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Abstract— This paper is concerned with developing a method
for computing the L1-induced norm of sampled-data systems.
We first derive an operator-based form of the L1-induced
norm in the lifted representation of sampled-data systems. The
corresponding operators are further considered on the top of
the fast-lifted treatment, in which the sampling interval [0, h) is
divided into M subintervals with an equal width. This treatment
allows us to develop a piecewise constant approximation of the
input and output signals of sampled-data systems, by which
an upper bound and a lower bound on the L1-induced norm
can be obtained. The gap between these bounds is shown to
converge to 0 at the rate of 1/M with the fast-lifting parameter
M .

I. INTRODUCTION

As evaluating the effects of disturbances on the outputs
has been regarded as one of the most important issues in
control engineering, there have been a number of studies
on computing various system norms. For instance, the L2-
induced norm is employed in [1]–[5] to deal with energy-
bounded disturbances while the L∞-induced norm is used
in [6]–[14] for tackling magnitude-bounded disturbances.
However, they do not fit into some practical problems such
as the fuel efficiency maximization [15], the population
management [16], [17], and so on. For these problems, the
L1-induced norm can be taken since it corresponds to the
total amount of the output. This induced norm has been
also extensively used for various systems such as positive
systems [18], switched systems [19], [20], Markov jump
systems [21], and so on.

The issue of computing system norms is important also
in sampled-data systems taking into account their inter-
sample behavior. In connection with this, similarly to the
above case of continuous-time systems, there are various
studies on computing the L2-induced norm [22]–[26] and
the L∞-induced norm [27]–[33] for sampled-data systems.
However, no computation procedure to the L1-induced norm
of sampled-data systems is discussed, although an operator-
based formula for the induced norm is introduced in [34].

Motivated by this fact, we are concerned with developing
a method for computing the L1-induced norm of sampled-
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data systems. As a preliminary step to establish such a
computation procedure, we introduce a tractable form of the
L1-induced norm by applying the lifting technique [35]–[37]
to sampled-data systems. More precisely, the L1-induced
norm of sampled-data systems can be regarded as the l1-
induced norm of operator-based discrete-time systems. To
derive computable upper and lower bounds on the L1-
induced norm, the tractable form is also re-interpreted in
the fast-lifted representation [38] of sampled-data systems,
by which the sampling interval [0, h) is divided into M
subintervals of with an equal width, where M is the fast-
lifting parameter. To put it another way, we develop constant
approximation approaches the corresponding input and out-
put operators on such smaller intervals, and this leads to a
piecewise constant approximation of the input and output
signals of sampled-data systems. Based on the piecewise
constant approximation, we can obtain an upper bound and
a lower bound on the L1-induced norm of sampled-data
systems whenever M is fixed. Furthermore, the efficacy of
taking M large enough for computing the L1-induced norm
is validated by showing that the gap between the upper and
lower bounds converges to 0 at the rate of 1/M .

This paper is organized as follows. An operator-based
representation of sampled-data systems is introduced in
Section II by taking the lifting technique [35]–[37]. The
L1-induced norm of sampled-data systems is described by
a tractable form and its fast-lifted counterpart are provided
in Section III. The main results, i.e., a computation method
and its convergence analysis with respect to the L1-induced
norm, are derived in Section IV. Finally, the notations used
in this paper are shown in Table I.

TABLE I: Notations in the paper

Notations Definitions
Rν
1 Banach space of ν-dimensional real vectors equipped

with the vector 1-norm
N Set of positive integers
N0 N ∪ {0}
h′ h := h/M with the sampling period h
Kν The Banach space (L1[0, h))ν

K′
ν The Banach space (L1[0, h′))ν

∥·∥1 The 1-norm of a matrix
∥·∥L1

The L1[0, T ) norm of a function with T = h, h′ or ∞,
i.e., ∥f∥L1

:=
∫ T
0 ∥f(t)∥1dt

∥·∥Y/X The induced norm of an operator defined as ∥T ∥Y/X :=
supf ̸=0 ∥T f∥Y /∥f∥X

