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Observability-based Energy Efficient Path Planning
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Abstract—In many sensor estimation and monitoring tasks,
the mobile sensor travels through the state-space under the
influence of a complex background flow environment. System
observability is commonly used to assess the performance of
the sensor-based estimation, although for a mobile sensor there
are other important metrics. We consider the path planning
problem under the environmental background flow and focus on
a cyclic trajectory that (i) maximizes the log determinant of the
observability matrix, (ii) minimizes total energy consumption,
and (iii) returns close to the initial location at the end of the
period. We formulate a reinforcement learning (RL) scheme
and define a reward function that justifies multiple objectives.
We investigate the performance of a policy-based proximal
policy optimization (PPO) algorithm and address the issue of
partially observed states with an additional recurrent module.
We present our results on two complex unsteady fluid dynamical
systems.

I. INTRODUCTION

Mobile sensors and autonomous vehicles are becoming
increasingly important in many geophysical and engineering
applications for tackling a wide range of tasks such as
estimation, monitoring, and tracking. It is essential to plan
optimal sensor trajectories to better guide sensors on these
tasks. In many cases, the sensors are moving in an unsteady
fluid environment so that the sensor motion is affected
by environmental forces such as wind and ocean currents.
Although these environmental flows complicate the sensor
motion, they also provide opportunities for sensors to exploit
the background flows for more efficient navigation [1], [2].

The classical path planning problem has been extensively
studied. For instance, in graph-based approaches, the en-
vironment is represented in a graph with accessible free
space as nodes and energy costs as weighted edges. This
decomposition allows the use of graph-related shortest path
algorithms such as Dijkstra’s algorithm for navigation of the
sensors [3]. Alternatively, sampling-based methods are more
often applied in a large-scale, high-dimensional environment.
The planning is performed on a randomly sampled mapping
of the environment. In particular, the rapidly exploring
random tree (RRT), and its cyclic variant rapidly exploring
random cycle (RRC), are complete and efficient algorithms
for path planning by growing a random tree in the envi-
ronment rooted at the initial location [4], [5]. Madridano et
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al. [6] give a comprehensive and detailed review of these
methods. However, many of these methods only consider
static or time-invariant environmental flow fields. Thus, they
are not directly applicable in dynamic environments where
unsteady background flows are present. In complex, unsteady,
and multiscale environments, it is challenging to control the
sensors precisely to move from one location to another and
efficiently compute trajectories at scale.

In recent years, researchers have studied path planning in
a dynamic flow field using various approaches. A genetic
algorithm for path planning in an ocean environment was
developed by Alvarez et al. [7]. Some exploit Lagrangian
coherent structures [8], [9] in the environment to assist path
planning in an improved computation [10], [11]. Krishna
et al. [1] established a connection between the trajectories
planned by model predictive control and the coherent struc-
tures. Subramani and Lermusiaux [12] leveraged stochastic
dynamically orthogonal (DO) level-sets from the vehicle
speed function.

Advances in deep reinforcement learning (RL) have also
helped address some of the challenges of path planning
in a complex environment for more optimal and efficient
solutions. Although gaining its popularity in the applications
of games and robotics [13], [14], RL is useful for solving
objectives for path planning seen as a sequence of actions
and decisions interacting with the dynamical environment.
For example, RL is used as a learnable deterministic method
for finding cycles in the RRC approach for improved perfor-
mance and efficiency [15]. Actor-Critic schemes are used
for time-efficient point-to-point navigation, also known as
Zermelo’s problem, of a fixed speed swimmer in complex
flows [2], [16]. The same problem is also tackled using other
deep RL approaches such as the V-RACER algorithm [17],
[18] and the adversarial Q-learning [19].

Many complex systems in the real world exhibit some
periodic or quasi-periodic characteristics. It is practically
useful for a sensor trajectory to return to a specified lo-
cation periodically for maintenance and sensor recharging.
However, few existing works consider path planning with
these additional structural constraints, with most studies
considering point-to-point navigation. In this work, we focus
on planning a cyclic path for a mobile sensor to maximize
system observability under a complex environment with
background flow. Historically, system observability has been
a popular choice of metric in many sensor placement [20],
[21] and planning problems [22], [23], [24]. Not only is
observability good for instantaneous spatio-temporal estima-
tion, but it is also a necessary condition that is useful in
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improving Kalman filter recursive estimation of the complex
system [25]. Some alternative choice of metrics include the
reconstruction error [26] as well as the a posteriori error
covariance [27], which are more accurate yet less efficient
comparing to the system observability.

