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Abstract— We consider the problem of classifying the op-
erating mode of a plant, using distributed sensors and a
digital channel. The abstract problem is formulated using
simplifications, where the plant only has two modes, the sensors
have independent and identically distributed (but possibly
mode-dependent) measurement noise, and a noise-less digital
communication channel. The objective is to design a combined
distributed digitisation (quantisation) and centralised classi-
fication strategy that maximises accuracy while observing n
messages, each of which can take k unique values. Even in
this simplistic scenario, our analysis shows that (i) the optimal
decision boundaries even in the fully observable (analog) case
depend strongly on the assumptions about measurement noise,
(ii) as a result, the classification strategy selection is non-trivial,
and (iii) the distributed quantisation algorithm design also has a
strong influence on the final classification accuracy. We support
the analytical arguments by empirical simulation experiments.

I. INTRODUCTION

An important class of decentralized estimation problems
involves the classification of the operating mode of a remote
plant using a swarm of sensors. For example, one may be
interested in monitoring the state of a boiler by tracking
temperature measurements from a set of sensors placed
around it. We are concerned with the setting where the
state of the plant could be in one of two classes but each
sensor can only receive independent partial observations of
it. Not unlike the men in the parable of the blind men and
the elephant, the sensors must collectively estimate the true
state of the plant from these partial and potentially noisy
observations. Problems of this form have been studied in the
distributed estimation literature, where results take system
theoretic forms [1], [2], or take the form of multisensor
fusion [3].

However, prior studies working with such scenarios do
not seem to account for a fundamental property of such
systems: the existence of limited-bandwidth digital channels
for transmitting information from the sensors to the classifier.
In this paper, we consider the problem of maximising clas-
sification accuracy for a centralised classifier using digital
information transmitted by a set of sensors, each of which
receives noisy measurements from the plant. We show that
apart from the aggregation strategy, the mapping from contin-
uous noisy measurements to digitally transmitted (quantised)
values plays a key role in the final accuracy of the estimator.
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We assume that the state (scalar) of the plant is dis-
tributed according to a Gaussian distribution whose mean
and standard deviation depend on the operating mode. In
the symmetric case, the standard deviations are both equal
whereby the modes are distinguished by the corresponding
means. The outputs of the individual sensors are combined
by an aggregator. The end-to-end performance of the system
depends on three factors: the channel bandwidth available
(i.e., number of quantization levels), the encoding policy used
by the sensors, and the aggregation policy.

In this symmetric case, the ideal decision boundary sep-
arating the two modes is a hyperplane in Rn, where n is
the number of sensors. However with digital communication
or, equivalently, quantization we find that the problem takes
on a more complicated combinatorial character. In general
the optimal quantization depends on ∆µ

σ where ∆µ is the
difference in the means of the modes and σ is the common
standard deviation. This implies, in particular, that uniformly
spaced quantization is not necessarily optimal.

In the asymmetric case, the ideal ‘decision boundary’ is
the surface of a sphere in Rn. The encoding policy of sensors
now induces non-contiguous regions for each signal value.
This implies that with quantization, the posterior distribution
of the sensors is not a sufficient statistic for the policy of the
sensors. The optimal signal sent by the sensors must depend
on the posterior probability of the mode and the data itself.

One can think of quantization as a form of classification
where the preimages of the quantization signals constitute
classes. The non-contiguity described above implies that the
classifier employed by these sensors must take a complex
multimodal form. Simple function approximators such sig-
moids used in logistic regression may not be rich enough for
this task.

Learning the optimal combination of encoders and ag-
gregators appears to be an interesting and hard problem.
Quantized communication for decentralized estimation is
also used in many other settings. For example e-commerce
platforms seek quantized feedback (e.g., star ratings) from
buyers about their experience with an item, and present to
prospective buyers an aggregated rating of the item. One may
think of this as a system of decentralized estimation of the
quality of the item. What should be number of star rating
levels, and should the feedback be aggregated? Our study is
a beginning in this direction.