II. OPERATOR-BASED REPRESENTATION OF
SAMPLED-DATA SYSTEMS

This section introduces the operator-based representation
of sampled-data systems via the lifting approach [35]–[37].
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Let us consider the sampled-data system ΣSD as shown in
Fig. 1, where P is the continuous-time linear-time-invariant
(LTI) plant, Ψ is the discrete-time LTI controller, S is
the ideal sampler, and H is the zero-order hold (ZOH).
The discrete-time devices (i.e., S and H) are assumed to
synchronously with the sampling period h, and suppose that
P and Ψ are described respectively by

P :


ẋ = Ax+B1w +B2u

z = C1x+D11w +D12u

y = C2x

(1)

Ψ :

{
ψk+1 = Aψψk +Bψyk

uk = Cψψk +Dψyk
(2)

where x(t) ∈ Rn, z(t) ∈ Rnz , y(t) ∈ Rny , w(t) ∈
Rnw , u(t) ∈ Rnu , ψk ∈ Rnψ , and u(t) = uk (kh ≤ t <
(k + 1)h). Let us denote y(kh) as yk .

The actions of S and H lead to the linear periodically time-
varying (LPTV) nature of ΣSD, and the relevant difficulty can
be alleviated by taking the lifting approach [35]–[37]. More
precisely, for a given function f ∈ (L1[0,∞))ν , its lifting,
denoted by f̂k ∈ Kν (k∈N0), is defined as follows.

f̂k(s) := f(kh+ s) (0 ≤ s < h). (3)

On the basis of applying the lifting technique to w and z,
the lifted representation of ΣSD is described by{

ξk+1 = Aξk + Bŵk
ẑk = Cξk +Dŵk

(4)

where ξk :=
[
xTk ψTk

]T
(xk := x(kh)) and the matrix A

and the operators B, C and D are given by

A=

[
Ad+B2dDΨC2d B2dCΨ

BΨC2d AΨ

]
: Rn+nψ→ Rn+nψ

B = JΣB1 : Knw → Rn+nψ

C = M1CΣ : Rn+nψ → Knz
D = D11 : Knw → Knz

with

Ad := eAh, B2d :=

∫ h

0

eAsB2ds, C2d := C2, (5)

JΣ :=

[
I
0

]
∈ R(n+nψ)×n, CΣ :=

[
I 0

DψC2d Cψ

]
(6)

M1 :=
[
C1 D12

]
, A2 :=

[
A B2

0 0

]
(7)

B1ŵk =

∫ h

0

eA(h−s)B1ŵk(s) ds (8)(
M1

[
xk
uk

])
(s) =M1e

A2s

[
xk
uk

]
(9)

(D11ŵk)(s)=

∫ s

0

C1e
A(s−τ)B1ŵk(τ) dτ+D11ŵk(s) (10)

We also suppose the internal stability of ΣSD for the
L1-induced norm to be well-defined and bounded; all the
eigenvalues of A are assumed to be located in the open unit
disc.

III. THE L1-INDUCED NORM OF ΣSD AND ITS
FAST-LIFTED EXPRESSION

This section introduces a tractable form of the input/output
relation of ΣSD by taking the fast-lifting technique [38],
tailored to the analysis for the L1-induced norm ∥ΣSD∥L1/L1

defined as follows.

∥ΣSD∥L1/L1
:= sup

∥w∥L1
=1

∥z∥L1
(11)

A. Operator-Based Expression of ∥ΣSD∥L1/L1
via Toeplitz

Structure of Input/Output Relation of ΣSD

We first note from (4) that the input/output relation of ΣSD

is described by the following Toeplitz structure.
ẑ0
ẑ1
ẑ2
ẑ3
...

=


D 0 · · ·
CB D 0 · · ·
CAB CB D 0 · · ·
CA2B CAB CB D 0 · · ·

...
...

...
...

...
. . .




