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Abstract— This paper presents a policy parameterization for
learning-based control on nonlinear, partially-observed dynam-
ical systems. The parameterization is based on a nonlinear
version of the Youla parameterization and the recently proposed
Recurrent Equilibrium Network (REN) class of models. We prove
that the resulting Youla-REN parameterization automatically
satisfies stability (contraction) and user-tunable robustness
(Lipschitz) conditions on the closed-loop system. This means it
can be used for safe learning-based control with no additional
constraints or projections required to enforce stability or
robustness. We test the new policy class in simulation on two
reinforcement learning tasks: 1) magnetic suspension, and 2)
inverting a rotary-arm pendulum. We find that the Youla-
REN performs similarly to existing learning-based and optimal
control methods while also ensuring stability and exhibiting
improved robustness to adversarial disturbances.

I. INTRODUCTION

Deep reinforcement learning (RL) has been a driving force
behind many recent successes in learning-based control, with
applications ranging from discrete game-like problems [1],
[2] to robotic locomotion [3]. As its popularity continues
to grow, there is increasing need for a learning framework
that offers the stability and robustness guarantees of classical
control methods while still being fast and flexible for learning
in complex environments.

One promising idea is to directly learn over a set of
robustly stabilizing controllers for a given dynamical sys-
tem. RL policies are then guaranteed to naturally satisfy
robustness and stability requirements even during training.
Parameterizing the space of all such controllers is well-
studied for linear systems [4]. In fact, learning over this space
results in policies that perform better and are more robust
than those learned from typical RL frameworks which do
not consider stability [5]. While there has been considerable
work extending this parameterization to nonlinear systems
with full state knowledge [6], [7] or specific structures [8],
[9], the problem of general partially-observed nonlinear
systems (full state information unavailable) is more chal-
lenging. In this paper, we present a parameterization of
robust stabilizing controllers for partially-observed nonlinear
systems that can be readily applied to learning-based control.

A. Previous work on linear systems

We recently proposed the Youla-REN policy class for
learning over all stabilizing controllers for partially-observed
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linear systems [10], [11]. It combines the classical Youla-
Kucera parameterization with the Recurrent Equilibrium
Network (REN) model architecture [12]. The Youla param-
eterization is an established idea in linear control theory
that represents all stabilizing linear controllers for a given
linear system [13]. One common construction augments an
existing stabilizing “base” controller with a stable linear
parameter Q, which is optimized to improve the closed-loop
system performance [14], [15]. We extended this idea in [11],
showing that if Q is a contracting and Lipschitz nonlinear
system, the Youla parameterization represents all stabilizing
nonlinear controllers for a given linear system.

A key feature of our work in [11] was using RENs for the
Youla parameter Q. The direct parameterization presented
in [12] allowed us to construct RENs that universally ap-
proximate all contracting and Lipschitz systems. This meant
that we could use unconstrained optimization to train the
Youla-REN. Training RENs in this way is less conservative
than weight-rescaling methods such as [16], and significantly
faster than solving large semi-definite programs during train-
ing [17] or projected gradient descent methods such as [18],
[19]. Our aim is to retain this computational efficiency when
extending our framework to learning stabilizing controllers
for nonlinear systems.

B. Youla parameterization for nonlinear systems

Significant theoretical advances were made in the 1980s-
90s to extend the Youla parameterization to partially-
observed nonlinear systems. Early work by [20], [21] ad-
dressed the problem by using left coprime factorizations.
However, state-space models of left coprime factors are
limited to nonlinear systems with specific structures [8].
A more extensive framework was proposed by [22], [23],
[24], [25] using kernel representations to parameterize all
stabilizing controllers for nonlinear systems based on input-
to-state stability. Despite providing a rather general result,
kernel representations are often not intuitive to work with
in practical learning-based control. Moreover, the focus of
these works was on stabilizing a particular equilibrium state.
Many applications require control systems that track a wide
range of reference trajectories. This motivates the need for a
framework with a sufficiently strong and flexible notion of
stability that is also intuitive to implement in practice.

C. Contributions

In this paper, we extend the Youla-REN policy class
proposed in [10], [11] to nonlinear systems and address the
open questions outlined in Section I. In particular, we:
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1) Parameterize robust (Lipschitz) stabilizing feedback
controllers for partially-observed nonlinear systems
based on a strong stability notion — contraction.

