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Computing the L;-Induced Norm of Sampled-data Systems

Junghoon Kim!, Dohyeok Kwak!, Jung Hoon Kim! and Tomomichi Hagiwara

Abstract— This paper is concerned with developing a method
for computing the L;-induced norm of sampled-data systems.
We first derive an operator-based form of the L-induced
norm in the lifted representation of sampled-data systems. The
corresponding operators are further considered on the top of
the fast-lifted treatment, in which the sampling interval [0, /) is
divided into M subintervals with an equal width. This treatment
allows us to develop a piecewise constant approximation of the
input and output signals of sampled-data systems, by which
an upper bound and a lower bound on the L;-induced norm
can be obtained. The gap between these bounds is shown to
converge to 0 at the rate of 1/ with the fast-lifting parameter
M.

I. INTRODUCTION

As evaluating the effects of disturbances on the outputs
has been regarded as one of the most important issues in
control engineering, there have been a number of studies
on computing various system norms. For instance, the Lo-
induced norm is employed in [1]-[5] to deal with energy-
bounded disturbances while the L.,-induced norm is used
in [6]-[14] for tackling magnitude-bounded disturbances.
However, they do not fit into some practical problems such
as the fuel efficiency maximization [15], the population
management [16], [17], and so on. For these problems, the
L+-induced norm can be taken since it corresponds to the
total amount of the output. This induced norm has been
also extensively used for various systems such as positive
systems [18], switched systems [19], [20], Markov jump
systems [21], and so on.

The issue of computing system norms is important also
in sampled-data systems taking into account their inter-
sample behavior. In connection with this, similarly to the
above case of continuous-time systems, there are various
studies on computing the Ls-induced norm [22]-[26] and
the L.-induced norm [27]-[33] for sampled-data systems.
However, no computation procedure to the L;-induced norm
of sampled-data systems is discussed, although an operator-
based formula for the induced norm is introduced in [34].

Motivated by this fact, we are concerned with developing
a method for computing the L;-induced norm of sampled-
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data systems. As a preliminary step to establish such a
computation procedure, we introduce a tractable form of the
L;-induced norm by applying the lifting technique [35]-[37]
to sampled-data systems. More precisely, the L;-induced
norm of sampled-data systems can be regarded as the [;-
induced norm of operator-based discrete-time systems. To
derive computable upper and lower bounds on the L-
induced norm, the tractable form is also re-interpreted in
the fast-lifted representation [38] of sampled-data systems,
by which the sampling interval [0,h) is divided into M
subintervals of with an equal width, where M is the fast-
lifting parameter. To put it another way, we develop constant
approximation approaches the corresponding input and out-
put operators on such smaller intervals, and this leads to a
piecewise constant approximation of the input and output
signals of sampled-data systems. Based on the piecewise
constant approximation, we can obtain an upper bound and
a lower bound on the L;-induced norm of sampled-data
systems whenever M is fixed. Furthermore, the efficacy of
taking M large enough for computing the L;-induced norm
is validated by showing that the gap between the upper and
lower bounds converges to 0 at the rate of 1/M.

This paper is organized as follows. An operator-based
representation of sampled-data systems is introduced in
Section II by taking the lifting technique [35]-[37]. The
L;-induced norm of sampled-data systems is described by
a tractable form and its fast-lifted counterpart are provided
in Section III. The main results, i.e., a computation method
and its convergence analysis with respect to the L;-induced
norm, are derived in Section IV. Finally, the notations used
in this paper are shown in Table L.