ŵ0

ŵ1

ŵ2

ŵ3

...

 (12)

Here, we define F [k] for k ∈ N0 as

F [0] :=
[
DT (CB)T (CAB)T (CA2B)T · · ·

]T
F [1] :=

[
0 DT (CB)T (CAB)T (CA2B)T · · ·

]T
F [2] :=

[
0 0 DT (CB)T (CAB)T (CA2B)T · · ·

]T
Then, it immediately follows from (12) that

∥z∥L1
=

∥∥∥[ẑT0 ẑT1 ẑT2 · · ·
]T∥∥∥

L1

=
∥∥∥F [0]ŵ0 + F [1]ŵ1 + F [2]ŵ2 + · · ·

∥∥∥
L1

≤ ∥F [0]ŵ0∥L1
+ ∥F [1]ŵ1∥L1

+ ∥F [2]ŵ2∥L1
+ · · ·

≤ ∥F [0]∥L1/L1
· (∥ŵ0∥L1

+ ∥ŵ1∥L1
+ ∥ŵ2∥L1

+ · · · ) (13)

where the last inequality holds from ∥F [0]∥L1/L1
=

∥F [k]∥L1/L1
(∀k ∈ N). In the following, we take the notation

F instead of F [0] for simplicity. If we note the fact that
the equality in (13) establishes when ŵk = 0 (∀k ∈ N),
then the L1-induced norm ∥ΣSD∥L1/L1

admits the following
representation.

∥ΣSD∥L1/L1
= ∥F∥L1/L1

(14)

Even though the L1-induced norm ∥ΣSD∥L1/L1
can be

described by the tractable form of (14), its direct computation
is still a non-trivial task since F is an infinite-dimensional
operator-based matrix. To alleviate such a difficulty, we

Fig. 1: Sampled-data system ΣSD.
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introduce for an N ∈ N0 the two operators F−
N and F+

N

defined as

F−
N :=

[
DT (CB)T (CAB)T · · · (CANB)T

]T
(15)

F+
N :=

[
(CAN+1B)T (CAN+2B)T · · ·

]T
(16)

In terms of applying the triangular inequality to F−
N and F+

N ,
we can see that

∥F−
N∥L1/L1

≤∥F∥L1/L1
≤∥F−

N∥L1/L1
+∥F+

N∥L1/L1
(17)

Because Ak exponentially converges to 0 as k becomes
larger from the internal stability assumption on ΣSD,
∥F+

N∥L1/L1
also converges to 0 by taking N larger.

In connection with this, we are in a position to compute
∥F−

N∥L1/L1
as accurately as possible while ∥F+

N∥L1/L1
is

obtained in a relatively rough way when the truncation
parameter N is large enough.

B. Fast-Lifted Representation of F−
N

Concerning dealing with ∥F−
N∥L1/L1

, the fast-lifting tech-
nique [38] plays an important role in developing an ap-
proximate computation method. For the corresponding pa-
rameter M ∈ N with h′ := h/M , the fast-lifting opera-
tor, denoted by LM , maps from f̂k ∈ Kν to f̌k :=[
(f̂

(1)
k )T · · · (f̂

(M)
k )T

]T
∈ (K′

ν)
M , where

f̂
(i)
k (s′) := f̂k((i− 1)h′ + s′) (0 ≤ s′ < h′) (18)

Because LM is norm-preserving, ∥F−
N∥L1/L1

admits the
representation

∥∥F−
N

∥∥
L1/L1

=

∥∥∥∥∥∥∥
 LMDL−1

M
...

LMCANBL−1
M


∥∥∥∥∥∥∥
L1/L1

(19)

and the fast-lifted operators LMDL−1
M and LMCAjBL−1

M in
(19) can be described by [38]

LMDL−
M = M′

1∆MB′
1 +D′

11 (20)

LMCAjBL−
M = M′

1A
′
2dMCΣAjJΣA

′
dMB′

1 (21)

where M′
1, B

′
1 and D′

11 are defined equivalently as M1,B1

and D11, respectively, by changing the interval [0, h) with
[0, h′), (·) represents M copies of (·), i.e., diag[(·), . . . , (·)]
and the matrices are given by

A′
dM := [(A′

d)
M−1 · · · I], A′

2dM :=

 I
...

