
Transition-dependent Robust MPC for Stochastic Switched Systems

Tong Wu, Yimin Zhu, Jianan Yang, Yuejiang Han and Lixian Zhang, Fellow, IEEE

Abstract— This study is concerned with the robust MPC for
discrete-time stochastic switched systems subject to constraints
on states and control inputs. Aiming at achieving optimal
control synthesis under the requirement of bumpless transfer
control (BTC), the min-max MPC formulation is extended to the
transition-dependent paradigm, and a weighted performance
index is optimized in the receding horizon, such that the abrupt
variation in feedback gains can be mitigated. Meanwhile, a class
of more general stochastic switching signals is considered, where
the sojourn time may follow any distribution, and the recursive
feasibility and mean-square stability are theoretically guaran-
teed. Compared with existing studies on switched MPC or BTC,
this work avoids the assumption of the Markov property on
mode switching and reduces conservatism by exploiting the
statistical information of sojourn time. An illustrative example
is provided to show the potential of the obtained results.

I. INTRODUCTION

Over the decades, model predictive control (MPC) has
attracted considerable attention from both academia and
industry due to its superiority in control performance opti-
mization subject to various constraints. In concern of model
uncertainties or disturbances, great efforts are devoted to
robust MPC, and the representative results can be referred
to tube-based MPC [1] and min-max MPC [2], both of
which rely on the state-feedback control law for robustness
guarantee. In recent years, the robust MPC is extended to the
switched systems, where the MPC law is naturally designed
in the mode-dependent paradigm for less conservatism, i.e.,
the cost functions [3], terminal constraints [4] or feedback
gains [5] are explicitly switched with the system mode. It
is worth noting that the mode-dependent control law, which
is indispensable for switched robust MPC, is essentially a
piecewise continuous function in time domain, and the dis-
continuity at switching instants may lead to abrupt changes
in control input and undesired transient behaviors, which is
regarded as the bump phenomenon [6] in switched systems.

The issue of control bump suppression gives rise to
the research topic of bumpless transfer control (BTC), the
basic objective of which is to smoothen the gain variation
within control synthesis. A simple approach proposed in [7]
constrains the norm difference between the mode-dependent
gains and a common gain, such that the gain variation is en-
sured below a threshold. This approach is improved in [8] by
introducing transition progress between the stabilizing gains,
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which provides more flexible control synthesis and reduce
the conservatism in stabilization. Further, [6] reveals that the
BTC controllers should depend on both of the current and
last modes, such that non-conservative transition-dependent
gains can be designed to smoothen the transition progress
between arbitrary two given stabilizing gains. Recently, the
BTC results are further extended to various control issues
and different systems [9], but the issue of optimal BTC for
constrained switched systems remains to be addressed, let
alone BTC synthesis with receding horizon optimization.

On the other hand, the issue of robust MPC with general
stochastic switching deserves further investigation. In [3],
the conditions on the terminal cost are given to ensure mean-
square stability for Markov switched system, based on which
an explicit MPC law is obtained. In [10], a min-max MPC is
formulated based on scenario generation and solved via an
offline-to-online algorithm. Also, the complementary merits
of tube-based MPC and min-max MPC are discussed under
Markovian switching in [11]. In such studies, the recursive
feasibility and stability are based on a common assumption
that the mode switching is governed by a Markov chain,
where the sojourn time inherently follows a geometric dis-
tribution. In practice, the mode switching may not conform to
the Markov property, which restricts the application of the
aforementioned results. Some attempts on overcoming this
limitation can be seen in nondeterministic switched MPC. [5]
propose a min-max MPC approach under average dwell-time
constraints, but provides no guarantee of recursive feasibility.
In [12] and [13], a set-theoretic analysis is developed to
determine the modal dwell time and feasible region, while
the issue of MPC synthesis is not addressed. Moreover,
such studies ignore the statistical information about mode
switching, leading to conservatism in feasibility and stability.
Therefore, the issue of stochastic switched MPC with sojourn
time conformed to general distribution is still largely open,
which motivates us to fill this gap.

In this paper, the bumpless transfer robust MPC for a class
of discrete-time stochastic switched systems subject to hard
constraints on state and control input is investigated. The
main contributions lie in that: (i) The switched robust MPC
is extended to be with a class of more general stochastic
switching signal, where the sojourn time may follow arbi-
trary distributions. (ii) A min-max MPC is formulated with
the transition-dependent control law and weighted objective
optimization, such that the control bump can be suppressed
without much detriment to performance. The recursive fea-
sibility and stability are also addressed, and an illustrative
example is given to validate the proposed approach.