TABLE I: Notations in the paper

Notations | Definitions
RY Banach space of v-dimensional real vectors equipped
with the vector 1-norm
N Set of positive integers
Nop NU {0}
X h := h/M with the sampling period A
Ky The Banach space (L1[0, h))”
K, The Banach space (L1[0,R"))”
-4 The 1-norm of a matrix
M, The L1[0,T) norm of a function with T' = h, A’ or oo,
e 1£1ly, = Jg IIF )l dt
Ty, x The induced norm of an operator defined as [T [y, x =
sup yzo [T lly/1fllx
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Let us consider the sampled-data system Ygp as shown in
Fig. 1, where P is the continuous-time linear-time-invariant
(LTD plant, ¥ is the discrete-time LTI controller, S is
the ideal sampler, and H is the zero-order hold (ZOH).
The discrete-time devices (i.e., S and #H) are assumed to
synchronously with the sampling period h, and suppose that
P and ¥ are described respectively by

T = Az + Biw + Byu
P:< z=Ciz+ Diiw+ Disu (1)
y = Cox

v Vi1 = AypPr + Byyr
u = CyPr + Dyyr

where z(t) € R", z(t) € R™, y(t) € R™, w(t) €
R™, u(t) € R™, 4 € R™, and u(t) = up (kh <t <
(k + 1)h). Let us denote y(kh) as yy, .

The actions of S and # lead to the linear periodically time-
varying (LPTV) nature of Ygp, and the relevant difficulty can
be alleviated by taking the lifting approach [35]-[37]. More
precisely, for a given function f € (£1[0,00))", its lifting,
denoted by fk € K, (k€Np), is defined as follows.

fe(s):= f(kh+s) (0<s<h). (3)

On the basis of applying the lifting technique to w and z,
the lifted representation of Ygp is described by

{ &1 = A& + By

2

. . “4)
Lk = C&g + Dwk

where &, = [z w,{]T (71 := z(kh)) and the matrix A
and the operators B, C and D are given by

A— Ag+B2gD yCoq BgCly
ByCyq Ay

B=JsB;:K,, — R
C= Mlcg : R — ’an
D= D11 : ’an — K:nz

with

} LR R

h
Ag =M Byy:= / e Byds, Coq:= Ca, o)
0

I I 0
— (n+ny)xXn —
Js [O:| eR ¥ , Cx: |:D¢ng Cq/;:| (6)

A B
My :=[Ci Dia], Ay:= > 7
0 0
h
By, = / A=) By, (s) ds (8)
0

([ 24]) ) = e [ ©

(D) (5) = / C1eAC=) By (7) dr + Dayivn(s) (10)
0

We also suppose the internal stability of Xgp for the
L1-induced norm to be well-defined and bounded; all the
eigenvalues of A are assumed to be located in the open unit
disc.

III. THE L;-INDUCED NORM OF Xsp AND ITS
FAST-LIFTED EXPRESSION

This section introduces a tractable form of the input/output
relation of Ygp by taking the fast-lifting technique [38],
tailored to the analysis for the L;-induced norm || Xsp||z, /1,
defined as follows.

121l . (1

[XspllL,/z, == sup

llwllz, =1

A. Operator-Based Expression of ||Xspl|p,/n, via Toeplitz
Structure of Input/Output Relation of Xsp

We first note from (4) that the input/output relation of Xsp
is described by the following Toeplitz structure.

% D0 - i
al e o oo - iy
4l_|caB ¢cB D 0o - @2| (12

Z3 CA’B CAB CB D 0 | |u3

Here, we define FI¥! for k € Ny as

FO .= [DT (€B)" (CAB)T (cAB)" "
Fil.=[0 DT (€B)" (CAB)" (cA*B)" - ]"
Fl=[0 0 DT (€B)T (CAB)T (CA2B)T -.]"
Then, it immediately follows from (12) that

A ~ ~ T
oo, = (58 27 2 |

= [Fio + Fihin + Fui, +L |

Ly

< 17 o, + IF Vi, + 7], + -
< IF M una - (o, + o, + [z, + ) (13)

where the last inequality holds from [ F, , =
[F¥| L, /1, (Vk € N). In the following, we take the notation
F instead of F for simplicity. If we note the fact that
the equality in (13) establishes when @, = 0 (Vk € N),
then the L;-induced norm || Ysp ||z, /z,, admits the following
representation.