2) Demonstrate that the Youla-REN can be applied to
learning-based control by investigating its performance
on two simulated RL tasks: 1) magnetic suspension and
2) inverting a rotary-arm pendulum.

3) Show through simulation that we can intuitively tune
the trade-off between performance and robustness of the
learned policy via the direct parameterization of RENs.

An extended version of this work (including all proofs and

training details) can be found in [26].

D. Notation

Consider the set of sequences (5, = {z | z : N — R"},
where n is omitted if it can be inferred from the context. For
any = € (3, write z; € R" for the value of the sequence
at time ¢t € N. We define the subset {5 C (3, as the set of
all square-summable sequences such that = € ¢y & ||z| :=

VD otep l@e]? is finite, where |-| denotes the Euclidean norm.
We also define the norm of the truncation of x € ¢o over

[0,7] as ||Jz||lr == /31—, |22 for all T € N such that

x €0y, <= ||z||r is finite. A function f : R™ — R™ is
Lipschitz continuous if there exist a constant v € RT such
that |f(a) — f(b)] < v|a —b|,Va,b e R™.

E. Definitions

They main results in this paper concern the analysis of
contracting (“stable”) and Lipschitz (“robust”) dynamical
systems. Consider a system

T Ti1 = f(@e, ue) (1)
yr = h(we, ug)
with state x; € R™, inputs u; € R™, and outputs y; € RP.

Definition 1 (Contraction): T is contracting with respect
to a uniformly-bounded metric V' : R® x R" — R* if for
any fixed input sequence u € ¢3!, the system satisfies

2 2
alef — 27" < V(g 2f) < eo]wy — af| (2)
1 2 1,2
V(g 2i4) < aVi(zy, 27) 3)

where co > ¢; > 0 and « € [0, 1) is the contraction rate.

Intuitively, a contracting system is one that exponentially
forgets its initial conditions. We introduce a slightly weaker
notion of contraction based only on exponential convergence.

Definition 2 (Contraction with transients): T is contract-
ing with transients at rate & € [0,1) if for any two initial
conditions z$,22 € R™ and for any fixed input sequence
u € 3, there exists 8(z,x2) > 0 such that

lzf — 22| < B(xg,xd) - o VteN. 4)

Note that the overshoot (3 is a function of initial conditions.

Definition 3 (Lipschitz with transients): A system 7T is
Lipschitz with transients (referred to simply as Lipschitz in
this paper) if for any two input sequences u!,u? € ¢35} and
initial conditions z,z3 € R™ we have

Hy1 - y2||T < "y||u1 - u2HT +k(zg,22) YT €N (5)

where v € R is the Lipschitz constant and (xd, 23) > 0.
A system with a smaller Lipschitz bound is more robust to
sudden changes in its inputs. Adding the condition (a, a) =
0 for any a € R™ would recover the definition for a system
with an incremental ¢2 gain bound of v from [12], [27].

II. PROBLEM STATEMENT

Consider a nonlinear dynamical system G described by

G {%4—1 = f(ze,ue + 1)

6
I ©

with internal states x; € R™, controlled inputs u; € R™, and
measured outputs y; € RP. The control signal is perturbed by
a known, bounded input 7, € R™ (e.g., a reference signal).
We denote the total inputs as u; = uy + r;. The exogenous
inputs and controlled outputs are r; and z; = (z,,u; )T
respectively.

Our aim is to learn feedback controllers of the form
u = Kg(y) where 0 is a learnable parameter. Controllers
may be nonlinear and dynamical systems themselves. The
closed-loop system of G and KCy should satisfy the following
stability, robustness, and performance criteria (respectively):

>

1) The closed-loop system is contracting (with transients)
such that initial conditions are forgotten exponentially.

2) The closed-loop response to external inputs (the map
r +— z) is Lipschitz.

3) The controller Ky at least locally and approximately
minimizes a cost function of the form

T—1

> glwe,ue) + gr(er) (7

t=0

Jo=FE

where the expectation is over xy and external inputs.