(A′
2d)

M−1



∆M :=


0 0 · · · 0

J
. . . . . .

...
...

. . . . . . 0
(A′

2d)
M−2J · · · J 0

 (22)

with

A′
d := eAh

′
, A′

2d := eA2h
′
, J :=

[
I
0

]
∈ R(n+nu)×n (23)

Based on the above notations, we define F−
N,M as

F−
N,M =


M′

1∆MB′
1 +D′

11

M′
1AM,0B′

1
...

M′
1AM,NB′

1

 (24)

where

AM,j := A′
2dMCΣAjJΣA

′
dM (j = 0, . . . , N) (25)

Then, it readily follows that

∥F−
N∥L1/L1

= ∥F−
N,M∥L1/L1

(26)

The main objective of employing the fast-lifting technique
is to derive the operators B′

1, M′
1 and D′

11 instead of
B1, M1 and D11, by which it could be expected that
discretizing the former operators lead to smaller error bounds
rather than a direct discretization of the latter operators.
The subsequent section is devoted to developing such a
discretization.

IV. MAIN RESULTS

This section develops a piecewise constant approximation
scheme of M1, B1 and D11 on the top of the fast-
lifted representation F−

N,M , by which the L1-induced norm
∥ΣSD∥L1/L1

can be obtained within any degree of accuracy.

A. Piecewise Constant Approximation and Convergence
Rate Analysis

We consider the averaging J′
A : K′

nw → K′
nw defined as

(J′
Aw)(s

′) =
1

h′

∫ h′

0

w(τ ′) dτ ′ (0 ≤ s′ < h′) (27)

The rationale to take this operator is to alleviate difficulties
of B′

1 on computing ∥F−
N,M∥L1/L1

, and we introduce the
operator B′

A given by

B′
Aw := B′

1J
′
Aw =

∫ h′

0

eA(h′−s′)B1 · (J′
Aw)(s

′) ds′ (28)

On the other hand, we also provide the approximate
operators M′

A and D′
A for M′

1 and D′
1, respectively, which

are defined as(
M′

A

[
x
u

])
(s′) =M1

[
x
u

]
(0 ≤ s′ < h′) (29)

(D′
Aw)(s

′) = D11w(s
′) (0 ≤ s′ < h′) (30)

M′
A corresponds to a constant approximation of the output

of M′
1 at s′ = 0 while D′

A ignores the convolution integral
part of D′

11.
With B′

A, M′
A and D′

A, we introduce the approximate
P−
N,M defined as

P−
N,M =


M′

A∆MB′
A +D′

A

M′
AAM,0B′

A
...

M′
AAM,NB′

A

 (31)
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Then, we are in a position to compute ∥P−
N,M∥L1/L1

instead
of ∥F−

N,M∥L1/L1
(= ∥F−

N∥L1/L1
), and the following part is

devoted to establishing the corresponding convergence rate.
In other words, it is shown that ∥P−

N,M∥L1/L1
converges

to ∥F−
N,M∥L1/L1

with the rate of 1/M as M becomes
larger, and the following three lemmas play important role
in deriving such a convergence order.

Lemma 1: The inequality

∥B′
1 −B′

A∥1/L1
≤ KBM

M
(32)

holds, where

KBM :=
3

2
h∥A∥1e

∥A∥1h
′
· ∥A′

dB1∥1 (33)

and KBM has a uniform upper bound independent of M
given by

KB =
3

2
h∥A∥1 · ∥B1∥1 · e

∥A∥1h (34)

Lemma 2: The inequality

∥M′
1 −M′

A∥L1/1
≤ KMM

M2
(35)

is satisfied, where

KMM :=
h2

2
∥M1A2∥1 · e∥A2∥1h

′
(36)

and KMM has a uniform upper bound independent of M
described by

KM =
h2

2
∥M1A2∥1 · e∥A2∥1h (37)