Notations: In this paper, R and N denote the sets of
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real numbers and nonnegative integers, respectively. Ek[·]
stands for the mathematical expectation of a random variable
conditioned on the information accessible at time k. (x)l
denotes the lth component of x ∈ Rn, (P )ll denotes the
element of the lth row and lth column of a matrix P . In
addition, diag{A1, A2, ..., AN} stands for a block-diagonal
matrix constituted by {A1, A2, ..., AN}. Symbol ∗ is used as
an ellipsis for the terms that are introduced by symmetry.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a class of discrete-time switched linear systems

xk+1 = Aθrkxk +Bθrkuk (1)

with hard constraints on the state xk ∈ Rnx and control input
uk ∈ Rnu :

Exk + Fuk ≤ d (2)

where rk is a piece-wise constant switching signal taking
value in a finite integer set M = {1, 2, ...,M}, which governs
the switching among M subsystems. The switching sequence
k0, k1, k2, ..., ks, ... is considered to be unknown a priori,
but the switching instant ks with s ∈ Z+ can be instantly
accessed by the controller. When k ∈ [ks, ks+1), the rk-th
subsystem is said to be active with sojourn time ks+1 − ks.

In this work, the running interval [ks, ks+1) for the active
subsystem is considered to be with a deterministic stage
[ks, kd) and a stochastic stage [kd, ks+1), and the running
time of the two stages is denoted by hdt = kd−ks and hss =
ks+1− kd, respectively. The duration of deterministic stages
is fixed and dependent on the mode, i.e., hdt = τm,m ∈M
with τm ≥ 0 are given constants. For the stochastic stage, the
duration follows some mode-dependent distribution Xm that
can be obtained from statistical information. To conclude, the
considered switching signal can be represented by rk = m
for k ∈ [ks, ks+1) , ks+1 − ks = τm + τ̄m, with the random
variable τ̄m ∼ Tm.

At each time instant k, the values of Aθrk , B
θ
rk

are unknown
but belong to a polytopic uncertainty class Ωrk , i.e.,[
AθrkB

θ
rk

]
∈ Ωrk , Co

{[
AvrkB

v
rk

]
, v ∈ D , {1, . . . , D}

}
(3)

where Avrk , B
v
rk

are known constant matrices. In this paper,
the performance of predicted control sequence {uk+i|k, i ∈
N} is evaluated by the expectation of the linear quadratic
(LQ) cost in the infinite prediction horizon, with the worst-
case LQ performance for instant k represented by

J̃LQ(k) = max
[Av

m,B
v
m]∈Ωm,

m=rk+i|k,i∈N

E{
∞∑
i=0

[
xTk+i|kQxk+i|k

+uTk+i|kRuk+i|k

]
}

(4)

where Q, R are the given positive weight matrices. To
ensure the stability and obtain optimal performance under the
polytopic uncertainty and stochastic switching, the MPC is
designed to minimize the worst-case LQ performance. Also,
for the sake of the recursive feasibility, all the predicted
states and control inputs should satisfy the hard constraint

(2). Thereby, the stochastic switched robust MPC can be
formulated as solving the following min-max problem in a
receding horizon manner:

min
uk+i|k,i∈N

J̃LQ(k) s.t.(1), (2) (5)

In consideration of computational tractability, a common
strategy is adopting a state-feedback control law to generate
the predicted control sequence in the infinite horizon, such
that the problem (5) can be parameterized with decision
variables of finite dimensions. In this paper, the transition-
dependent linear control law is formulated as

uk+i|k = K(k + i|k)xk+i|k (6)

where K(k + i|k) = Km′m,t, m = rk+i|k, m′ = rks−1|k,
ti = k + i − ks, m = rk+i|k, k + i ∈ [ks, ks+1). Note that
Kr′r,t are the transition-dependent gains, which depend on
the current mode r ∈M, the last mode r′ ∈M and the time
spent in the current mode t ∈ N. The gains are considered to
be time-varying only within each transition interval [ks, ks+
Tm) with Tm < τm, i.e., Km′m,t = Km′m,Tm for t ∈ [ks +
Tm, ks+1). The length of the transition duration is designed
as mode-dependent, denoted by Tr, and the transition interval
is denoted by Tr , [0, Tr]. Such a strategy can provide extra
design degree to smoothen the gain transition at switching
instants. For the purpose of BTC, an additional objective is
introduced into the min-max formulation, evaluated by the
following worst-case control bump cost