III. A NONLINEAR YOULA PARAMETERIZATION
A. The Youla architecture

Suppose G is in feedback with a base controller Ky
consisting of an observer and state-feedback controller:

]Cb . %tﬁ»l = .Afo(',i‘hut + rt7yt) (8)
Uy = k(.]?t)
where & = O(a,y) is the observer, and its state vector

Ty € R™ is the estimated value of the true state x;. Denote
the predicted measurements as ¢, = ¢(Z;) where § € RP.
Our proposed controller parameterization (Fig. 1) augments
the base controller with a (possibly nonlinear) system Q :
(r,y) — u, where § = y; — §; are the innovations.
Specifically, the augmented controller is

Ko : !'%tJrl = .fo(j;taflt + 7, Yt) 9)
Uy = k(Z¢) + s
with
0 q~t+1 = fq(QtaTt: gt) ¢ € R (10)
Ut = hq(qta rtvyt)7

Here Ko is a nonlinear version of the Youla-Kucera param-
eterization, where Q is the Youla parameter.
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Fig. 1: A version of the Youla-Kucera parameterization,
where the Youla parameter Q augments an observer-based
feedback controller Ky.

B. Assumptions

We make the following assumptions, drawing inspiration

from [24], [28]:

A1) Robustly stabilizing base controller: The closed-loop
system r — z composed of G in feedback with /Cp
is contracting and Lipschitz.

A2) Observer correctness: Given o = x, the observer
can exactly replicate the plant dynamics. That is,
flzy, @) = folmy, g, c(x)) VE € N

A3) Contracting & Lipschitz observer: The observer O is a
contracting and Lipschitz system.

A4) Lipschitz maps: All functions are Lipschitz continuous.

C. Theoretical results

Our first main result is that augmenting a robustly stabi-
lizing controller with a contracting and Lipschitz Q ensures
the closed-loop system will also be contracting and Lipschitz.
This allows optimization of the closed-loop response via Q
while maintaining stability and robustness guarantees.

Theorem 1: The closed-loop system of G in (6) and Ko
in (8) — (10) is contracting with transients and Lipschitz from
r — z if the Youla parameter Q is contracting and Lipschitz.

The proof is provided in [26] and can be summarized
as follows. The observer error Z; := x; — Z; exponentially
converges to zero since the plant trajectory z is a particular
solution of the observer, which is a contracting and Lipschitz
system. This occurs independently of r; and ., breaking
the feedback loop through Q. To prove contraction with
transients, we show that the states of a contracting system ex-
ponentially converge given exponentially converging inputs,
and apply this to Q and the closed-loop system under K,
(“base system”). We repeatedly apply Lipschitz properties of
Q and the base system to prove that the closed-loop system
under KCg is also Lipschitz, completing the proof.

One interesting question is whether a contracting and
Lipschitz closed loop can always be parameterized by a

contracting and Lipschitz Q. Our second main result shows
that this is true under additional assumptions. We consider a
perturbed nonlinear system

Gy : {J%+1 ::f($t7ut4’rt)*’dxt (11)

Yt = C(mt) + dyw

where d,, € R" and d,, € RP are additive process and
measurement disturbances, respectively. The following is a
stronger version of assumption Al).

AS) Robustness to disturbances: The closed-loop system
(r,dg,dy) — z composed of G, in feedback with K, is
contracting and Lipschitz.

Theorem 2: Suppose that assumptions A2) - AS) hold.
Then, any controller I forming a contracting and Lipschitz
closed-loop map (7,d;,d,) — z with Gg in (11) can be
represented by (8) to (10) with contracting and Lipschitz Q.

The proof follows by augmenting the robustly stabilizing
controller U with an observer O to form a map Ok :
(r,J) — @, which is contracting and Lipschitz by compari-
son with the closed-loop system under X (see [26]).

Remark 1: 1t is worth to noting that the closed-loop sys-
tem is not guaranteed to be contracting and Lipschitz under
bounded but unknown additive disturbances (see Example 1).
This is because the observer error does not converge to
zero in the presence of unknown disturbances, which is the
key property required in Theorem 1. However, the closed-
loop states will still be bounded under bounded additive
disturbances [29], [30].