Lemma 3: The inequality

∥D′
11 −D′

A∥L1/L1
≤ KDM

M
(38)

is established, where

KDM :=M∥C1∥1 · ∥B1∥1 ·
e∥A∥1h

′ − 1

∥A∥1
(39)

and KDM has a uniform upper bound independent of M
given by

KD = h∥B1∥1 · ∥C1∥1 · e
|A1|h (40)

Based on Lemmas 1–3, we can obtain the following
theorem relevant to the convergence order for the first block-
row of P−

N,M in (31).

Proposition 1: The inequality∥∥∥(M′
1∆MB′

1+D′
11)−(M′

A∆MB′
A+D′

A)
∥∥∥
L1/L1

≤ KDM

M
(41)

holds, where

KDM :=

M−2∑
k=0

∥(A′
d)
k∥1 ·

(KMM

M
· e∥A∥1h

′
∥B1∥1

+
KBM

M
h∥M1∥1

)
+KDM (42)

Furthermore, KDM has a uniform upper bound regardless of
M given by

KU
DM := KD

+ (KM·∥B1∥1·e
∥A∥1h + h·KB·∥M1∥1)·e

∥A2∥1h (43)

With respect to the convergence order relevant to the other
block-rows of P−

N,M in (31), combining Lemmas 1 and 2
establish the following result.

Proposition 2: For a j ∈ {0, . . . , N}, the inequality∥∥∥M′
1AM,jB′

1 −M′
AAM,jB′

A

∥∥∥
L1/L1

≤ KAM,j

M
(44)

holds, with

KAM,j :=
∥AM,j∥1

M
· (KMM · ∥B1∥1 · e

∥A∥1h
′

+ h ·KBM · ∥M1∥1) (45)

Furthermore, KAM,j has a uniform upper bound regardless
of M and j as well as N given by

KA := KΣ · (KM · ∥B1∥1 · e
∥A∥1h + h ·KB · ∥M1∥1)

(46)

where

KΣ := max
j∈N0

∥∥Aj
∥∥
1
· e(∥A∥1+∥A2∥1)h · ∥CΣ∥1 (47)

Remark 1: There should exist the maximum defined as
max
j∈N0

∥Aj∥1 in (47) because the internal stability assumption

on ΣSD ensures that lim
j→∞

∥Aj∥ = 0.

From Propositions 1 and 2, we readily have the following
theorem associated with an upper bound and a lower bound
on ∥F−

N∥L1/L1
= ∥F−

N,M∥L1/L1
.

Theorem 1: The inequality

∥P−
N,M∥

L1/L1
− KN,M

M
≤

∥∥F−
N

∥∥
L1/L1

≤ ∥P−
N,M∥

L1/L1
+
KN,M

M
(48)

holds, where

KN,M := KDM +

N∑
j=0

KAM,j (49)

In addition, KN,M has a uniform upper bound regardless of
M given by

KN := KD + (N + 1) ·KA (50)
This theorem obviously implies that ∥P−

N,M∥L1/L1
con-

verges to ∥F−
N,M∥L1/L1

within the order of 1/M , and thus
computing the former instead of the latter is theoretically
valid when M is large enough.
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B. Computation of ∥F∥L1/L1
via Matrix 1-Norm

Even though the convergence rate of 1/M is derived in
Theorem 1, it is still unclear how to compute ∥P−

N,M∥L1/L1

and also ∥F∥L1/L1
.