| Xspllz, /0, = IFllL. /L, (14)

Even though the L;-induced norm || Xsp||., 1, can be
described by the tractable form of (14), its direct computation
is still a non-trivial task since F is an infinite-dimensional
operator-based matrix. To alleviate such a difficulty, we

w z
P
u Yy ¥
H S
¥ T
""""" w

Fig. 1: Sampled-data system Ygp.
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introduce for an N € Ny the two operators Fy and Fy
defined as

Fy:=[DT (CB)T
Fi = [(CANTIB)T

15)
(16)

(CAB)T
(CAN+2 B)T

(cANB)T]"

..]T

In terms of applying the triangular inequality to F and F, i
we can see that

1FN 2oy SUF Loy < UFRllzy e, HIFN Lz, (D)

Because A* exponentially converges to 0 as k becomes
larger from the internal stability assumption on Xgp,
| F¥ Nz, /L, also converges to 0 by taking N larger.

In connection with this, we are in a position to compute
|Fxllz,/z, as accurately as possible while ||Fy ||z, L, i
obtained in a relatively rough way when the truncation
parameter N is large enough.

B. Fast-Lifted Representation of F

Concerning dealing with || Fy |1, /, . the fast-lifting tech-
nique [38] plays an important role in developing an ap-
proximate computation method. For the corresponding pa-
rameter M € N with h':= h/M, the fast-lifting opera-

tor, denoted by Lj;, maps from f, € K, to fp :=
(GO )] € ()M, where
P o= ful(i =W +5) (0<s <k)  (18)

Because Ly, is norm-preserving, || Fy|lz,/z, admits the
representation
Ly DL;}
175, n, = : (19)
Ly CAYBLy |1,
and the fast-lifted operators L MDL]T/[1 and Ly,CAI lS'L&1 in
(19) can be described by [38]
LMDLX/[ = WAJWBill + Diln
Ly CA'BLy, = M) Abyy, Cs A T Al B

(20)
2D
where M/, B/ and D/, are defined equivalently as M, B,
and D5, respectively, by changing the interval [0, /) with
[0,R/), () represents M copies of (+), i.e., diag[(-), ..., (*)]
and the matrices are given by

I
a = [(APMTE ), Ay = :
(Apy) Mt
0 --- 0
: . 0
(Ap)M=2J - T 0

with

= e Ay = et g = H € R(mtm)xn (23

Based on the above notations, we define Fy ,, as

M| AyB) +Df;

~ M/ Anr,0B)
IN,M = , 24)
M Ay B,
where
A j = Ay Co Al Js Ay (7=0,...,N)  (25)
Then, it readily follows that
||‘7:]?I||L1/L1 = ||]:J?L]\/I||L1/L1 (26)

The main objective of employing the fast-lifting technique
is to derive the operators B}, M) and D/, instead of
B;, M; and D;j;, by which it could be expected that
discretizing the former operators lead to smaller error bounds
rather than a direct discretization of the latter operators.
The subsequent section is devoted to developing such a
discretization.

IV. MAIN RESULTS

This section develops a piecewise constant approximation
scheme of M;, B; and D;i; on the top of the fast-
lifted representation F, ,,, by which the L;-induced norm
[Xspllf, s, can be obtained within any degree of accuracy.