J̃BT (k) = max
[Av

r ,B
v
r ]∈Ωr,v∈D

r=rk+i|k,i∈N

E
[
‖∆uk+i|k‖2

]
(7)

Finally, the definition of the mean square stability (MSS)
are recalled for later derivations:

Definition 1: The switched system (1) is said to be mean-
square stable (MSS) within the feasible region X0, if the
following condition holds

limk→∞E0[‖xk‖2] = 0 (8)

for any initial state x0 ∈ X0 and initial mode r0 ∈M.

III. MAIN RESULTS

In this section, an approximated optimal solution to the
origin min-max problem (5) is obtained by minimizing the
upper bound of the cost with additional constraints for the
invariance of predicted states and the boundness of LQ cost.
Then, the transition-dependent MPC is achieved by solving
the constructed semidefinite programming (SDP) problem by
receding horizon, where the recursive feasibility and mean-
square stability under stochastic switching are proved.

A. Transition-dependent Robust MPC

Firstly, the upper bound of the LQ performance of the
stochastic switched system (1) in the infinite horizon is given
as follows.

Lemma 1: Consider the infinite horizon MPC problem for
the stochastic switched system (1) subject to hard constraints
(2) and polytopic uncertainties (3). If there exists scalars
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{0 < αr ≤ 1, µr ≥ 1}r∈M and positive definite matrices
{Pr > 0}r∈M with the corresponding quadratic functions
Vm(k + i|k) = xTk+i|kPmxk+i|k satisfying that ∀(rks) ∈M,

Vm(k + i+ 1|k)− αmVm(k + i|k)

≤ −
[
xTk+i|kQxk+i|k + uTk+i|kRuk+i|k

] (9)

∀ (rks = m′, rks−1 = m) ∈M×M, m′ 6= m,

Vm′(ks|k)− µmVm(ks|k) ≤ 0 (10)

and the stochastic switching signal satisfying

µrα
τr
r Eτ̄r∼Tr

[
ατ̄rr
]
< 1,∀r ∈M. (11)

then the predicted state xk+i|k satisfies

limi→∞Ek
[
‖xk+i|k‖2

]
= 0 (12)

and there holds

J̃LQ(k) ≤ µrkVrk(k) (13)

where tk = k−ks is the current running time, k ∈ [ks, ks+1).
Proof: According to (9) and α−1

m > 1, one has

Vm(k + i|k)− α−nm Vm(k + i+ n|k)

≥
i+n−1∑
j=i

(
xTk+j|kQxk+j|k + uTk+j|kRuk+j|k

) (14)

For each running interval [ks, ks+1), taking expected value
on both sides of (14) and substituting (10), it yields

Vm(ks|k)− Eks|k
[
α−(ks+1−ks)
m µ−1

m Vm′(ks+1|k)
]

≥ Eks|k

ks+1−1∑
j=ks

(
xTj|kQxj|k + uTj|kRuj|k

) (15)

Summing (15) up from ks = k1 to k∞, according to (11)
and the Jensen’s inequality, one has

Vm1(k1|k)− Ek1|k [Vm∞(k∞|k)]

≥ Ek1|k

k∞−1∑
j=k1

(
xTj|kQxj|k + uTj|kRuj|k

) (16)

where mi = rki . Similarly, in the last interval [k∞,∞) and
the first interval [k, k1), (9) and (10) ensure that

Vm∞(k∞|k)− Ek∞|k [Vm∞(∞|k)]

≥ Ek∞|k

 ∞∑
j=k∞

(
xTj|kQxj|k + uTj|kRuj|k

) (17a)

µm0Vm0(k|k)− Ek[Vm1(k1|k)]

≥ Ek

k1−1∑
j=k

(
xTj|kQxj|k + uTj|kRuj|k

) (17b)

Summing (16) (17a) and (17b) up, one has

µm0
Vm0

(k)− Ek[Vm∞(∞|k)]

≥ Ek

 ∞∑
j=k

(
xTj|kQxj|k + uTj|kRuj|k

) (18)

Therefore, Ek
[∑∞

j=k

(
xTj|kQxj|k + uTj|kRuj|k

)]
is

upper-bounded. Moreover, since xTj|kQxj|k > 0 for
xj|k 6= 0, one can obtain (12) and limj→∞Ek[Vm(j|k)] = 0,
which further implies (13) due to (18).