In connection with this, we first consider the exact com-
putation of ∥P−

N,M∥
L1/L1

through the 1-norm of a matrix.
If we note that ∥J′

Aw∥L1
≤ ∥w∥L1

and J′
Aw becomes a

constant function on [0, h′) for an arbitrary w ∈ K′
nw , then

we can see for an arbitrary α(> 0) that

{B′
1J

′
Aw | ∥w∥L1

≤ α} = { 1

h′
B′

0dwd | ∥wd∥1 ≤ α} (51)

where B′
0d :=

∫ h′

0
eA(h′−s′)B1 ds

′. It readily also follows
from the definition of M′

A in (29) that

∥M′
Ap∥L1

= ∥h′M1p∥1, ∀p ∈ Rn+nu1 (52)

From the definition of the L1[0, h
′)-induced norm and the

lower-triangular structure of ∆M , on the other hand, the
operator D′

A (defined as (30)) can be regarded by the feed
through matrix D11 in computing ∥P−

N,M∥L1/L1
.

To summarize, the operators B′
A, M′

A and D′
A in P−

N,M

can be replaced with
1

h′
B′

0d, h
′M1 and D′

11, respectively,

without changing ∥P−
N,M∥L1/L1

. In other words, we can
obtain the following theorem.

Theorem 2: Define the matrix P−
N,M as

P−
N,M :=


M1∆MB′

0d +D11

M1AM,0B′
0d

...
M1AM,NB′

0d

 (53)

Then, ∥P−
N,M∥1 = ∥P−

N,M∥L1/L1
.

Theorem 2 obviously implies that the operator induced
norm ∥P−

N,M∥L1/L1
can be exactly computed by the matrix

1-norm ∥P−
N,M∥1. Because we can compute an upper bound

and a lower bound on ∥F−
N∥L1/L1

by using the arguments
in Theorems 1 and 2, the remaining step is to deal with∥∥F+

N

∥∥
L1/L1

. To do this, let us first define AN,L as

AN,L := [(AN+1)T (AN+2)T · · · (AN+L)T ]T (54)

with a sufficiently large L ∈ N0 such that ∥AL∥1 < 1. By
taking such a AN,L, we can lead to the following lemma
associated with an upper bound on ∥F+

N∥L1/L1
.

Lemma 4: The inequality∥∥F+
N

∥∥
L1/L1

≤ KN,L (55)

holds, where

KN,L :=∥CΣ∥1∥M1∥1
e∥A2∥1h−1
∥A2∥1

∥AN,L∥1
1−∥AL∥1

e∥A∥1h∥B1∥1 (56)

Furthermore, KN,L converges to 0 regardless of L by taking
N larger.

Finally, substituting Theorems 1, 2 and Lemma 4 into (17)
derives the following result relevant to an upper bound and
a lower bound on the L1-induced norm ∥F∥L1/L1

.

Theorem 3: For a sufficiently large L ∈ N0 such that∥∥AL
∥∥
1
< 1, the following inequality holds.

∥P−
N,M∥

1
−KN,M

M
≤∥F∥L1/L1

≤∥P−
N,M∥

1
+
KN,M

M
+KN,L

(57)

Furthermore, KN,M has a uniform upper bound KN defined
as (50), and KN,M/M converges to 0 by taking M larger,
while KN,L tends to 0 regardless of L by taking N larger.

V. CONCLUSIONS

A method for computing the L1-induced norm of sampled-
data systems was developed in this paper. To this end, we
first derived a tractable form of the L1-induced norm in
the lifting-based representation [35]–[37] of sampled-data
systems. We next applied the fats-lifting technique [38] to
the tractable form, by which the input/output relation of
sampled-data systems can be considered on the interval
[0, h/M), where h is the sampling period and M is the fast-
lifting parameter. This fast-lifted representation of sampled-
data systems allowed us to develop a piecewise constant
approximation leading to an upper bound and a lower bound
on the L1-indueced norm. Furthermore, the gap between
these bounds was shown to converge to 0 at the rate of 1/M .

Finally, it would be worthwhile to note that an (ap-
proximate) equivalent discretization of sampled-data systems
might be required for an optimal controller synthesis to
minimize the L1-induced norm of sampled-data systems, and
the developed piecewise constant approximation could be
expected to establish such a discretization. However, this is
a non-trivial task and is left for an interesting future study.
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