A. Literature review

Our work in this paper overlaps somewhat with the area
of multi-sensor data fusion. The latter concerns methods for
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Plant Classifier

Fig. 1. Schematic of the problem setup. The plant operates in one of two
modes θ0 or θ1 in every time step t. Each mode corresponds to a scalar state
µ0 or µ1 respectively. Sensors located in the vicinity measure this state with
an i.i.d. Gaussian noise of standard deviation σ0 or σ1 corresponding to the
two modes. Each sensor has access to a digital communication channel with
k unique values per message to a centralised classifier.

combining data obtained from multiple sources of informa-
tion. These problems are usually handled within a statis-
tical framework, particularly the Bayesian framework [3].
Several combination strategies such as average, majority,
Borda count, and so on have been explored, and the right
one is usually chosen heuristically. As mentioned in the
introduction, the aspect of quantization or digital commu-
nication that forms the main point of interest in paper has,
to the best of our knowledge, not been studied. Another
closely related problem is that of ensemble learning. Here
the problem is to classify an unknown object optimally
to one of K classes, using an ensemble of m classifiers.
Ensemble learning however does not involve the aspect of
decentralization which is key to our paper.

Digital communication is of relevance in wireless sensor
networks used in commercial and military applications [4].
The common issues addressed pertain to sensor management
for energy efficiency – sensor tasking and control, tracking
and localization, distributed databases, and communication
protocols. There are also works such as [5] [6] [7] [8],
which address quantization, but do so in a naive way. For
example, [8] proposes an energy efficient counting rule for
distributed estimation by ordering sensor transmissions in
wireless sensor networks. Moreover, these works are not
concerned with the classification setting we consider and
are primarily concerned with communicating a fixed remote
state. The incomplete information arising out of the overlap
of two classes is a source of significant difficulty in our
problem.

There are also works that concern malicious behaviour of
sensors. For example [9] considers the problem of decentral-
ized detection in wireless sensor networks in the presence of
one or more classes of misbehaving nodes. Perhaps closest to
our work is the lines of work in decentralized detection such
as [10], [11], [12]. These works study sensor encoding and
transmission strategies for distributed detection in wireless
sensor networks and analyze the impact of the number of

sensor measurements, and associated network power con-
sumption, on detection performance. The communication
channels here are usually assumed to be continuous, whereby
once again, the complications arising out of quantization do
not occur.

In the control theoretic literature, there is a significant
literature on remote state estimation, e.g., [1], [13], some
of which also involve quantization [2]. However, to the best
of our knowledge, the decentralized classification problem
we consider has not been studied.

B. Organization

The paper is organized as follows. In Section II we
describe and formulate the problem. In Section III we present
an analytical analysis of our problem. Section IV contains
empirical results. We conclude in Section V.

II. PROBLEM FORMULATION
Consider the setup shown in Fig. 1. For simplicity, we

assume that the plant has only two modes, each of which
corresponds to a scalar measurable state µ0 and µ1 respec-
tively. A set of n sensors S1, . . . , Sn is placed in the vicinity
of the plant. In each reading t, a sensor Si receives a noisy
measurement xi ∼ N (µt, σt) (similar to the assumption used
in Kalman filters [14]), where µt ∈ {µ0, µ1} is the mode
of the plant during reading t, and σ0, σ1 are the standard
deviations associated with the two modes (denoted by θ0 and
θ1 respectively). We assume that the measurements xi are
i.i.d. conditioned on the mean µt. Each sensor has a access
to a mapping function fi : R → {0, 1, . . . , k − 1}, from the
real-valued measurements xi to a k−level digital signal. We
define δi = fi(xi), and note that fi may be preprogrammed
or trained (learned), and could be unique to each sensor or
identical for all sensors.

The digital signals δi are transmitted to a classifier, which
applies an aggregator g : {0, . . . , k − 1}n → {0, 1} to pro-
duce a binary class output. An output of θ̂ = 1 corresponds
to a decision that the plant is operating in mode θ1, and vice
versa. The goal is to find the combination of mapping fi
and aggregator g that maximises the balanced classification
accuracy on test data, given by

J = max
fi,g

E
[
(θ = θ0 ∧ θ̂ = 0) ∨ (θ = θ1 ∧ θ̂ = 1)

]
.