Remark 1: In Lemma 1, the scenario tree is generated
with nodes on switching instants instead of every time instant
(commonly adopted for Markov switching, cf. [10], [14]),
and then the stochastic convergence constraint is imposed
on nodes to ensure Ek[V (ks|k)] decreasing with a variation
larger than LQ costs. The obtained result is more general,
because the sojourn-time distribution can be deduced from
transition probability matrices, but not the opposite.

Remark 2: With the quadratic function given in Lemma
1, it is straightforward that the mode-dependent ellipsoidal
sets Em,t = {x|xTPmx ≤ αtm, t = k − ks} are positive
invariant for subsystems within each running interval, where
Vm(ks + t|k) ≤ αtmVm(ks|k) < Vm(ks|k). Further, given
the duration of the deterministic stage τm, (9) and (10)
ensure Vm(ks+i|k) < ατm+τ̄m

m µmVm(ks|k). Thus, with the
initial condition Vm(k) < αtkm , Lemma 1 ensures that all the
ellipsoidal sets Er = {x|xTPmx ≤ 1},∀r ∈ M is positive
invariant, based on which the constraints can be imposed
with a guarantee of recursive feasibility.

Based on Lemma 1, the control synthesis under the
requirements of LQ performance, bumpless transfer perfor-
mance and hard constraints are summarized as follows.

Theorem 1: Consider switched system (1) with feedback
gains Kr′r,t subject to hard constraints (2). If there exist
positive definite matrices {Qr, U,W}r∈M, arbitrary matrices
{Sr′r,t}r,r′∈M,r 6=r′,t∈Tr

and positive scalars {γ, δ}, such that
∀r′, r, r′′ ∈M, r 6= r′, r′′ 6= r, t ∈ Tr, v ∈ D[

αtkrk ∗
xk Qrk

]
≥ 0 (19a)[

Ψv
r′r,t ∗

Γrr′,t γI

]
≥ 0, (19b)

Qr − µrQr′′ ≤ 0 (19c)[
Θr′r,t ∗

Ξvr′r,r′r,tt′ Λr

]
≥ 0, (19d)[

Θr′r,Tr
∗

Ξvr′r,rr′′,Tr0 Λr′′

]
≥ 0, (19e)

trace(U) ≤ δ, (19f)[
W EQr + FSr′r,t
∗ Qr

]
≥ 0, (W )ll ≤ (d)2

l , (19g)

where Ψv
r′r,t = [αrQr, ∗;AvrQr +BvrSr′r,t, Qr], Γr′r,t =

[Q1/2Qr, 0;R1/2Sr′r,t, 0], Θr′r,t = [Qr, ∗;Sr′r,t, U ],
Ξvab,cd,ij = diag{AvbQb + BvbSab,i,−STcd,j}, Λr =
[I, I; I,Qr], t′ = min(t + 1, Tr), then the worst-case LQ
performance can be bounded by J̃LQ(k) ≤ ρkγ with ρk =
αtkrkµrk , and the worst-case BT performance can be bounded
by J̃BT (k) ≤ δ. The corresponding gains of predictive
control are given by

Kr′r,t = Sr′r,tQ
−1
r (20)
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Proof: By applying congruent transformation to (19b)
with diag{Q−1

r , I, ..., I} and Schur complement, one has

αrQ
−1
r − (Avr +BvrKr′r,t)

TQ−1
r (Avr +BvrKr′r,t)

− γ−1[Q+KT
r′r,tQKr′r,t] ≥ 0

(21)

By introducing the matrices Pr = γQ−1
r and the control law

uk = Kr′r,txk, it can be obtained that

αr′x
T
k Prxk − xTk+1Prxk+1

− [xTkQxk + uTkRuk] ≥ 0
(22)