In most studies, the task is generally separated from the
path planning process. When given a task such as estimation,
it is common to first find optimal waypoints and then apply
point-to-point path planning methods to efficiently navigate.
Shriwastav et al. [28] search over random sequences of
optimal waypoints for efficient trajectories. Although the
approach simplifies the problem, it can introduce new issues.
Splitting the optimization may result in waypoints that are
costly to navigate between. As such, it is preferable to
directly optimize the task objective and energy-efficient path
planning simultaneously. We describe energy efficiency in
terms of the energy expenditure within a fixed cycle of the
path. The conflicting goals of maximizing observability and
minimizing energy cost lead to a multi-objective optimization
trade-off. We construct a linear combination of the objectives
and investigate the effect of the weights on the resulting
trajectories. We apply deep RL algorithms for solving our
optimization problem and address the partially observable
process with a recurrent component. Finally, we validate the
performance on two complex flow environments: the double-
gyre flow field and global sea surface temperature data.

II. BACKGROUND

In this section, we first motivate reduced order modeling
and system observability concerning the environmental fea-
ture of interest. Then, we recall Markov decision processes
for mobile sensor path planning to apply RL algorithms.

A. Reduced Order Modeling

Reduced order models (ROMs) are commonly used to rep-
resent high-dimensional dynamical systems in a more simple
and efficient formulation. The high-dimensional data x, € R"
from the system is projected to a low-rank representation z, €
R™ (m < n) through a linear basis ¥ € R™*", x, = ¥z,. Often
Z, is assumed to be approximated by linear dynamics z;4; =
Az; +w;, where w;, € R™ is a vector accounting for system
disturbance and nonlinearity. Then, the high-dimensional data
can be approximately decomposed as x; ~ WA’ z.

Classical approximation approaches to find the projection
basis include the Fourier or wavelet transforms, as well
as the proper orthogonal decomposition (POD). However,
these approaches generally do not guarantee that there is
a simple dynamical system in the low-rank representation.
Suppose that the high-dimensional dynamics is known, with
linear dynamics represented by a matrix. Then one could
use a truncated matrix eigenvalue decomposition to obtain a
linear basis and low-rank dynamics with good approximation.
However, in most cases the dynamics of the high-dimensional
system is not given directly nor is it linear. Modern Koopman
theory provides conditions under which a nonlinear system
can be rewritten as an infinite-dimensional linear operator,
and dynamic mode decomposition (DMD) is a data-driven

approach to obtain a low-rank approximation of the model
from data [29], [30], [31], [32]. In particular, the DMD modes
constitute the linear projection basis from high-dimensional
data to the low-rank representation. The DMD eigenvalues
form a diagonal matrix capturing the dynamics of the low-
rank system. We use in our experiments optimized DMD that
fits a debiased Koopman decomposition from the data [33].

B. Observability

In a complex system, it is usually not possible to collect
measurements from all locations in the state space. Addi-
tionally, what we observe can be a transformation of the
original system states. Observability defines how well the
measurements we observe may be used to reconstruct and
estimate the system state. It is typically examined through the
observability Gramian or the observability matrix. In a time-
varying setting, the measurements can be defined as y, = C;x;,
where the selection matrix C; depends on time. In particular,
C; has standard unit vectors as columns if directly measured
from the state space. We define the observability matrix of a
time-varying system X;+; = Ax;,y; = C;Xx; as:

C;
()t= (L+1A
Crin1 A

The system is observable if and only if the observability
matrix has full (column) rank. In many problems, it is helpful
to look to the conditionality of the observability matrix, such as
condition number, trace, or determinant, as a more continuous
measure of system observability. The system is considered
to be better observed when the observability matrix is well-
conditioned.

C. Markov Decision Process

The motion and decisions of the mobile sensor can be de-
scribed as a Markov decision process (MDP). It is represented
by the state space S, the action space A, and the observation
space Q. In a partially observable MDP (POMDP), the agent
(sensor) cannot observe the full state but rather a function
o: S8 — Q. At each step, the agent chooses an action based
on its observation through a policy function 7 : Q — A. The
state transition model 7 : S XA — S determines the next
state from the current state and action. In general, the agent
receives rewards r : S XA xS — R for its actions, the current
state, and the next state. The objective is to optimize the total
expected rewards over a time horizon T, E[ iTzf)l vir(ss,a;)l,
where 0 <y <1 is a discount factor. With this framework,
we apply RL algorithms to optimize the path planning of the
mobile sensor.