III. ANALYSIS
Recalling that k denotes the number of bits conveyed by

the sensors to the aggregator, the problem of aggregator
design lies between two extremes: k = 1 (binary classifiers)
and k = ∞ (classifiers which can transmit information with
arbitrarily high fidelity). If the means µ0, µ1 are known, then
aggregator design is akin to a hypothesis test. In particular,
for finite k, the aggregator performs a hypothesis test on
the probability distribution of the k-bit outputs yj arising
from the classifiers fj . Thus, we surmise that the optimal
aggregator must take the form of a likelihood ratio test. We
begin with an analysis of a centralised aggregator that can
access the raw readings, followed by application of the digital
communication constraints.
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Fig. 2. Classification problem for the case with n = 1, k = 3, µ0 = −50,
µ1 = +50, and σ0 = σ1 = 100. The relation described by (1) maps
x to the posterior probability P (µ1|x). In order to quantise the values
for communication, one can choose thresholds τ and (1 − τ) where the
transmitted value switches from 0 to 1 and from 1 to 2 respectively (shown
by the shaded region between xl and xu).

A. Optimal centralised classifier with full information

Consider the generic case of n sensors with access to
the raw sensor measurements xj ∼ N (µt, σt), where j ∈
{1, . . . , n} and t ∈ {0, 1}. Assuming that the loss function
is symmetric, the optimal classification policy will be to
compare the a posteriori probabilities of the two hypotheses:

θ̂ =

{
1 if P (µ1|x1, . . . , xn) ≥ P (µ0|x1, . . . , xn)

0 if P (µ1|x1, . . . , xn) < P (µ0|x1, . . . , xn)

We apply Bayes rule, and note that both sides of the
inequality contain the joint distribution P (x1, . . . , xn) in
the denominator. Moreover, without prior knowledge about
the operating modes, we assume a uniform prior P (µ0) =
P (µ1) =

1
2 . This implies that the optimal aggregation policy

is simply to compare the likelihoods of the sensor readings,

θ̂ =

{
1 if P (x1, . . . , xn|µ1) ≥ P (x1, . . . , xn|µ0)

0 if P (x1, . . . , xn|µ1) < P (x1, . . . , xn|µ0)

Since the likehoods are joint Gaussians in nature, we can
obtain some intuition about the decision boundaries by
considering small values of n. In the simplest case with
n = 1 and σ0 = σ1, shown in Fig. 2, the decision boundary is
the midpoint between µ0 and µ1. When n = 2, the likelihood
is proportional to,

P (x1, x2|µi) ∝
1

σ2
i

exp

−
2∑

j=1

(xj − µi)
2

2σ2
i


Remark 1: When σ0 = σ1, the interpretation in Fig. 3

shows that the likelihood test corresponds to a comparison
between the Euclidean distance of (x1, x2) from the points
(µ0, µ0) and (µ1, µ1) respectively. The decision boundary is
thus a plane with the generic form x1 + x2 = µ0 + µ1. The
same argument can be extended to the n−dimensional case,
with the optimal binary classifier defined by a hyperplane
with the equation

∑
n xj =

n
2 (µ0+µ1). When σ1 ̸= σ0, we

will show presently that the decision boundary corresponds
to a circle.

Optimal decision
boundary

Fig. 3. Classification problem for the case with n = 2, k = 3 and
σ0 = σ1. The optimal decision boundary is given by a line (a hyperplane
for n > 2) as derived in the description below. The green shaded square in
the middle corresponds to the region where both sensors observe samples
in the [τ, 1− τ ] probability band. The two gray open-ended shaded regions
correspond to a strong disagreement between the two sensors, with one
sensor observing a sample in the [0, τ ] probability band and other in the
[1−τ, 1] band. Exactly half of the areas under the shaded regions correspond
to a mismatch between the optimal decision and the quantised decision,
while the unshaded areas see a match between the optimal and the quantised
decisions.

The difficulty with implementing this optimal classifier for
the problem described in Sec. II is as follows:

• We do not have knowledge of µ0 and µ1

• We do not have direct access to xj , and must rely on
yj = fj(xj)

We assume that the thresholds are set to τ and (1 − τ),
where 0 < τ < 1/2, for the 3-level, 2-sensor case. Then, at
any given instant, the sensor j ∈ {1, 2} outputs

yj =


0, xj < τ

1, τ ≤ xj ≤ 1− τ (‘dead’ or uncertain zone)
2, otherwise

Of particular interest are the dead zones in the 2D real space
spanned by x1 and x2. These correponds to regions where
the sensors output (y1, y2) = (1, 1), (0, 2) or (2, 0). For
instance, the outputs y1 = y2 = 1 are obtained when