Consider the following quadratic functions

Vmi
(k + i|k) = xTk+i|kPmi

xk+i|k, i ≥ 0 (23)

with mi = rk+i|k. It is straightforward that (22) ensures
(9), and (19c) ensures (10). According to Lemma 1, the LQ
performance in infinite horizon can be up-bounded with the
quadratic function (23). Moreover, by Schur complement,
(19a) ensures that xTkQ

−1
rk
xk ≤ αtkrk and xTk Prkxk ≤ αtkrkγ,

so one has J̃LQ(k) ≤ µrkVrk(k|k) ≤ ρkγ.
By Schur complement, (19d) ensures that Qr ∗ ∗

Sr′r,t U ∗
AvrQr +BvrSr′r,t (Sr′r,t′Q

−1
r )T I

 ≥ 0, (24)

By applying congruent transformation to (19b) with
diag{Q−1

r , I, I} and substituting Kr′r,t′ = Sr′r,t′Q
−1
r , (24)

ensures that[
Qr ∗

Sr′r,t −Kr′r,t′(A
v
rQr +BvrSr′r,t) U

]
≥ 0, (25)

By apply Schur complement and substituting Kr′r,t =
Sr′r,tQ

−1
r , one has

Φr′r,tQrΦ
T
r′r,t ≤ U (26)

where Φr′r,t = Kr′r,t′(A
v
r + BvrKr′r,t) −Kr′r,t. Similarly,

(19e) ensures that

Φrr′′,Tr
QrΦ

T
rr′′,Tr

≤ U (27)

where Φrr′′,Tr = Krr′′,0(Avr +BvrKr′r,Tr )−Kr,Tr .
Then, in virtual of the invariant sets {x|xTQ−1

r x ≤ 1}
and the Cauchy-Schwarz inequality, one has

max
[Av

m,B
v
m]∈Ωr,v∈D

m=rk+i|k,i∈N

|(∆uk+i|k)l|2

≤ max‖(Φvk+i|kQ
1/2
m )l‖2

= max(Φvk+i|kQm(Φvk+i|k)T )ll

(28)

where Φvk+i|k = Km′
+m+,ti+1

(Avm+BvmKm′m,tr )−Km′m,ti ,
m = rk+i|k, m+ = rk+i+1|k, m′ = rks−1, m′+ = rks+−1,
ti = k+i−ks, ti+1 = k+i+1−ks+ , with k+i ∈ [ks, ks+1)
and k + i+ 1 ∈ [ks+ , ks++1).

Indeed, there are only two possible cases, where s+ =
s+1 if k+ i+1 is a switching instant in prediction horizon,
and s+ = s otherwise. Note that (27) and (26) ensure

Φvk+i|kQm(Φvk+i|k)T ≤ U (29)

for such two cases, respectively. With (19f) (28) and (29), it
can be obtained that

J̃BT (k) = max
[Av

m,B
v
m]∈Ωr,v∈D

m=rk+i|k,i∈N

∑
l

|(∆uk+i|k)l|2

≤ max
∑
l

(Φvk+i|kQm(Φvk+i|k)T )ll

≤ trace(U) ≤ δ

(30)

In a similar way, one can get from (19g) that

|(Exk+i|k + Fuk+i|k)l|2 = |(DQ1/2
m Q−1/2

m x)l|2

≤ (DQmDT )ll ≤ (W )ll ≤ (d)2
l

(31)

where D = E + FKm′m,ti . Thus, the requirements on
the bumpless transfer performance and hard constraints are
satisfied for the closed-loop system with gains Kr′r,t =
Sr′r,tQ

−1
r . This completes the proof.

Remark 3: In practice, the gains beyond the transition in-
terval [ks, ks+Tm) are set to be only dependent on the mode,
i.e., Kr′r,Tr

= Kr,Tr
for r′ ∈ M, r′ 6= r, according to the

fact that the optimal linear feedback law of the subsystem is
unique. In specific, the matrix variables in optimization (32)
satisfy Sr′r,Tr

= Sr,Tr
, so that the variables and constraints

are reduced, where Theorem 1 still holds. Different from
previous studies [13], the stabilizing gains for subsystems are
not manually given but designed within the receding horizon
optimization together with transitional gains.