III. PROBLEM FORMULATION
A. Path Planning

In this paper, we focus on planning a trajectory for a single
mobile sensor in an unsteady background flow. We model
the environmental feature with a low-rank representation
and examine the log determinant of the observability matrix
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along the path. Specifically, consider the following low-rank
representation of the large-scale spatio-temporal data x;:

x, =Yz, 2441 = Az, + Wy, )
y: = C,X, +v; = CthZt + Vg,
with the observability matrix
C()‘I’
0= C YA @)
Cr_y PAT-L

C; is defined by the location of mobile sensor at time 7. The
dynamic feature of interest X, can be the unsteady flow field,
but it can also be other environmental features in general such
as sea surface temperature in the ocean model. Regardless, the
unsteady background flow affects the motion of the mobile
sensor in terms of state transition in the RL algorithm, which
we discuss in detail in Section III-B.

We aim to find a sensor path that: (i) maximizes the log
determinant of the observability matrix of the system; (ii)
minimizes the energy cost; (iii) completes a cyclic path by
returning to the region close to the initial location at the end
of the period; and (iv) is collision-free in an environment
with obstacles. We incorporate these objectives into the RL
formulation next.

B. RL Formulation

We formulate the path planning problem as a POMDP. We
define the trajectory to be the sequence of states and actions
{so,a0,S1,...,a7_1,87} of the sensor. The time horizon T is
set to be the predefined cycle length. Based on the study
of Gunnarson et al. [18] showing velocity information are
effective in navigation in flow fields, we give the agent access
to the position of the mobile sensor, local background velocity,
as well as time. The continuous action space represents the
velocity vector of the sensor. It can be unbounded in general
or closed within an interval to provide limits to the sensor
speed. The transition of the mobile sensor is influenced by
the unsteady background flow. We define u(s;, ) as the vector
function of background flow, which can either be a precise
equation or an interpolation from data. Then, the transition
follows the equation of motion §; = u(s,,t) +a,.

It is non trivial to translate our objectives listed in the
previous section into a reward function to guide the learning
of the RL agent. With different objectives acting together,
it is important to formulate a reward that is learnable and
convergent. Typically, a reward that is sparse in the process is
harder to learn by the RL agent. For example, the observability
matrix is not completed until the end of the process, and the
return penalty depends on the final state of the mobile sensor.
Instead, it is better to design the reward function to track the
step-wise changes, while the total reward is still representative
of the objectives. Therefore, we define a reward function with

the following components:

2 3 4

r,:rt1+r,+rt+rt, (3a)
r} =logdet(0.41) —logdet(0.,), (3b)
ri==Alla |, (3c)
r? = =p(d(si+1,50) —d(s1,50)). (3d)

Each component denotes a marginal change with respect
to our objectives. Conceptually, r! represents the marginal
information gain of observability from the new location
compared to the previous step, rt2 is the energy cost weighted by
a hyperparameter A, and ";3 is the step-wise change in return
distance weighted by a hyperparameter p. d is the distance
function, which we take as the squared Euclidean distance
between the locations. A hard constraint on the precise return
of the mobile sensor by objective (iii) is generally a difficult
task in a dynamic environment, so we relax it to be a soft
penalty to minimize the distance between the starting and
ending location of the sensor within the time horizon.

r} denotes all other sparse situational penalties to ensure the
validity of the resulting path such as collision avoidance. For
example, when moving in an environment with obstacles, rf
can be defined to give a constant negative reward for hitting
the obstacle and O otherwise. A good path solution should
completely eliminate this component and have r} to be 0.
With a discount factor of y = 1, the total reward becomes

~

-1

~

-1

T-1
r =logdet(0) =2 ) llaI” - pd(sr,s0)+ Y 1, (4)
i=0 i

Il
o
Il
(=}

i

which matches all of our objectives.

This problem is a POMDP. r! depends not only on the
current and next sensor locations but all previously visited
locations in the trajectory as well, resulting in a partially
observed process. One solution is to append the location
history to the state so that the process is Markovian, but
the additional dimensions increase model and computation
complexity. Alternatively, a common approach to tackle this
issue is to include a recurrent component such as a recurrent
neural network (RNN) or long short-term memory (LSTM)
module in the model to internally memorize the previous states
in the recurrent hidden layer [34], [35], [36].