Example 1: Consider the following scalar system

g LT = 0.5 sin(xt) + ﬂt + dt

o : i‘t+1 =0.5 sin(it) + ﬂt
2" i = 10§ = 10(z — i)

which is contracting for the case d; = 0. When d; = 1, the
system converges to multiple solutions, hence the closed-loop
system is not contracting under non-zero disturbances.

IV. NUMERICAL EXPERIMENTS

We now examine the performance of the Youla-REN pol-
icy class on two RL problems: 1) magnetic suspension, and
2) inverting a rotary-arm pendulum. Each system is nonlinear
and partially-observed, with different base controller designs
to test the policy class under different architectures. We
compare performance and robustness of three policy types:

1) Youla-REN: uses a contracting REN for the Youla
parameter Q (see (9) and (10)).

2) Youla-yREN: uses a REN with a Lipschitz upper bound
of v (where v — oo recovers the contracting REN).

3) Feedback-LSTM: an LSTM network [31] augmenting
the base controller via direct feedback of the measure-
ment output, with & = F(y) for an LSTM system F.

Since RENs are universal approximators of contracting and
Lipschitz systems [11, Prop. 2], then by Theorem 1 the
Youla-(7)REN parameterizes a set of contracting and Lip-
schitz closed-loops for partially-observed nonlinear systems.
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(a) 1D magnetic suspension. (b) Rotary-arm pendulum.

Fig. 2: The two RL environments examined in Sec. IV: (a)
a magnetic ball moving vertically under the influence of an
electromagnet, and (b) a rotary-arm pendulum driven by a
single motor on the rotating arm. The light source in (a)
measures the ball position. Fig. 2a from [33].

The Feedback-LSTM form is commonly used in deep RL
(e.g: [3]) but provides no such stability or robustness guar-
antees. For more detail on contracting and Lipschitz parame-
terizations of RENs, see [12]. Our experiments were written
in Julia using RobustEquilibriumNetworks. j1 [32]
and are available on github'.

A. Problem setup

1) Learning objective: Let z; = p(x;) be a performance
variable to be tracked for some function p. We formulated the
RL tasks as minimizing a quadratic cost on the differences
Az = zt — Zref, Aur = Uy — Urer between performance
variables and controls, and their desired reference values
(respectively). That is,

T-1
min. E[J] st. J(zo) = Y (|Az]3 + |Awlf)  (12)
t=0

where the cost function J is weighted by matrices ) and
R. The expectation is over all possible initial conditions and
random disturbances. We used 1" = 100 time samples.

2) Magnetic suspension: Consider the one-dimensional
magnetic suspension system presented in [33], illustrated in
Fig. 2a. The system has three states (ball position, velocity,
and coil current) and one input (coil voltage). Only the ball
position and coil current are measured. We used the same
nonlinear system model as in Exercise 13.27 of [33]. We
added random noise to all states and measurements with
standard deviations 5 x 10™% and 1072 (respectively).

The objective was to stabilize the ball at a height of 5cm
with minimal control effort. Our base controller consisted
of a high-gain observer ([33, Sec. 14.5.2]) and a state-
feedback controller designed with the backstepping and
Lyapunov re-design methods outlined in [33, Sec. 14.2-14.3].
We encoded the learning objective in (12) with z; = xy,
Q = diag(1/0.0252%,0,0), R = 1/502.

3) Rotary-arm pendulum: Next we considered the rotary-
arm pendulum system in Fig. 2b. The system has four states
(rod angles and angular velocities) and one control input

'https://github.com/nic-barbara/CDC2023-YoulaREN

(motor voltage). Only the angles are measured. The system
dynamics are presented in [34, Eqn. 31]. We added noise
with standard deviation 10~2 to all states and measurements.

The control objective was to stabilize the pendulum in its
(unstable) upright equilibrium, again with minimal control
effort. We designed a state-feedback policy consisting of
an energy-pumping controller to swing the pendulum arm
upwards ([35, Eqn. 8]) and a static linear quadratic regulator
to balance the pendulum within 30° of the vertical. We
completed the base controller with a high-gain observer.
The learning objective was defined as per (12) with z; =
(cos B, sin By, cos ay,sin ) T for the arm and pendulum
angles 0;, o, (respectively), and @) = diag(5, 5,10, 10), R =
0.01. For small deviations from vertical, this is approximately
a quadratic cost on Af;, Aay.