B. Recursive Feasibility and Stability

Based on Theorem 1, the prediction gains K(k + i|k)
can be determined by solving the following optimization
problem with weighted objective for minimizing LQ cost
and bumpless transfer cost

min
γ,δ,Sr′r,t,Qr,U,W

λgρkγ + λdδ s.t. (19) (32)

where λg, λd are the positive weights. Then, the bumpless
transfer MPC controller can be implemented by solving
the SDP problem (32) and applying the first prediction
control input uk = Sr′krk,tkQ

−1
rk
xk by receding horizon. The

recursive feasibility and stability based on the proposed MPC
approach are summarized as the following theorem.

Theorem 2: Consider the stochastic switched uncertain
system described by (1)-(3). If there exists a feasible solution
for the optimization problem (32) at any switching instant
ks, then there will also exist a feasible solution at any time
instant k ≥ ks, and the MPC controller based on (32) will
stabilize the system in the mean-square sense.

Proof: (Recursive feasibility) Suppose that Υ∗(k) ,
{γ∗(k), δ∗(k), Q∗r(k), S∗r′r,t(k), U∗(k),W ∗(k)} is the opti-
mal solution of the problem (32) at time instant k. In (32),
only the constraint (19a) is dependent on the current state xk
and rk, while the others are unchanged in the receding hori-
zon optimization. Thus, once (19a) is satisfied for xk+1 and
rk+1, Υ∗(k) will be a feasible solution for the optimization
problem (32) at k + 1. The feasibility of Υ∗(k) indicates
(19a) is satisfied at k and thus Vm(k) < αtkm . According
to Remark 2, Er,t is invariant within the running interval,
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and Er is invariant at switching instant. Therefore, one has
xTk+1Pmxk+1 ≤ αmxTk Pmxk ≤ α

tk+1
m and xTk+1Pm′xk+1 ≤

1 ≤ αtk+1
m with tk+1 = k+1−ks+1 = 0, which implies that

(19a) is satisfied for both running interval k+1 ∈ [ks, ks+1)
and switching instants k + 1 = ks+1. Hence, Υ∗(k) is a
feasible solution for instant k + 1, and there will exist a
feasible solution at any time instant k + i ≥ k.

(Closed-loop stability) Since recursive feasibility of the
optimization problem (32) is guaranteed based on the above
analysis, Υ∗(k) is always a feasible solution at k + 1.
According to the optimality, one has

λgρks+1
γ∗(ks+1) + λdδ

∗(ks+1)

≤ λgρks+1−1γ
∗(ks+1 − 1) + λdδ

∗(ks+1 − 1)

≤ λgρksγ∗(ks) + λdδ
∗(ks)

Further, according to Lemma 1 and Theorem 1, one has

λgρksγ
∗(ks) + λdδ

∗(ks)

≥ Eks
[
λgρks+1

γ∗(ks+1) + λdδ
∗(ks+1)

]
+ λgEks

ks+1−1∑
k=ks

(
xTk|kQxk|k + uTk|kRuk|k

)
Summing up both sides in a similar way to (18), the
expectation of the infinite horizon LQ cost is bounded by

E0

[ ∞∑
k=0

(
xTkQxk + uTkRuk

)]
≤ ρ0γ

∗(0) + λ−1
g λdδ

∗(0)

− E0

[
ρ∞γ

∗(∞) + λ−1
g λdδ

∗(∞)
]

In line with Lemma 1, it is straightforward that the actual
system state satisfies limk→∞E0

[
‖xk‖2

]
= 0, so the closed-

loop system with the MPC controller based on (32) is mean-
square stable.

IV. ILLUSTRATIVE EXAMPLE

A. System Model and Experimental Settings

In this section, a DC motor device system from [15] is
utilized to validate the obtained results, where the mode
switching is caused by abrupt failures on the power delivered
to the shaft. The system is considered with three operation
modes, including the normal (rk = 1), low (rk = 2), and
medium (rk = 3) power modes. The system state denoted
by xk = [xk(1), xk(2), xk(3)]

T includes the angular rate,
the electrical current, and the integrator term. Then, the DC
motor device with power failures can be modeled as the
discrete-time switched system (1) with

Avi =

 avi (11) avi (12) 0
avi (21) avi (22) 0
avi (31) 0 avi (33)

 , Bvi =

 bvi (1)
bvi (2)

0


where v ∈ {1, 2} and the model parameters of the DC motor
can be referred to [15]. The switching signal is with τm = 4,
τ̄m ∈ Z[4,12], Tm = [0.1, 0.05, 0.05, ..., 0.05, 0.55], so we
set αr = 0.97 and µr = 1.5 to ensure (11). The transition
duration is set as Tr = 2. The state and control input are

Fig. 1. Comparison of the state response, control input and control bump.

considered to be constrained by |(xk)l| ≤ 5, |(uk)l| ≤ 1,
and the LQ cost is set with the weight matrices Q = I3 and
R = 1. The initial values of the state and the mode are given
by x0 = [2, 0.5, 0.5]T and r0 = 1. Based on above settings,
the transition-dependent MPC is implemented by solving the
SDP problem (32) in a receding horizon manner.