τ ≤ P (µ1|x1) , P (µ1|x2) ≤ 1− τ

assuming that the logistic regression functions are correctly
trained. We need to expand the posterior probability of µ1

as follows:

P (µ1|x1) =
P (µ1)P (x1|µ1)

P (µ0)P (x1|µ0) + P (µ1)P (x1|µ1)

Assuming the prior probabilities are equal and unknown, we
can cancel P (µ0) and P (µ1) in the above equation. The
posterior probability reduces to,

P (µ1|x1)=

1
σ2
1
exp

(
−(x1−µ1)

2

2σ2
1

)
1
σ2
1
exp

(
−(x1−µ1)2

2σ2
1

)
+ 1

σ2
0
exp

(
−(x1−µ0)2

2σ2
0

) (1)

Since each state can fall into one of 3 outputs for each sensor,
it follows that there are 9 possible combinations of outputs.
We use (1) for x1 as well as x2 to compute the probability of
falling within each of the 9 state zones, and the probability
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of making an error. We consider two cases, depending on
whether or not σ0 = σ1.

B. Case 1: σ0 = σ1 = σ

Sensor 1 outputs 1 (dead zone) if

τ

1− τ
≤

exp
(

−(x1−µ1)
2

2σ2

)
exp

(
−(x1−µ0)2

2σ2

) ≤ 1− τ

τ
, (2)

and a similar expression applies to sensor 2 producing 1 as
the output. Let xl and xu, with xl < xu, denote the values
of x1 for which the two inequalities in (2) yield, one at a
time, an equality. It can be shown readily that

x{l,u} = µm ∓ σ2

∆µ
ln

(
1− τ

τ

)
, (3)

µm =
µ0 + µ1

2
, ∆µ = µ1 − µ0

The probability that both sensors yield 1 as the output is
given by

P ([1, 1]) =
1

2πσ2

(∫ xu

xl

exp

(
− (x− µ1)

2

2σ2

)
dx

)2

Let z = (x− µ1)/
√
2σ, so that dx =

√
2σ dz and

z{l,u} =
1√
2σ

(
−∆µ

2
∓ σ2

∆µ
ln

(
1− τ

τ

))
This gives

P ([1, 1]) =
1

π

(∫ xu

xl

exp(−z2) dz

)2

=

(
erfn

(
1√
2

(
−∆µ

2σ
+

σ

∆µ
ln

(
1− τ

τ

)))
−erfn

(
1√
2

(
−∆µ

2σ
− σ

∆µ
ln

(
1− τ

τ

))))2

where erfn(x) = (1/
√
π)

∫ z

−∞ exp (−z2) dz. We define the
following for brevity:

Fj=erfn

(
1√
2

(
−∆µ

2σ
+(2j−1)

σ

∆µ
ln

(
1−τ

τ

)))
, (4)

j∈{0, 1}

so that
P ([1, 1]) = (F1 − F0)

2

Next, we derive an analytical expression for P ([0, 2]|µ1). In
order for sensors 1 and 2 to output 0 and 2, respectively, we
have that

0 ≤ P (µ1|x1) < τ, 1− τ < P (µ1|x2) ≤ 1

Using (1), we get

exp
(
− (x1−µ1)

2

2σ2

)
exp

(
− (x1−µ0)2

2σ2

) <
τ

1−τ
,
exp

(
− (x2−µ1)

2

2σ2

)
exp

(
− (x2−µ0)2

2σ2

) >
1−τ

τ

(5)
It follows that x1 < xl and x2 > xu in terms of the
notation presented in (3), so that P ([0, 2]) = F0(1 − F1).
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Fig. 4. The error probability from (6)

By symmetry, it follows that P ([2, 0]) = F0(1− F1). Thus,
we obtain the probability of error as

e(τ) =
1

2
(P ([1, 1]) + P ([0, 2] + P ([2, 0]))

=
1

2
(F1 − F0)

2 + F0(1− F1), (6)

which we plot in Fig. 4 as a function of τ for various values
of ∆µ/σ. Notice that the error probability is minimized for
values of τ between 0.3 and 0.35 across the entire range of
∆µ/σ considered here.