B. Results and discussion

1) Learning performance: Fig. 3 shows the mean test
cost for each policy trained on the magnetic suspension and
rotary-arm pendulum RL tasks. Policies were benchmarked
against nonlinear model predictive controllers (NMPC),
which are easy to design for low-dimensional problems.
All of the learned policies show significant performance
improvements over the base controller, and the best per-
forming models reach the NMPC benchmarks. In particular,
we see comparable performance between the Youla-REN
and the Feedback-LSTM policy classes, with the Youla-
REN achieving a lower cost on magnetic suspension, and the
Feedback-LSTM performing slightly better on the rotary-arm
pendulum. Together with the results of Sec. III, we therefore
have a policy class that can perform as well as existing
state-of-the-art methods on RL tasks for partially-observed
nonlinear systems, while also providing stability guarantees
for every policy trialled during training. Note that we have
not compared the Youla-REN to an LSTM or REN in direct
feedback without a base controller (the typical RL policy
architecture) in Fig. 3. Training models in this configuration
took significantly more epochs than the Youla and Feedback
architectures, and achieved a worse final cost than even the
base controllers on both tasks.

2) Robustness: One of the great advantages of the Youla-
REN policy class is that we can control the performance-
robustness trade-off by imposing a Lipschitz upper bound
on the REN. The left panels in Figs. 4a and 4b show
the effect of perturbing each trained policy with additive
adversarial attacks of increasing size on the measurement
signal y;. The scatter plots to the right show the attack size
required to meaningfully perturb each closed-loop system.
We define a “critical” attack as one that shifts 1) the
average ball position more than 1cm from the target and
2) the average pendulum angle more than 30° from the
vertical in the magnetic suspension and rotary-arm pendulum
tasks, respectively. Adversarial attacks were computed with
minibatch gradient descent over a receding horizon of 10
time samples.

Comparing Figs. 3 and 4 demonstrates the effect of the
Lipschitz bound on the performance-robustness trade-off.
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(a) Magnetic suspension.

4000 6000 8000

Epochs

0 2000

-- Feedback-LSTM —Youla-yREN (y = 100) —NMPC
- Youla-REN (y = ) — Youla-yREN (y = 50)
Youla-yREN (y = 200) — Youla-yREN (y = 25)

(b) Rotary-arm pendulum.

Fig. 3: Loss curves showing the mean test cost vs. training epochs for policies trained on (a) the magnetic suspension problem
and (b) the rotary-arm pendulum problem. Colored bands show the range over the six random seeds for each model, lines
show the mean. Test cost is normalized by the base controller cost, indicated by the solid black line at 1.0.

In Fig. 3, imposing a stronger Lipschitz bound (smaller
v) drives the Youla-yREN policies to worse final costs. In
Fig. 4, however, stronger Lipschitz bound can reliably lead to
policies which are more robust to adversarial attacks, even
if they perform worse in the unperturbed case. In particu-
lar, Fig. 4b shows that the base controller and Feedback-
LSTM policies are highly sensitive to adversarial attacks in
the rotary-arm pendulum environment. We suspect this is
because the system has enough degrees of freedom to exhibit
chaotic motion, and can be driven to extremely unstable
closed-loop responses that are more difficult to recover from
than in the magnetic suspension environment. Note that the
relationship is not linear — imposing too strong a Lipschitz
bound can lead to less robust policies (for example v = 25 in
Fig. 4b). In practice, careful tuning of the imposed Lipschitz
upper bound is required for a given problem.

3) Key results: These results emphasize the strength of the
Youla-REN policy class in learning-based control tasks. We
can take an existing stabilizing controller for a (nonlinear)
dynamical system and learn a robust stabilizing feedback
controller that improves some user-defined performance met-
ric. Moreover, we can search over a space of contracting and
Lipschitz closed-loops, guaranteeing stability at every step
of the training process, and still achieve similar performance
to existing methods which provide no such guarantees. Our
approach is intuitive in that we can balance the performance-
robustness trade-off by tuning the Lipschitz bound of the
REN. It is versatile since we do not require special solution
methods or projections during training. We therefore expect
the Youla-REN to be well-suited to learning-based control
in safety-critical robotic systems where performance and
robustness are crucial to successful operation.
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