B. Control Performance Comparison

The state response, control input, and control bump of the
closed-loop system with LQR, mode-dependent (MD) MPC,
and transition-dependent (TD) MPC are shown in Fig. 1. The
LQR controllers are designed for the subsystems separately,
and the MD/TD MPC is designed for the switched system
as detailed in Section IV-A. It can be seen from Fig. 1 that
although LQR controllers achieve satisfactory stabilization
performance within each subsystem, the system state may
increase significantly at switching instants and thus exhibit
the slowest convergence rate under stochastic switching
(x50(1) of LQR is more than 6 times of the one of MPC). By
considering the stochastic switching in the prediction horizon
according to Lemma 1, the MPC controllers minimize the
accumulative cost of all running intervals within different
modes, thus exhibiting better performance. Nevertheless, lim-
ited by the mode-dependent paradigm, the MPC controller
performs abrupt gain variation at switching instants and
thus suffers from the control bumps. By comparison, the
proposed transition-dependent MPC based on (32) inserts
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Fig. 2. Comparison of the feasible region of switched robust MPC
with/without exploiting statistical information.

transitional stages at switching instants and simultaneously
optimizes the LQ cost and bump cost, so that the control
input can be changed gradually at the switching instants. This
result validates the effectiveness of the proposed method in
alleviating the bump phenomenon for switched systems.

C. Conservatism Comparison

It is expected that the obtained result can cover not only
Markovian switching (see Remark 1) but also nondetermin-
istic switching [12]. In the former case, the distribution of
sojourn time follows the geometric distribution, i.e., τ̄r ∼ Tr
with probability mass function pτ̄r (τ) = Πτ−1

rr (1 − Πrr),
where Πrr is the diagonal element of the transition proba-
bilities matrix Πrr, standing for the probability of remaining
the mode r. Since Tr can be obtained, the proposed MPC
synthesis approach can be applied.

In the latter case, the switching signal is considered to be
arbitrary and none statistical information can be obtained.
Note that the only requirement of Lemma 1 on switching sig-
nals is the condition (11), which still holds if only conserva-
tive estimation of the sojourn time is accessible. For instance,
if we only have a lower bound (may be conservative) of the
sojourn time, i.e., τ̂m ≤ τm ≤ hdt + hss, then the parameter
can be set to satisfy µrα

τ̂r
r < 1 and the condition (11) is

consequently guaranteed due to ατr−τ̂rr Eτ̄r∼Tr [ατ̄rr ] < 1.
Thereby, Lemma 1 and the subsequent results developed in
Section III also hold. Note that τ̂m can be regarded as the
mode-dependent dwell time (MDT), so the obtained results
in stability analysis and MPC synthesis can cover the one
for MDT switching. Moreover, compared with such results,
our method reduces the conservatism in switched MPC
synthesis by exploiting more statistical information, which
may relax constraints and enlarge the invariant sets. Using the
maximal ellipsoid approximation in [16], the feasible regions
of switched MPC with/without statistical information are
computed and shown in Fig. 2. The proposed MPC controller
exploits the distribution of sojourn time and thus exhibits a
significantly larger feasible region, which verifies the above
discussion.

V. CONCLUSIONS

This study investigates the issue of bumpless transfer
MPC synthesis for discrete-time stochastic switched systems,
where the switching signal may follow a more general
stochastic model other than the Markov chain. In concern
of the bump phenomenon caused by the mode-dependent
control law, the robust MPC is extended to a transition-
dependent paradigm, where the feedback gains are obtained
by online optimization of a weighted objective with LQ cost
and control bump cost. It is illustrated that the obtained
results can cover the previous studies on MPC with Markov
switching or MDT switching and reduce conservatism. Also,
the proposed MPC strategy can effectively alleviate the bump
phenomenon without much detriment to performance.
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