A. Piecewise Constant Approximation and Convergence
Rate Analysis

We consider the averaging J'y : K}, — K, ~defined as

h
(w)(s) = hl / w(r)dr (0<s <) @)
0

The rationale to take this operator is to alleviate difficulties

of B} on computing || Fy /|2, /z,, and we introduce the
operator B/, given by

h/
w =Bl J\w = / AP =B (T w)(s)) ds' (28)
0

On the other hand, we also provide the approximate
operators M/, and D, for M| and D/, respectively, which
are defined as

-] vz o
(Dyw)(s") = Duw(s’) (0<s <) (30)

M/, corresponds to a constant approximation of the output
of M] at s’ = 0 while D/, ignores the convolution integral
part of DY,

With By, M/, and D/,, we introduce the approximate
Py s defined as

M, Ay B + D)
M/, An,0B'y

Py = (€28

M/, Ay vBy
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Then, we are in a position to compute ||Py /[z,/r, instead
of |Fy arllz,/o, (= IFyllz,/L, ), and the following part is
devoted to establishing the corresponding convergence rate.
In other words, it is shown that [Py 5[z, r, converges
to [[Fyallz,/, with the rate of 1/M as M becomes
larger, and the following three lemmas play important role
in deriving such a convergence order.
Lemma 1: The inequality

Ky
! /
By~ By, < X2 62
holds, where
3 ’
Ky = §h||A||1eHAH1h || A% B |y (33)

and Kpj)s has a uniform upper bound independent of M
given by

3
Ky = Shl|AlLy - [Baly -l (34)
Lemma 2: The inequality
Kng
/ /
IMy =Ml < (35)
is satisfied, where
h? /
Ewin = || My Az - ell4zllih (36)

and Ky has a uniform upper bound independent of M
described by

h2
K = = [|Mi Ay - el 42" (37)
Lemma 3: The inequality
Kpu
1D~ Dilly, iz, < =2 (38)
is established, where
ellAllih’ _q
Kpy = M”Cl”l ’ ||B1||1 TR TR (39)
[[Allx

and Kpjs has a uniform upper bound independent of M
given by
Kp = h|[Bi], - [Ci]l, - e (40)

Based on Lemmas 1-3, we can obtain the following
theorem relevant to the convergence order for the first block-
row of Py ,, in (31).

Proposition 1: The inequality

e Kpn
H(M/IAMBQ+D’11)—(MAAMB%+D§*>’Ll/Lf M
(4D

holds, where

M—2 K

MM

Kpyr = § (A - (7
k=0

Al g
e

Kpnm
M

+ 2R ) + Kpar - (42)

Furthermore, Kpjs has a uniform upper bound regardless of
M given by
KY,, = Kp

+ (KM‘HB1||1-6”A”1" + h~KB~HM1||1)-e”A2H1h (43)

With respect to the convergence order relevant to the other
block-rows of 73]?,7 u in (31), combining Lemmas 1 and 2
establish the following result.

Proposition 2: For a j € {0,..., N}, the inequality

™M B’ R K
| M7 A BT~ M A B | o ST @
holds, with
Anj y
Kan,j = % (Em - ||Baly - el Al
+  h-Kpum - [Mi]y) (45)

Furthermore, K 437,; has a uniform upper bound regardless
of M and j as well as [NV given by

Ka=Kys - (Knm-||Billy - " b K - || My 1)
(46)

where

K := max HAjH1 cellAll +ll Azl DR ICxll,

47
max (47)

Remark 1: There should exist the maximum defined as
max |A7 |1 in (47) because the internal stability assumption
J€No

on Ysp ensures that lim [.A7]| = 0.
Jj—oo

From Propositions 1 and 2, we readily have the following
theorem associated with an upper bound and a lower bound
on H]:I?/'”Ll/Ll = ||]:]§,M||L1/L1'

Theorem 1: The inequality

_ Ky, _
||PN7M||L1/L1 - M < H‘FNHLl/Ll
_ Ky wm
<Pyl + T )
holds, where

N
Ky v = Kpy + Z K5 (49)

j=0

In addition, K,/ has a uniform upper bound regardless of
M given by

Ky:=Kp+(N+1)-Ky (50)

This theorem obviously implies that || Py /|7, /, con-

verges to || Fy p/llz,/n, within the order of 1/M, and thus

computing the former instead of the latter is theoretically
valid when M is large enough.
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B. Computation of ||F||1, 1, via Matrix 1-Norm