Additionally, objective (i) and (ii) are usually conflicting
with each other, given that the optimal locations with the
most information are typically far apart from one another,
resulting in higher energy costs. In this case, the optimal
solution over the objectives is not unique. A path that uses more
energy to explore farther regions and achieves better system
observability may have the same total reward as a path that
only observes in a close neighborhood but consumes minimal
energy. These equivalent solutions make up a Pareto front
through multi-objective optimization. Finding the entire Pareto
optimal set is extremely difficult, which has been addressed in
the past [37]. For simplicity, we focus on efficiently finding
one solution in the Pareto front of these objectives.
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Fig. 1. Double-gyre flow at ¢ = 0. The arrows are the velocity field, and the
colored background represents vorticity values.

C. Deep Reinforcement Learning Algorithms

Modern reinforcement learning algorithms generally fall
under one of the two main approaches: Q-learning or policy
optimization. In Q-learning, the RL agent learns a Q-function
that evaluates each state-action pair and chooses the best
actions based on Q values. In policy optimization, the RL
agent directly learns a policy function that chooses an action
given the state. Typically, when the state and action space are
continuous, it is tedious to learn a good Q-function, and policy
methods are usually preferred.

Therefore, in this paper, we consider the framework of
Proximal Policy Optimization (PPO) [14] for path planning.
PPO is commonly seen in intelligent control for its simplicity
and easy convergence. It uses the Actor-Critic architecture
where we have two neural networks, the Actor and the Critic.
The Actor network is in charge of learning the optimal policy
and actions, while the Critic network estimates a value function
to evaluate the states.

PPO uses a clipped surrogate objective:

LT (9) =B, [min(r (O)Ar.r{ (0)Ar)] .- 5)
re(0) = % is the probability ratio of choosing the
action under the current policy versus the previous policy.
ri(0) = clip(r4(0),1 —€,1 +€) clips the probability ratio
outside the interval [1—¢€,1+¢€]. A, is an estimator of the
advantage function that evaluates the chosen action. This
clipped objective prevents any large policy changes from the
old policy and adds stability and reliability to the algorithm.
Along with an MSE loss of the value function and an entropy
term, they contribute to the final loss function to optimize
over. Typically, during training, PPO assumes a stochastic
policy under a Gaussian distribution with a mean learned
from the algorithm and variable standard deviations. While
in testing, a deterministic policy is used to find a single
trajectory by choosing the mean action generated from PPO.
Implementation details matter in PPO, and we follow the study
by Engstrom et al. [38] when setting up our algorithm in the
experiments.

IV. EXPERIMENTS

We examine the use of the RL framework for efficient path
planning on two complex systems. For simplicity, we focus
on the scenario where the initial location is known and fixed.

However, the initial time is randomly set so the time-dependent
background flow that the sensor experiences is different in
each iteration. We apply PPO and PPO-LSTM algorithms
to both experiments. The reinforcement learning agents are
trained on an NVIDIA A40 GPU, while the environment state
transitions are computed with a differential equation solver
on CPU. The code is available at github.com/frankmei33/
DRLPathPlanning.

A. Double-Gyre Flow

A double-gyre flow (Figure 1) is a flow pattern that is
often seen in many geophysical flows and well studied for its
coherent structures [39], [40]. It is described by the following
stream function

U(x,y,t) = Asin(r f(x,1)) sin(my),
f(x,1) = esin(wt)x? +x — 2esin(wt)x,

defined on a closed and bounded domain [0,2] X [0,1]. The
background flow is given by the velocity field

(6)

[

V(x’y’t) = |:_¢9?{/_y
ox

| —mAsin(zf(x,1))cos(xy)

- —nAcos(ﬂf(x,t))Sin(ﬂy)%

)

We take the parameters with values A = 0.5,w =2m,e =0.25
such that the flow has a period 1 and a max velocity of 7A =
1.57. We model the vorticity measurements (curl of velocity
field) on a 201 x 101 discretized grid with a step size of 0.01.
The discrete time step is 0.1. The vorticity field is highly
compressible, so we find a low-rank representation by fitting
an optDMD approximation with rank » = 10 to the sampled
measurements. The action space is bounded in a box region
with ||a]| < 1 to ensure that the sensor velocity is on the same
scale as the background flow field velocity.

We aim to find energy-efficient, cyclic trajectories of length
T =20 using PPO and PPO-LSTM. The Actor-Critic networks
are set with 2 hidden layers of size 16. A hyperbolic tangent
activation function is used to connect between layers. In PPO-
LSTM, a separate LSTM module with one hidden layer is
appended before the regular Actor and Critic networks. The
initial weights are set by orthogonal initialization. The con-
tinuous actions are sampled with annealing state-independent
standard deviation and clipped to be smaller than the max flow
velocity. We fix the initial sensor location to be at (1,0.8).
Then, as the initial time varies, the horizontal component of
the background flow changes direction as the gyres oscillate
in the x-direction. We set the hyperparameters 4 =1, p = 100.