C. Case 2: σ0 ̸= σ1

We assume, w.l.o.g, that σ1 < σ0. Recall that

P (µ1|x)
P (µ0|x)

=
P (x|µ1)

P (x|µ0)
=

1
σn
1

∏n
j=1 exp

(
− (xj−µ1)

2

2σ2
1

)
1
σn
0

∏n
j=1 exp

(
− (xj−µ0)2

2σ2
0

)
where n is the number of sensors. We will specialize our
result for n = 2 later. Solving for the decision boundary
P (µ1|x) = P (µ0|x), we get

n∑
j=1

(
(xj − µ1)

2

2σ2
1

− (xj − µ0)
2

2σ2
0

)
= ln

(
σn
0

σn
1

)
(7)

Let β = σ1/σ0 < 1 and, as before, ∆µ = µ1 − µ0. Let
zj = xj − µ1 for all j, so that (7) can be written as

n∑
j=1

(
z2j − β2(zj +∆µ)2

)
= −2nσ2

1 ln(β) (8)

Expanding the left hand side, completing the squares, and
re-substituting for zj in terms of xj , we get

n∑
j=1

(
z2j − 2

β2(∆µ)

1− β2
zj

)
=

nβ2(∆µ)2

1− β2
− 2nσ2

1 ln(β)

1− β2

=⇒
n∑

j=1

(
zj−

β2

1−β2
∆µ

)2

=
nβ2(∆µ)2

(1− β2)2
− 2nσ2

1 ln(β)

1− β2
(9)

=⇒
n∑

j=1

(
xj −

(
µ1 +

β2

1− β2
∆µ

))2

=
nβ2(∆µ)2

(1− β2)2

−n ln(β)

(
1

2σ2
1

− 1

2σ2
0

)−1
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Fig. 5. Classification problem for the case with n = 1, k = 3, µ0 = −50,
µ1 = +50, σ0 = 100, and σ1 = 50. The relation described by (1) maps
x to the posterior probability P (µ1|x). In order to quantise the values
for communication, one can choose thresholds τ and (1 − τ) as before.
However, we now observe that the regions corresponding to probability
ranges [0, τ ] and [τ, 1− τ ] are not contiguous.
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Fig. 6. Classification problem for the case with n = 2, k = 3, σ0 = 100,
and σ1 = 50. The optimal decision boundary is now given by a circle (a
spherical ball for n > 2) eccentric with respect to the narrower distribution.
Extrapolating from the one-dimensional case, the decision regions for the
quantised version are correspondingly more complex. Specifically for k = 3
and n = 2, there are 25 divisions of the x1 −x2 plane. The sensor outputs
within each region are constant, and switch at the boundaries. The goal
of optimising the threshold parameter τ would be to make these linear
boundaries match up as closely as possible to the circular optimal boundary.

where the second term on the right hand side of the last
equation is positive since β < 1. We are interested in n = 2,
so that the decision boundary is a circle with its center “near”
µ1 (more generally, near the mean of the distribution with
the smaller variance). For more general n, notice that the
radius of the circle grows with

√
n. A formula similar to (6)

can be derived for this case. We omit this derivation, and
turn instead to a numerical study for insight.

IV. RESULTS

We present empirical studies that illustrate the preceding
analysis, especially in terms of possible aggregation policies
and their effect on the classification accuracy.

A. Aggregate classification policies

We use four aggregators, also called simple combiners [15,
Chapter 5], in this section. Specifically, these are

1) Average: The centralised classifier calls θ̂ = 1 iff∑
δi

n ≥ k−1
2 , and θ̂ = 0 otherwise.
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Fig. 7. Classification accuracy as a function of increasing quantisation
levels k, for σ0 = σ1 = 100 (left) and σ0 = 100, σ1 = 50 (right), and all
simple aggregation rules. The solid line corresponds to the highest number
of sensors, n = 15, and the shaded regions cover all results for n < 15.
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Fig. 8. Classification accuracy as a function of increasing number of
sensors n, for σ0 = σ1 = 100 (left) and σ0 = 100, σ1 = 50 (right),
and all simple aggregation rules. The solid line corresponds to the highest
number of quantisation levels k = 10, and the shaded regions cover all
results for k < 10.

2) Median: The centralised classifier calls θ̂ = 1 iff
median(δi) ≥ k−1

2 , and θ̂ = 0 otherwise.
3) MaxDeviation: The centralised classifier based on the

sign of the largest deviation over all δi compared to
k−1
2 . Formally, it calls θ̂ = 1 iff |max(δi)− k−1

2 | >=

|k−1
2 −min(δi)|, and θ̂ = 0 otherwise.