Even though the convergence rate of 1/M is derived in
Theorem 1, it is still unclear how to compute | Py /|1, /L,
and also |||z, /z,-

In connection with this, we first consider the exact com-
putation of HPNxMHLl/Ll through the 1-norm of a matrix.
If we note that |[J\w| ., < ||w|L, and Jyw becomes a
constant function on [0, 4’) for an arbitrary w € K], , then
we can see for an arbitrary «(> 0) that

1
{Bilaw | wllz, < a} = {55 Bogwa | [wall < a} (51)

where Bj,; = i eA =) B, ds'. 1t readily also follows
from the definition of M/, in (29) that

IMApllL, = W' Mip|r, Vpe R (52)

From the definition of the L;[0, h/)-induced norm and the
lower-triangular structure of Aj;, on the other hand, the
operator D’y (defined as (30)) can be regarded by the feed
through matrix D1y in computing || Py /L, /1, -

To summarize, the operators By, M), and Dy in Py ),

1
can be replaced with ﬁBéd’ h'M; and D}, respectively,

without changing | Py »/llz,/z,- In other words, we can
obtain the following theorem.
Theorem 2: Define the matrix Py ;, as

My Apr 0B,

Py = (53)

MiAunNB),

Then, |P1§,M||l = ||PJ§,M||L1/L1~
Theorem 2 obviously implies that the operator induced
norm [Py y/llz, /2, can be exactly computed by the matrix
1-norm || Py 5,||1- Because we can compute an upper bound
and a lower bound on || Fy||z,/r, by using the arguments
in Theorems 1 and 2, the remaining step is to deal with
+ .
||]:NHL1/L1' To do this, let us first define Ay, 1 as
-ANL = [(.AN—H)T (AN+2)T (AN—i-L)T]T

)

(54)

with a sufficiently large L € Ny such that | AZ|; < 1. By
taking such a Ay, we can lead to the following lemma
associated with an upper bound on || F¥|1, /L, -

Lemma 4: The inequality

17 < Kn.r

Iz, /2, < K, (35)

holds, where

elellih—1 AN 1|2
[Az2]ly 1-[lAHy

Furthermore, K ;, converges to 0 regardless of L by taking
N larger.

Finally, substituting Theorems 1, 2 and Lemma 4 into (17)
derives the following result relevant to an upper bound and
a lower bound on the L;-induced norm || F||z,/r,-

Kn.z =|ICxl|1[[Mi][1 elAhh B[y (56)

Theorem 3: For a sufficiently large L € Ny such that
H.AL H1 < 1, the following inequality holds.

_ Ky m
1Pl - 22

_ KN,M
S”]:”Ll/Ll <Py ||1+7+KN,L
(57

Furthermore, Ky s has a uniform upper bound K defined
as (50), and K /M converges to 0 by taking M larger,
while Ky ;, tends to O regardless of L by taking N larger.

V. CONCLUSIONS

A method for computing the L;-induced norm of sampled-
data systems was developed in this paper. To this end, we
first derived a tractable form of the L;-induced norm in
the lifting-based representation [35]-[37] of sampled-data
systems. We next applied the fats-lifting technique [38] to
the tractable form, by which the input/output relation of
sampled-data systems can be considered on the interval
[0, /M), where h is the sampling period and M is the fast-
lifting parameter. This fast-lifted representation of sampled-
data systems allowed us to develop a piecewise constant
approximation leading to an upper bound and a lower bound
on the Lj-indueced norm. Furthermore, the gap between
these bounds was shown to converge to 0 at the rate of 1/M.

Finally, it would be worthwhile to note that an (ap-
proximate) equivalent discretization of sampled-data systems
might be required for an optimal controller synthesis to
minimize the L;-induced norm of sampled-data systems, and
the developed piecewise constant approximation could be
expected to establish such a discretization. However, this is
a non-trivial task and is left for an interesting future study.
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