We first examine energy-efficient trajectories for an active
mobile sensor. For references, we compare them with the free-
flowing trajectories in Figure 2. The background flow carries
the sensor under a path in the left or right half of the region
depending on the starting time. However, the observability
under free flowing trajectories is far from ideal as shown in
Figure 4. In comparison, PPO and PPO-LSTM agents are able
to find trajectories that explore the same half of the region
and follow a similar shape as the free flowing trajectories in
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Fig. 2. Sensor trajectories in double-gyre flow. In each column, the sensor starts at a different initial time, which affects the background flow and the resulting
planned path by PPO and PPO-LSTM. The trajectories are colored by the energy spent. Those with higher transparency are from repeated experiments.

Fig. 3. Greedy sensor trajectory ignoring the effect and energy cost of the
background flow. This is found by optimizing only the log determinant of the
observability matrix using a greedy algorithm.

most cases of the repeated experiments. And with minimal
learned actions, these trajectories return much closer to the
initial location and achieve much better observability along
the path.

We also generate a trajectory from optimizing only the
conditionality of the observability matrix with a greedy QR
column pivoting approach and ignoring background flow [25],
with the max distance between time steps to be 0.1 in consistent
with mobile sensor speed constraint (Figure 3). The resulting
path is then used as waypoints in a model predictive control
(MPC) optimization to efficiently navigate from one point to
the next with a quadratic cost function. To successfully reach
within a close distance of each waypoint, the sensor requires
much larger speed and energy than the given constraint. In
comparison, the trajectories planned by the RL agents achieve
similar observability to the greedy trajectory, while consuming
much less energy (Figure 4). Interestingly, the additional
recurrent structure in PPO-LSTM only results in marginal
improvement in terms of total rewards, path observability, and

=== freeflow :

PPO + 1
=== greedy |

I 1

1 1
PPO-LSTM A : }-m—{ :
1 1

1 1
T T T T T

-220 -100 -80 -70 -60
logdet(O)

1 1
PPO | i
1 1
1 1
1 1
1 1
PPOLSTM - | }—|:|:|—{ o i
1 1
| 1

T T T T

0 0.5 1 7

Energy

Fig. 4. Distribution of logdet(O) and energy cost along PPO and PPO-LSTM
trajectories. The blue dashed lines represent values from a free-flowing, and
the red dashed lines represent values from a greedy trajectory.

total energy spent. The difference is further narrowed as the
weights increase. Since the partially observed component is
only present in 7/, as the other objectives gain larger weights,
the RL algorithms are less likely to be affected by the partially
observed process.

We then compare the trajectories by adjusting the hyperpa-
rameter weight of the energy cost in Figure 5. As A increases,
it is more costly to exert large controls on the sensor, so we see
that the actions are smaller in magnitude and more frequently
in the same direction as the background flow. The direction of
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Fig. 5.

The relative velocity of mobile sensor versus the background flow velocity with different regularization weights on energy cost. The top row of

histograms are the distributions of the magnitude of actions (in blue) and the magnitude of background velocity (in orange) taken at the sensor locations. The
second row of histograms are the distributions of the sensor orientation against background flow. The trajectories planned by PPO-LSTM are shown in the

bottom row.

Fig. 6.
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(Left) A snapshot of HYCOM sea surface temperature in the background. Zoomed-in map and planned sensor trajectories starting near Los Angeles

(left), Rio (middle), and Shanghai (right). Higher transparency paths are from repeated experiments. (Right) Box plots of log determinant of SST observability

along the learned trajectories. (1 =1, p = 10)

the control is more often in the same or opposite direction of
the flow for reduced variation. When the sensor moves directly
along or against the flow, its future location is more predictable.
Moreover, the sensor spends extra energy exploring the center
of the right gyre for better observability when the A is small,
while staying close to the perimeter moving along the flow
with larger value of A.