4) Count: The centralised classifier calls θ̂ = 1 iff δi ≥
k−1
2 are at least as many as δi < k−1

2 , and θ̂ = 0
otherwise.

Note that we break ties on the side of θ̂ = 1 in all cases,
without loss of generality. The expected error probability
(conversely accuracy) remains the same if we break ties in
favour of θ̂ = 1 with any probability ∈ [0, 1], due to the
symmetry of the geometry as seen in Fig. 3 and Fig. 6.

B. Empirical results

In order to confirm the analytical results derived in the
previous section, we performed empirical experiments for
two scenarios:

1) Means µ0 = −50, µ1 = +50, equal standard devia-
tions σ0 = σ1 = 100

2) Means µ0 = −50, µ1 = +50, unequal standard
deviations σ0 = 100 and σ1 = 50

Each scenario is run with a range of quantisation levels k ∈
[2, 10] and number of sensors n ∈ [2, 15], and 1000 test
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samples produced for each experiment. The i = {1, 2, . . . , n}
readings obtained by sensors for each test sample are mapped
to a posterior probability as per (1), and then to a quantised
output δi. Given the complexity of optimising the switch
thresholds for k > 3, we use a simple uniform division of the
probability range [0, 1] based on the available quantisation
levels k. Formally, this means that a posterior probability of
pi as computed by sensor i is mapped to a quantised value
δi = ⌊pi k⌋ ∈ {0, 1, . . . , k − 1}.

The empirically computed accuracy for all the aggregators
is shown in Fig. 7 (left) for the case σ0 = σ1 = 100, as a
function of the number of quantisation levels k. The solid
lines correspond to the highest number of sensors n = 15 in
the experiments, while the shaded regions show the range of
accuracies obtained for n < 15. As expected, we note that
the average aggregator dominates the other heuristics due to
its affinity with the optimal decision boundary (see Fig. 3).
The same empirical result is observed in Fig. 7 (right) for the
case with σ0 = 100 and σ1 = 50, although we do not have
a theoretical analysis of the same. Fig. 8 presents the same
results but as a function of increasing number of sensors,
for σ0 = σ1 (left) and σ0 ̸= σ1 (right) respectively. The
combined observations from these results can be summarised
as follows:

• The jittery nature of the accuracy (especially for the
Median and Count aggregators) is due to different
behaviour in the case of even and odd number of
quantisation levels or sensors. However, these effects
are of opposite shape. In the case of quantisation levels,
having an even number is beneficial because it maps
each quantised level to a definite decision (the first k/2
values indicate θ̂ = 0, while the remaining indicate
θ̂ = 1). On the other hand, allowing an odd number
of quantisation levels puts the middle value on the
fence, requiring a tie-breaker. The same effect applies
to the number of sensors, but in this case having an
odd number of sensors reduces the chance of requiring
a tie-breaker, leading to higher accuracy.

• While the MaxDeviation rule is not competitive for any
quantisation level as long as n is a high number, it
is very competitive for small values of n (see Fig. 8).
This is because when only a few readings are available,
having an outlier value (corresponding to a posterior
probability close to either 0 or 1) is a good indicator
of the true distribution. However as n increases, the
other statistical rules become much more reliable, while
an outlier value is much more likely to be just that: a
random outlier.

• For a quantisation level of k = 2 (see Fig. 7), the
three statistical rules (Average, Median, Count) are
identical since the sensors can only transmit a single
binary value. This is why the three curves start from
the same accuracy level. However, MaxDeviation is
different because by definition (and including the tie-
breaker), it decides on θ̂ = 1 as long as at least one δi
is equal to 1.

V. CONCLUSIONS

Our analysis of an apparently simple problem (noisy
distributed measurements, a digital communication channel,
and a centralised classifier) showed that there are several non-
trivial design choices involved in the pursuit of classification
accuracy. The intractable nature of the digitisation mapping
optimisation problem for k > 2 suggests that a data-driven
approach might be used for this step. Other interesting
research directions include extensions to categorical or multi-
dimensional states, non-standard measurement noise, com-
munication channel noise, non-stationary distributions, and
the inclusion of state dynamics.
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