition will
demonstrate that the errors between ûi(t) and u∗i (t) converge
to 0 within a finite time.

Remark 6: Compared to the algorithm presented by [4],
Algorithm 1 is second-order, which avoids any asynchroniza-
tion between the communication and dynamic process in the
average consensus algorithm. Specifically, in [4], the average
consensus algorithm has two main steps:

Xi(t) =

N∑
j=1

aij (vi(t)− vj(t)) + ψi(t), (24)

Algorithm 1 Distributed Information Fusion Algorithm

Initialization: Set v (0) = [v1(0), v2(0), · · · , vN (0)]
T ∈

R(mN+3)mN2/2, w (0) = [w1(0), w2(0), · · · , wN (0)]
T ∈

R(mN+3)mN2/2, running time tmax, X (0) =
[X1(0), X2(0), · · · , XN (0)]

T ∈ R(mN+3)mN2/2, and
the local gain αi ≥ 1 + γi‖Ki‖2 N̄

5
2

4 . , βi > 2N̄αi

Implement:
1: while 0 ≤ t ≤ tmax do
2: for i = 1 to N do
3: Collect Li, Gi and δi(t).
4: Get Ti = LT

GiLGi ⊗ Im ∈ RmN×mN .
5: Get Ii(t) = −[LT

Gi ⊗ Im]Kiδi(t) ∈ RmN .

6: Get ψi(t) =

[
vecs(Ti)
Ii(t)

]
∈ Rm̄, m̄ = (mN +

3)mN/2.
7: Run:

v̇i(t) = −βi sgn

vi(t)−
N∑
j=1

aij (wi(t)− wj(t))

 .

(21)
8: Run:

ẇi(t) = −αi sgn


N∑
j=1

aij (Xi(t)−Xj(t))

 . (22)

9: Run:

Xi(t) = vi(t) + ψi(t). (23)

10: T̂i = ves−1
(
[Xi(t)]1:(mN+1)mN/2

)
.

11: Îi(t) = [Xi(t)]1+(mN+1)mN/2:m̄.
12: Output: ûi(t) = [T̂−1

i Îi(t)](i−1)m+1:im.
13: end for
14: end while

v̇i(t) = −α sgn


N∑
j=1

aij (Xi(t)−Xj(t))

 . (25)

By substituting (24) into (25), the vi values need to be
communicated twice over the graph to complete one step
update. However, the proposed algorithm in this paper does
not encounter such a problem.

Theorem 1: If Assumptions 1- 4 hold, ûi(t) output by
Algorithm 1 converges to u∗i in (13) for ∀t ≥ t∗ =
‖X̃(0)‖2/λ2(L), i.e.,

ûi(t) = [T̂−1
i Îi(t)](i−1)m+1:im = u∗i , i = 1, 2, . . . , N,

(26)
for ∀t ≥ t∗.

Proof: First, it will show that decoupling the controller
(13) can be achieved by dynamic average consensus. Then,
if the consensus error converges in the prescribed time, the
proposition is proven.

Form (19), finding an distributedly implementable u∗i is
equivalent to solving a linear time-varying matrix equation
distributedly. The local information are LGi and RiB

TPiδi,
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and the agent i needs to using these information to solving
the equation (19) and get u∗i . The solution of (19) can be
written as follow:

u∗1
u∗2
...
u∗N

 = −
(

(LG ⊗ Im)
T

(LG ⊗ Im)
)−1

× (LG ⊗ Im)


R−1

1 BTP1δ1
R−1

2 BTP2δ2
...

R−1
N BTPNδN

 .
(27)

Also, one has the following equations

(LG ⊗ Im)
T

(LG ⊗ Im) =

N∑
i=1

LT
GiLGi, (28)

(LG ⊗ Im)


R−1

1 BTP1δ1
R−1

2 BTP2δ2
...

R−1
N BTPNδN

 =

N∑
i=1

[LT
Gi ⊗ Im]Kiδi.

(29)
Therefore, if each agent i can obtain the following average
value T̂ = 1

N

∑N
i=1 L

T
GiLGi and Î = 1

N

∑N
i=1[LT

Gi ⊗
Im]Kiδi, the u∗i can be get from T̂−1Î .

Using the results from the dynamic average consensus
algorithms presented in [1], [16], [17], if Assumption 1-4
hold, the Ti and Ii can converge to T̂ and Î in finite time,
respectively. That is to say the controller is decoupled in
finite time.

Remark 7: It is worth noting that the algorithms pre-
sented in [1], [16] are only applicable to undirected commu-
nication graphs. However, by making a slight modification to
the previous algorithm and invoking the approach presented
in Section V of [17], it is possible to achieve average con-
sensus error convergence to zero in finite time for strongly
connected weight-balanced digraphs. The convergence can
be proven using the techniques outlined in literature [1], [16],
[17].

IV. SIMULATION

In this part, we provide a leader-follower consensus ex-
ample. We set a multi-agent systems comprising 4 follower
agents and 1 leader agent. The communication topology is
depicted in Figure 1. The Laplacian matrix L and pinning
gain matrix G are defined as follows:

L =


1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

 , G = diag(1, 0, 0, 0). (30)

The agent system dynamics is set as

A =

[
0 0.8
−0.5 0

]
, B =

[
1
2

]
, (31)

Fig. 1. Communication graph of the multi-agent systems

and the initial conditions of the leader agents and each
follower are set as

x0(0) =

[
9
6

]
, x1(0) =

[
7.4289
3.7812

]
, x2(0) =

[
10.2021
6.9111

]
,

x3(0) =

[
12.3162
11.3451

]
, x4(0) =

[
14.6904
4.8045

]
.

The weighting matrices of each agents are given in TABLE
I

TABLE I
WEIGHTING MATRICES

Agent i 1 2 3 4
Qi I2 3I2 2I2 0.8I2
Ri 1 0.5 0.5 2

Fig. 2. Phase trajectories of the leader and followers

In Fig. 2, one can observe the 3D phase trajectories of the
agents, while Fig. 3 showcases the decoupled errors of the
optimal control inputs, which exhibit rapid convergence to
zero. The progression of neighbor errors is depicted in Fig.
4, providing confirmation that the follower agents effectively
track the leader agents.

V. CONCLUSION

The optimal leader-following consensus problem of multi-
agent systems with linear dynamics is considered in this pa-
per. To solve this problem, a decentralized computation and
distributed information fusion strategy is proposed. Firstly,
the computation of the global CARE is decomposed into N
local CAREs by designing the weighting matrices to make
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Fig. 4. The neighbour errors of the agents

the structure of the global CARE diagonal, allowing each
agent to compute its control gain locally. Then, an infor-
mation fusion algorithm is provided to decouple the global
optimal controller, with the error between the decoupled
controller and the exact optimal controller converging to
zero whinin a finite time. The effectiveness of the proposed
method is validated through simulation examples. Future
research efforts could focus on addressing the decoupling
of the LQ control problem in multi-agent systems with non-
linear dynamics. Additionally, there is potential for exploring
methods to reduce both computation and communication
costs associated with these systems.
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