B. Sea Surface Temperature

Next, we study a real-world application concerning the
sea surface temperature and find efficient trajectories under
oceanic current flow. We acquire the ocean data from the
HYbrid Coordinate Ocean Model (HYCOM) including sea
surface temperature, eastward velocity, and northward veloc-
ity. The daily data is collected on a uniform 1.2-degree lat/lon
grid (134 x 300) from 2001 to 2012. The weekly sea surface
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Fig. 7. Path planning from Rio starting on the same day of different years.
The first row shows the HYCOM ocean flow velocity field at initialization, the
middle row is the paths planned by PPO, and the last row is the paths planned
by PPO-LSTM. (1=5,p =10)

temperature data is used to fit a low-rank representation with
optDMD approximation with rank r = 52. The ocean flow
is very chaotic and difficult to model as shown in Figure 7,
so we fit a continuous interpolation from the data for the
transition model. Historically, sensors are deployed in the
ocean to provide high-quality observations and validations to
the satellite-measured sea surface temperature. These sensors
can be carried on in situ moorings, drifting buoys, as well
as ships. In our experiment, to obtain large spatial coverage
for the estimation of global sea surface temperature, we set a
bound on the action space with ||a||c, < 5 degrees per day, or
equivalently 23 knots, to model the speed of the sensor on a
ship. Additionally, the complex geographical layout requires a
safe trajectory of the mobile sensor that avoids crashing into
the land. We define ) to be —100 if the sensor hits land and 0
otherwise.

We consider a trajectory with a length of 1 year (52 weeks)
that matches the natural cycle of the ocean. The Actor-Critic
networks are set with 2 hidden layers of size 32. Other model
setups remain similar to the double-gyre flow experiment. We
focus on a few major coastal cities and ports in the world on
different continents and oceans, such as Rio, Los Angeles,
and Shanghai, as the bases and initial locations for the mobile
sensor. The planned trajectories are shown in Figure 6. In most
cases, we observe that the RL agent first directs the sensor away
from the land and into the ocean to avoid the possibility of land

TABLE I
TESTING RESULTS FROM REPEATED EXPERIMENTS USING PPO anD PPO-LSTM

PLANNING TRAJECTORIES STARTING FROM Ri0. (1=5,p =10)

Model PPO PPO-LSTM
logdet(O) —484.19(£35.10) | —482.78(+32.94)

Energy 12.24(£5.94) 7.15(£2.75)

Return Distance 2.61(%2.59) 6.62(£11.09)

collision. This behavior is most significant when the path starts
near Shanghai where there are many lands in close proximity
with the risk of collision. By our setup of the max speed limit,
the ship carrying the sensor can overcome the background flow
quite easily with a larger speed. Although the ocean consists of
features with natural cycles, the changes in the ocean flow field
in time are more complex as they do not repeat in a pattern like
the double-gyre system. If we consider the span of multiple
cycles, the background flow behaves differently within each
cycle, even though the sensor starts its path at the same time
of the year. The RL agent adjusts with the flow and plans a
different trajectory in each cycle as shown in Figure 7 to ensure
a similar performance in the objectives.

Through repeated experiments, we do not see significant
difference in total rewards learned using PPO or PPO-LSTM
algorithm, but the converged paths exhibit different patterns
with focuses on different component of the reward function.
While paths from PPO are mostly clustered and close to
shore, those from PPO-LSTM more often extend further into
the ocean. Aided by the historical information stored in the
recurrent layer, PPO-LSTM is more confident in moving away
and returning from a farther location compared with PPO.
Additionally, we observe that in general PPO-LSTM finds
paths with better system observability and energy cost than
PPO, while returning further away from the staring location.
The results are summarised in Table I.

In our experiments, the initial location of the sensor is
fixed. We observe from repeated experiments that the initial
sensor location affects the overall observability of the planned
trajecotory (Figure 6). In future work, a more general RL
agent can be trained to optimally place the initial location of
the sensor in the first step and followed by forming a cyclic
path around the chosen location.

V. CONCLUSION

In this work, we used PPO and the recurrent variant
PPO-LSTM as RL agents to plan cyclic paths for a mobile
sensor to maximize system observability while minimizing
energy consumption navigating in the environment with
unsteady background flow. We acknowledged the partially
observable nature of the path planning problem and adopted a
recurrent policy to account for the history of observations.
We demonstrated with numerical experiments on double-
gyre system and realistic ocean model that RL agents learn
to plan efficient trajectories starting at a fixed location as
the background flow changes. They achieve near-optimal
system observability while significantly reducing total energy
consumption comparing to the strategy of finding optimal
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waypoints and planning efficient paths separately. We may
extend to a more general objective with complex objectives
and learnable initial locations for future work. The framework
can also be adapted to a multi-sensor setup where we shall
consider the effect of local information and communication
among multiple sensors on the performance of RL agents.
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